We are pleased to share that AUC Geographica was awarded an Impact Factor of 0.5 in the 2023 Journal Citation Reports™ released by Clarivate in June 2024. AUC Geographica ranks in Q3 in the field of Geography.
AUC Geographica (Acta Universitatis Carolinae Geographica) is a scholarly academic journal continuously published since 1966 that publishes research in the broadly defined field of geography: physical geography, geo-ecology, regional, social, political and economic geography, regional development, cartography, geoinformatics, demography and geo-demography.
AUC Geographica also publishes articles that contribute to advances in geographic theory and methodology and address the questions of regional, socio-economic and population policy-making in Czechia.
Periodical twice yearly.
Release dates: June 30, December 31
All articles are licenced under Creative Commons Attribution 4.0 International licence (CC BY 4.0), have DOI and are indexed in CrossRef database.
AUC Geographica is covered by the following services: WOS, EBSCO, GeoBibline, SCOPUS, Ulrichsweb and Directory of Open Access Journals (DOAJ).
The journal has been covered in the SCOPUS database since 1975 – today
https://www.scopus.com/source/sourceInfo.uri?sourceId=27100&origin=recordpage
The journal has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 52 (1) 2017, this publication will be indexed and abstracted in Emerging Sources Citation Index.
The journal has been indexed by the Polish Ministry of Science and Higher Education (MSHE) on the list of scientific journals recommended for authors to publish their articles. ICI World of Journals; Acta Universitatis Carolinae, Geographica.
Journal metrics 2023
Web of Science
Impact factor (JCR®): 0.5
Journal Citation Indicator (JCI): 0.20
Rank (JCI): Q3 in Geography
Scopus
Cite Score: 1.2
Rank (ASJC): Q3 in Geography, Planning and Development; Q3 in General Earth and Planetary Sciences
The journal is archived in Portico.
AUC GEOGRAPHICA, Vol 59 No 2 (2024), 214–228
Interannual spatio-temporal evolution of the supraglacial lakes on the Belvedere Glacier between 2000 and 2023
Lukáš Brodský, Samo Rusnák, Susanne Schmidt, Vít Vilímek, Roberto Sergio Azzoni, Marcus Nüsser, Gianluca Tronti, Jan Kropáček, Aayushi Pandey
DOI: https://doi.org/10.14712/23361980.2024.24
zveřejněno: 18. 12. 2024
Abstract
Understanding of the formation and evolution of supraglacial lakes in high mountain regions is crucial for accurately assessing their impact on glacier behaviour, hydrology, and potential hazards such as outburst floods. This article examines the annual spatio-temporal evolution of supraglacial lakes on the Belvedere Glacier between 2000 and 2023. Very high-resolution aerial photography and high-resolution satellite imagery were used to identify supraglacial lakes as small as 37 m2 and narrow bands of ice-marginal lakes. The mapping revealed that the well-known Lake Effimero is stable in its position but unstable in size, with variations from 428 m2 to 99.7 × 103 m2. These changes are potentially due to snowmelt or glacier dynamics. In 2002, the area of Effimero was at its largest extent observed during the study period. The first appearance of the Lake Effimero was revelated by the Landsat imagery on 27 May 2001, which differed from the findings of other studies. New lakes were observed to form in a manner independent of Effimero formation, exhibiting a consistent annual occurrence with nearly linear area growth up to 9.7 × 103 m2 in 2023. The formation of the lakes is shown to be influenced by their morphological characteristics.
klíčová slova: supraglacial lake; glaciers; remote sensing; spatio-temporal dynamics
reference (59)
1. Azzoni, R. S., Fugazza, D., Zerboni, A., Senese, A., D'Agata, C., Maragno, D., Carzaniga, A., Cernuschi, M., Diolaiuti, G. A. (2018): Evaluating high-resolution remote sensing data for reconstructing the recent evolution of supra glacial debris: A study in the Central Alps (Stelvio Park, Italy). Progress in Physical Geography: Earth and Environment 42(1), 3-23. CrossRef
2. Azzoni, R. S., Pelfini, M., Brodský L., Bollati I. (2024): Surface Evolution of the Belvedere Glacier from aerial and UAV orthophotos from 1951 to 2023. AUC Geographica 2024 (2), QQQ-QQQ.
3. Barnola, J. M., Pimienta, P., Raynaud, D., Korotkevich, Y. S. (1991): CO2‐climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on re-evaluation of the air dating. Tellus B 43(2), 83-90. CrossRef
4. Baťka, J. (2016): Factors of formation and development of supraglacial lakes and their quantification: a review. AUC Geographica 51(2), 205-216. CrossRef
5. Benedetti, P., Ienco, D., Gaetano, R., Osé, K., Pensa, R., Dupuy, S. (2018): M3Fusion: A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite Data Fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11(12), 4939-4949. CrossRef
6. Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., Quincey, D. J., Thompson, S., Toumi, R., Wiseman, S. (2012): Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews 114(1-2), 156-174. CrossRef
7. Bhambri, R., Schmidt, S., Chand, P., Nüsser, M., Haritashya, U., Sain, K., Tiwari, S. K., Yadav, J. S. (2023): Heterogeneity in glacier thinning and slowdown of ice movement in the Garhwal Himalaya, India. Science of The Total Environment 875:162625. CrossRef
8. Boehner, J., Koethe, R., Conrad, O., Gross, J., Ringeler, A., Selige, T. (2002): Soil Regionalisation by Means of Terrain Analysis and Process Parameterisation. Soil Classification 2001, 213-222.
9. Boehner, J., Selige, T. (2006): Spatial prediction of soil attributes using terrain analysis and climate regionalisation. Gottinger Geograpihsche Abhandlungen 115, 13-28.
10. Bollati, I. M., Viani, C., Masseroli, A., Mortara, G., Testa, B., Tronti, G., Pelfini, M., Reynard, E. (2023): Geodiversity of proglacial areas and implications for geosystem services: A review. Geomorphology 421: 108517. CrossRef
11. Box, J., Ski, K. (2017): Remote sounding of Greenland supraglacial melt lakes: Implications for subglacial hydraulics. Journal of Glaciology 53(181), 257-265. CrossRef
12. Brodský, L., Vilímek, V., Šobr, M., Kroczek, T. (2022): The Effect of Suspended Particulate Matter on the Supraglacial Lake Depth Retrieval from Optical Data. Remote Sensing 14(23): 5988. CrossRef
13. Buckel, J., Otto, J. C., Prasicek, G., Keuschnig, M. (2018): Glacial lakes in Austria-Distribution and formation since the Little Ice Age. Global and Planetary Change 164, 39-51. CrossRef
14. Büttner, G., Kosztra, B. (2017): CLC2018 Technical Guidelines. European Environment Agency Technical report No 17/2007. Available online: https://www.eea.europa.eu/publications/technical_report_2007_17/download (accessed on 18. 5. 2024)
15. Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J. (2015): System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8(7), 1991-2007. CrossRef
16. Cook, S. J., Quincey, D. J. (2015): Estimating the volume of Alpine glacial lakes. Earth Surface Dynamics 3(4), 559-575. CrossRef
17. Diolaiuti, G., Citterio, M., Carnielli, T., D'agata, C., Kirkbride, M., Smiraglia, C. (2006): Rates, processes and morphology of freshwater calving at Miage Glacier (Italian Alps). Hydrological Processes: An International Journal 20(10), 2233-2244. CrossRef
18. Dirscherl, M., Dietz, A.J., Kneisel, C., Kuenzer, C. (2020): Automated Mapping of Antarctic Supraglacial Lakes Using a Machine Learning Approach. Remote Sensing 12(7): 1203. CrossRef
19. Fischer, L., Kääb, A., Huggel, C., and Noetzli, J. (2006): Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face, Natural Hazards and Earth System Sciences 6(5), 761-772. CrossRef
20. Gao, J. (2009): Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress in Physical Geography 33(1), 103-116. CrossRef
21. Geoportale Piemonte (2024). Available online: http://www.geoportale.piemonte.it (accessed on 15. 1. 2024).
22. Gregory, S. A., Albert, M. R., Baker, I. (2014): Impact of physical properties and accumulation rate on pore close off in layered firn. The Cryosphere 8(1), 91-105. CrossRef
23. Haeberli, W., Kääb, A., Paul, F., Chiarle, M., Mortara, G., Mazza, A., Deline, P., Richardson, S. (2002): A surge-type movement at Ghiacciaio del Belvedere and developing slope instability in the east face of Monte Rosa, Macugnaga, Italian Alps. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography 56(2), 104-111. CrossRef
24. Hu, J., Zhang, T., Zhou, X., Yi, G., Bie, X., Li, J.,Chen, Y., Lai, P. (2024): A Glacial Lake Mapping Framework in High Mountain Areas: A Case Study of the Southeastern Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing 62, 1-12. CrossRef
25. Ioli, F., Bianchi, A., Cina, A., De Michele, C.; Maschio, P.; Passoni, D.; Pinto, L. (2022): Mid-Term Monitoring of Glacier's Variations with UAVs: The Example of the Belvedere Glacier. Remote Sensing 14(1): 28. CrossRef
26. Kääb, A., Huggel, C., Fischer, L., Guex, S., Paul, F., Roer, I., Salzmann, N., Schlaefli, S., Schmutz, K., Schneider, D., Strozzi, T., Weidmann, Y. (2005): Remote sensing of glacier- and permafrost-related hazards in high mountains: An overview. Natural Hazards and Earth System Science 5(4), 527-554. CrossRef
27. Kaushik, S., Singh, T., Joshi, P. K., Dietz, J. A. (2022): Automated mapping of glacial lakes using multisource remote sensing data and deep convolutional neural network. International Journal of Applied Earth Observation and Geoinformation 115: 103085. CrossRef
28. Kropáček, J., Neckel, N., Tyrna, B., Holzer, N., Hovden, A., Gourmelen, N., Schneider, C., Buchroithner, M., Hochschild, V. (2015): Repeated glacial lake outburst flood threatening the oldest Buddhist monastery in north-western Nepal. Natural Hazards and Earth System Sciences 15(10), 2425-2437. CrossRef
29. Lhermitte, S., Verbesselt, J., Verstraeten, W. W., Coppin, P. (2011): A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sensing of Environment 115(12), 3129-3152. CrossRef
30. Liang, Y.-L., Colgan, W., Lv, Q., Steffen, K., Abdalati, W., Stroeve, J., Gallaher, D., Bayou, N. (2012): A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm. Remote Sensing of Environment 123, 127-138. CrossRef
31. Liu, Z., Chen, X., Zhou, S., Yu, H., Guo, J., Liu, Y. (2022): DUPnet: Water Body Segmentation with Dense Block and Multi-Scale Spatial Pyramid Pooling for Remote Sensing Images. Remote Sensing 14(21): 5567. CrossRef
32. Ma, J., Song, C., Wang, Y. (2021): Spatially and Temporally Resolved Monitoring of Glacial Lake Changes in Alps During the Recent Two Decades. Frontiers in Earth Science 9: 723386. CrossRef
33. Miles, K. E., Hubbard, B., Irvine-Fynn, T. D. L., Miles, E. S., Quincey, D. J., Rowan, A. V. (2017): Review article: The hydrology of debris-covered glaciers - state of the science and future research directions. The Cryosphere Discuss. [preprint]. CrossRef
34. Miles, K. E., Hubbard, B., Irvine-Fynn, T. D. L., Miles, E. S., Quincey, D. J., Rowan, A. V. (2020): Hydrology of Debris-Covered Glaciers in High Mountain Asia. Earth-Science Reviews 207: 103212. CrossRef
35. Miles, E.S., Steiner, J.F., Buri, P., Immerzeel, W.W., Pellicciotti, F., (2022): Controls on the Relative Melt Rates of Debris-Covered Glacier Surfaces. Environmental Research Letters 17: 064004. CrossRef
36. Miles, E. S., Willis, I., Buri, P., Steiner, J. F., Arnold, N. S., Pellicciotti, F. (2018): Surface Pond Energy Absorption across Four Himalayan Glaciers Accounts for 1/8 of Total Catchment Ice Loss. Geophysical Research Letters 45(19), 10464-10473. CrossRef
37. Mortara G. Mercalli L. (2002): Il lago epiglaciale «Effimero» sul ghiacciaio del Belvedere, Macugnaga, Monte Rosa. Nimbus 7(23-24), 10-17.
38. NOAA (2024): Forecast Verification Glossary. Available online: https://www.swpc.noaa.gov/sites/default/files/images/u30/Forecast%20Verification%20Glossary.pdf (accessed on 1. 2. 2024).
39. Planet Labs PBC (2018): Planet Application Program Interface: In Space for Life on Earth. Available online: https://api.planet.com (accessed on 2. 2. 2024).
40. Pope, A., Scambos, T. A., Moussavi, M., Tedesco, M., Willis, M., Shean, D., Grigsby, S. (2016): Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods. The Cryosphere 10(1), 15-27. CrossRef
41. Racoviteanu, A. E., Nicholson, L., Glasser, N. F. (2021): Surface composition of debris-covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI imagery. The Cryosphere 15(9), 4557-458. CrossRef
42. Ranzi, R., Grossi, G., Iacovelli, L., Taschner, S. (2004): Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS Project. IEEE International Geoscience and Remote Sensing Symposium, 1144-1147. CrossRef
43. Reynolds, J.M. (2000): On the formation of supraglacial lakes on debris-covered glaciers. IAHS-AISH Publication 264: 153-161.
44. Richardson, S. D., Reynolds, J. M. (2000): An overview of glacial hazards in the Himalayas. Quaternary International 65-66, 31-47. CrossRef
45. Sakai, A. (2012): Glacial Lakes in the Himalayas: A Review on Formation and Expansion Processes. Global Environmental Research 16, 23-30.
46. Salerno, F., Thakuri, S., D'agata, C., Smiraglia, C., Manfredi, E.C., Viviano, G., Tartari, G. (2012): Glacial lake distribution in the Mount Everest region: Uncertainty of measurement and conditions of formation. Global and Planetary Change 92-93, 30-39. CrossRef
47. Schröder, L., Neckel, N., Zindler, R., Humbert, A. (2020): Perennial Supraglacial Lakes in Northeast Greenland Observed by Polarimetric SAR. Remote Sensing 12(17): 2798. CrossRef
48. Sharma, A., Thakur, V., Prakash, C., Sharma, A., Sharma, R. (2024): Deep Learning-Based Glacial Lakes Extraction and Mapping in the Chandra-Bhaga Basin. Journal of the Indian Society of Remote Sensing 52, 435-447. CrossRef
49. Somos-Valenzuela, M.A., Mckinney, D.C., Rounce, D. R., Byers, A. C. (2014): Changes in Imja Tsho in the Mount Everest region of Nepal. The Cryosphere 8(5), 1661-1671. CrossRef
50. Tamburini, A., Mortara, G. (2005): The case of the "Effimero" lake at Monte Rosa (Italian western Alps): studies, field surveys, monitoring. 10th Conference of the Euromediterranean Network of Experimental and Representative Basins (ERB) 77, 179-184.
51. Truffer, M., Kääb, A., Harrison, W. D., Osipova, G. B., Nosenko, G. A., Espizua, L., Gilbert, A., Fischer, L., Huggel, C., Craw Burns, P. A., Lai, A. W. (2021): Chapter 13 - Glacier surges. In: Haeberli, W., Whiteman, C. (ed.): Snow and ice-related hazards, risks, and disasters. Elsevier, 2021, 417-466. CrossRef
52. Viani, C., Giardino, M., HuGGel, C., Perotti, L., Mortara, G. (2016): An overview of glacier lakes in the Western Italian Alps from 1927 to 2014 based on multiple data sources (historical maps, orthophotos and reports of the glaciological surveys). Geografia Fisica e Dinamica Quaternaria 39(2), 203-214. CrossRef
53. Watson, C. S., Quincey, D. J., Carrvick, J. L., Smith, M. W. (2016): The dynamics of supraglacial ponds in the Everest region, central Himalaya. Global and Planetary Change 142, 14-27. CrossRef
54. Watson, C. S., Quincey, D. J., Carrivick, J. L., Smith, M. W., Rowan, A. V., Richardson, R. (2018): Heterogeneous water storage and thermal regime of supraglacial ponds on debris‐covered glaciers. Earth Surface Processes and Landforms 43(1), 229-241. CrossRef
55. Wendleder, A., Friedl, P., Mayer, C. (2018): Impacts of Climate and Supraglacial Lakes on the Surface Velocity of Baltoro Glacier from 1992 to 2017. Remote Sensing 10(11): 1681. CrossRef
56. Wendleder, A., Schmitt, A., Erbertseder, T., D'Angelo, P., Mayer, C., Braun, M. H. (2021): Seasonal evolution of supraglacial lakes on Baltoro Glacier from 2016 to 2020. Frontiers in Earth Science 9: 725394. CrossRef
57. Williamson, A. G., Neil, S. A., Alison, F. B., Ian, C., Willis, A. (2017): Fully Automated Supraglacial lake area and volume Tracking ("FAST") algorithm: Development and application using MODIS imagery of West Greenland. Remote Sensing of Environment 196, 113-133. CrossRef
58. Wu, Z., Gao, Y., Li, L., Xue, J., Li, Y. (2018): Semantic segmentation of high-resolution remote sensing images using fully convolutional network with adaptive threshold. Connection Science 31(2), 169-184. CrossRef
59. Zeller, L., McGrath, D., McCoy, S. W., Jacquet, J. (2024): Seasonal to decadal dynamics of supraglacial lakes on debris-covered glaciers in the Khumbu region, Nepal. The Cryosphere 18(2), 525-541. CrossRef
Interannual spatio-temporal evolution of the supraglacial lakes on the Belvedere Glacier between 2000 and 2023 is licensed under a Creative Commons Attribution 4.0 International License.
210 x 297 mm
vychází: 2 x ročně
cena tištěného čísla: 200 Kč
ISSN: 0300-5402
E-ISSN: 2336-1980