AUC Philosophica et Historica je víceoborový akademický časopis zaměřený na humanitní a společenskovědné obory (filozofie, psychologie, pedagogika, sociologie, obecné, české a hospodářské dějiny, pomocné vědy historické a archivnictví, etnologie).
Časopis je indexován v databázích CEEOL, DOAJ a EBSCO.
AUC PHILOSOPHICA ET HISTORICA, Vol 2022 No 1 (2022), 27–44
On lifting of embeddings between transitive models of set theory
Radek Honzík
DOI: https://doi.org/10.14712/24647055.2025.2
zveřejněno: 28. 02. 2025
Abstract
Suppose M and N are transitive models of set theory, P is a forcing notion in M and G is P-generic over M. An elementary embedding j : (M, ∈) → (N, ∈) lifts to M[G] if there is j+ : (M[G], G, ∈) → (N[j+(G)], j+(G), ∈) such that j+ restricted to M is equal to j. We survey some basic applications of the lifting method for both large cardinals and small cardinals (such as ω2, or successor cardinals in general). We focus on results and techniques which appeared after Cummings’s handbook article [Cum10]: we for instance discuss a generalization of the surgery argument, liftings based on fusion, and compactness principles such as the tree property and stationary reflection at successor cardinals.
klíčová slova: lifting of embeddings; compactness principles; fusion arguments
reference (30)
1. [Abr83] U. Abraham. Aronszajn trees on ℵ2 and ℵ3. Ann. Pure Appl. Logic, 24(3):213-230, 1983. CrossRef
2. [CFM+18] J. Cummings, S.-D. Friedman, M. Magidor, A. Rinot, and D. Sinapova. The eightfold way. J. Symb. Logic, 83(1):349-371, 2018. CrossRef
3. [CM14] B. Cody and M. Magidor. On supercompactness and the continuum function. Ann. Pure Appl. Logic, 165(2):620-630, 2014. CrossRef
4. [Cum92] J. Cummings. A model in which GCH holds at successors but fails at limits. Trans. Amer. Math. Soc., 329(1):1-39, 1992. CrossRef
5. [Cum05] J. Cummings. Notes on singular cardinal combinatorics. Notre Dame J. Formal Logic, 46(3):251-282, 2005. CrossRef
6. [Cum10] J. Cummings. Iterated forcing and elementary embeddings. In M. Foreman and A. Kanamori, eds., Handbook of Set Theory, vol. 2, chap. 12, pp. 775-883. Springer, 2010. CrossRef
7. [Dev78] K. Devlin. ℵ1-trees. Ann. Math. Logic, 13:267-330, 1978. CrossRef
8. [FH08] S.-D. Friedman and R. Honzík. Easton's theorem and large cardinals. Ann. Pure Appl. Logic, 154(3):191-208, 2008. CrossRef
9. [FH12] S.-D. Friedman and R. Honzík. A definable failure of the Singular Cardinal Hypothesis. Israel J. Math., 192(2):719-762, 2012. CrossRef
10. [FHS20] S.-D. Friedman, R. Honzík, and Š. Stejskalová. The tree property at ℵω+2 with a finite gap. Fundamenta Mathematicae, 251:219-244, 2020. CrossRef
11. [FHZ13] S.-D. Friedman, R. Honzík, and L. Zdomskyy. Fusion and large cardinal preservation. Ann. Pure Appl. Logic, 164:1247-1273, 2013. CrossRef
12. [FM09] S.-D. Friedman and M. Magidor. The number of normal measures. J. Symb. Logic, 74(3):1069-1080, 2009. CrossRef
13. [FT08] S.-D. Friedman and K. Thompson. Perfect trees and elementary embeddings. J. Symb. Logic, 73(3):906-918, 2008. CrossRef
14. [Git89] M. Gitik. The negation of singular cardinal hypothesis from o(κ) = κ++. Ann. Pure Appl. Logic, 43:209-234, 1989. CrossRef
15. [GK09] M. Gitik and J. Krueger. Approachability at the second successor of a singular cardinal. J. Symb. Logic, 74(4):1211-1224, 2009. CrossRef
16. [Ham09] J. D. Hamkins. Tall cardinals. Math. Logic Quarterly, 55(1):68-86, 2009. CrossRef
17. [Hon19] R. Honzík. A Laver-like indestructibility for hypermeasurable cardinals. Archive Math. Logic, 58(3):257-287, 2019. CrossRef
18. [HS85] L. Harrington and S. Shelah. Some exact equiconsistency results in set theory. Notre Dame J. Formal Logic, 26(2):178-188, 1985. CrossRef
19. [HS20] R. Honzík and Š. Stejskalová. Indestructibility of the tree property. J. Symb. Logic, 85(1):467-485, 2020. CrossRef
20. [HS22] R. Honzík and Š. Stejskalová. Small u (κ) at singular κ with compactness at κ++. Archive Math. Logic, 61:33-54, 2022. CrossRef
21. [HV16] R. Honzík and J. Verner. A lifting argument for the generalized Grigorieff forcing. Notre Dame J. Formal Logic, 57(2):221-231, 2016. CrossRef
22. [Jech03] T. Jech. Set Theory. Springer Monographs in Mathematics. Springer, 2003.
23. [JS90] R. Jensen and K. Schlechta. Result on the generic Kurepa hypothesis. Archive Math. Logic, 30:13-27, 1990. CrossRef
24. [Kan80] A. Kanamori. Perfect-set forcing for uncountable cardinals. Ann. Math. Logic, 19:97-114, 1980. CrossRef
25. [Kan03] A. Kanamori. The Higher Infinite. Springer, 2003.
26. [Mag82] M. Magidor. Reflecting stationary sets. J. Symb. Logic, 47(4):755-771, 1982. CrossRef
27. [Mit72] W. J. Mitchell. Aronszajn trees and the independence of the transfer property. Ann. Math. Logic, 5(1):21-46, 1972. CrossRef
28. [RS19] A. Rosłanowski and S. Shelah. The last forcing standing with diamonds. Fundamenta Mathematicae, 246:109-159, 2019. CrossRef
29. [She16] S. Shelah. Proper and Improper Forcing. Cambridge University Press, 2nd ed., 2016. CrossRef
30. [Tod81] S. Todorčević. Some consequences of MA + ¬wKH. Topology and its Applications, 12:187-202, 1981. CrossRef
On lifting of embeddings between transitive models of set theory is licensed under a Creative Commons Attribution 4.0 International License.