AUC GEOGRAPHICA
AUC GEOGRAPHICA

We are pleased to share that AUC Geographica was awarded an Impact Factor of 0.5 in the 2023 Journal Citation Reports™ released by Clarivate in June 2024. AUC Geographica ranks in Q3 in the field of Geography.

AUC Geographica (Acta Universitatis Carolinae Geographica) is a scholarly academic journal continuously published since 1966 that publishes research in the broadly defined field of geography: physical geography, geo-ecology, regional, social, political and economic geography, regional development, cartography, geoinformatics, demography and geo-demography.

AUC Geographica also publishes articles that contribute to advances in geographic theory and methodology and address the questions of regional, socio-economic and population policy-making in Czechia.

Periodical twice yearly.
Release dates: June 30, December 31

All articles are licenced under Creative Commons Attribution 4.0 International licence (CC BY 4.0), have DOI and are indexed in CrossRef database.

AUC Geographica is covered by the following services: WOS, EBSCO, GeoBibline, SCOPUS, Ulrichsweb and Directory of Open Access Journals (DOAJ).

The journal has been covered in the SCOPUS database since 1975 – today
https://www.scopus.com/source/sourceInfo.uri?sourceId=27100&origin=recordpage

The journal has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 52 (1) 2017, this publication will be indexed and abstracted in Emerging Sources Citation Index.

The journal has been indexed by the Polish Ministry of Science and Higher Education (MSHE) on the list of scientific journals recommended for authors to publish their articles. ICI World of Journals; Acta Universitatis Carolinae, Geographica.

Journal metrics 2023

Web of Science
Impact factor (JCR®): 0.5
Journal Citation Indicator (JCI): 0.20
Rank (JCI): Q3 in Geography

Scopus
Cite Score: 1.2
Rank (ASJC): Q3 in Geography, Planning and Development; Q3 in General Earth and Planetary Sciences

The journal is archived in Portico.

AUC GEOGRAPHICA, Vol 59 No 1 (2024), 120–136

Using eye tracking to study reading landscape: a systematic review

Tomáš Měkota

DOI: https://doi.org/10.14712/23361980.2024.8
zveřejněno: 24. 06. 2024

Abstract

More studies have understood landscape as a perceived entity since the European Landscape Convention was approved in 2004. This article adopts a systematic review approach in line with the PRISMA statement to delineate the utilization of eye tracking in studying landscapes. A comprehensive analysis of 55 studies sourced from the Web of Science and Scopus databases was conducted. Various aspects were scrutinized, encompassing landscape attributes, media employed for landscape representation, eye tracking data visualizations, and eye tracking metrics. The prevalence of eye tracking usage in landscape studies has notably increased since 1998, with research conducted across all continents. The most studied aspects of the landscape are saliency and specifics of particular types of landscape. Amongst the varied media used to represent landscape, photographs reign supreme, while heatmaps prominently feature as a means to visualize eye tracking data. The spectrum of metrics applied is extensive, showcasing distinct suitability for specific landscape attributes. Drawing from this review, recommendations for prospective research directions are outlined. The insights garnered from this review stand to serve as a valuable overview for researchers delving into the realm of reading landscape.

klíčová slova: landscape perception; reading landscape; eye tracking; systematic review

reference (84)

1. Amati, M., Parmehr, E. G., McCarthy, C., Sita, J. (2018): How eye-catching are natural features when walking through a park? Eyetracking responses to videos of walks. Urban Forestry & Urban Greening 31, 67-78. CrossRef

2. Antrop, M., van Eetvelde, V. (2017): Landscape Perspectives. Springer, Dordrecht. CrossRef

3. Antonson, H., Ahlström, C., Märdh, S., Blomqvist, G., Wiklund, M. (2014): Landscape heritage objects' effect on driving: A combineddriving simulator and questionnaire study. Accident Analysis and Prevention 62, 168-177. CrossRef

4. Backhaus, D., Engbert, R., Rothkegel, L. O. M., Trukenbrod, H. A. (2020): Task-dependence in scene perception: Head unrestrained viewing using mobile eye-tracking. Journal of Vision 20(5), 1-21. CrossRef

5. Bell, S. (2001): Landscape pattern, perception and visualisation in the visual management of forests. Landscape and Urban Planning 54(1-4), 201-211. CrossRef

6. Bianconi, F., Filippucci, M., Seccaroni, M. (2019): Survey and Co-design the Urban Landscape. Innovative Digital Path for Perception Analysis and Data-driven Project. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W15, 165-175. CrossRef

7. Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., Ertl, T. (2017): Visualization of Eye Tracking Data: A Taxonomy and Survey. Computer Graphics Forum 36(8), 260-284. CrossRef

8. Bogdan, P. C., Dolcos, S., Buetti, S., Lleras, A., Dolcos, F. (2024): Investigating the suitability of online eye tracking for psychological research: Evidence from comparisons with in-person data using emotion-attention interaction tasks. Behavioral Research Methods 56, 2213-2226. CrossRef

9. Borozan, M., Loreta, C., Riccardo, P. (2022): Eye-tracking for the study of financial decision-making: A systematic review of the literature. Journal of Behavioral and Experimental Finance 35: 100702. CrossRef

10. Brazil, W., O'Dowd, A., Caulfield, B. (2017): Using eye-tracking technology and Google street view to understand cyclists' perceptions, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 1-6. CrossRef

11. Cho, H. (2016): A Study on the Comparison of the Visual Attention Characteristics on the Facade Image of a Detached House Due to the Features on Windows. Journal of Asian Architecture and Building Engineering 15(2), 209-214. CrossRef

12. Cottet, M., Vaudor, L., Tronchére, H., Roux-Michollet, D., Augendre, M., Brault, V. (2018): Using gaze behavior to gain insights into the impacts of naturalness on city dwellers' perceptions and valuation of a landscape. Journal of Environmental Psychology 60, 9-20. CrossRef

13. Credidio, H. F., Teixeira, E. N., Reis, S. D. S., Moreira, A. A., Andrade, J. S. (2012): Statistical patterns of visual search for hidden objects. Scientific Reports 2: 920, 1-6. CrossRef

14. Cronon, W. (2020): The making of the American landscape. Retrieved from http://www.williamcronon.net/courses/469/ (accessed July 21, 2022).

15. Cullen, M. M., Schmitt, D., Granatosky, M. C., Wall, C. E., Platt, M., Larsen, R. (2020): Gaze-behaviors of runners in a natural, urban running environment. PLoS ONE 15(5): e0233158. CrossRef

16. Davies, C., Tompkinskon, W., Donnelly, N., Gordon, L., Cave, K. (2006): Visual saliency as an aid to updating digital maps. Computers in Human Behavior 22(4), 672-684. CrossRef

17. Deng, R., Gao, Y. (2023): A review of eye tracking research on video-based learning. Education and Information Technologies 28, 7671-7702. CrossRef

18. Dong, W., Liao, H., Liu, B., Zhan, Z., Liu, H., Meng, L., Liu, Y. (2020): Comparing pedestrians' gaze behavior in desktop and in real environments. Cartography and Geographic Information Science 47(5), 432-451. CrossRef

19. Dupont, L., Antrop, M., Van Eetvelde, V. (2015): Does landscape related expertise influence the visual perception of landscape photographs? Implications for participatory landscape planning and management. Landscape and Urban Planning 141, 68-77. CrossRef

20. Duncan J., Duncan N. (1988): (Re)reading the landscape. Environment and Planning D: Society and Space 6(2), 117-126. CrossRef

21. Dupont, L., Van Eetvelde, V. (2014): The use of eye-tracking in landscape perception research. ETRA '14: Proceedings of the Symposium on Eye Tracking Research and Applications, 389-390. CrossRef

22. Hu, T., Wang, X., Xu, H. (2022): Eye-Tracking in Interpreting Studies: A Review of Four Decades of Empirical Studies. Frontiers in Psychology 13. CrossRef

23. Elsadek, M., Sun, M., Sugiyama, R., Fujii, E. (2019): Cross-cultural comparison of physiological and psychological responses to different garden styles. Urban Forestry & Urban Greening 38, 74-83. CrossRef

24. Emo, B. (2012): Wayfinding in Real Cities: Experiment at Street Corners. In: Stachniss, C., Schill, K., Uttal, D. (eds.) Spatial Cognition VIII. Spatial Cognition 2012. Lecture Notes in Computer Science 7463. Springer, Berlin, Heidelberg. CrossRef

25. Fedotov, D., Matsuda, Y., Takahashi, Y., Arakawa, Y., Yasumoto, K., Minker, W. (2018): Towards Estimating Emotions and Satisfaction Level of Tourist based on Eye Gaze and Head Movement. IEEE International Conference on Smart Computing. Taormina, Italy, 2018, 399-404. CrossRef

26. Franěk, M., Šefara, D., Petružálek, J., Cabal, J., Myška, K. (2018a): Differences in eye movements while viewing images with various levels of restorativeness. Journal of Environmental Psychology 57, 10-16. CrossRef

27. Franěk, M., Šefara, D., Mlejnek, R., Petružálek, J., van Noorden, L. (2018b). Eye movements in scene perception while listening to slow and fast music. Journal of Eye Movement Research 11(2): 8. CrossRef

28. Franke, C., Schweikart, J. (2016). Investigation of Landmark-Based Pedestrian Navigation Processes with a Mobile Eye Tracking System. In: Gartner, G., Huang, H. (eds.), Progress in Location-Based Services. Lecture Notes in Geoinformation and Cartography. Springer, Cham. CrossRef

29. Gao, Y., Zhang, T., Zhang, W., Meng, H., Zhang, Z. (2020): Research on visual behavior characteristics and cognitive evaluation of different types of forest landscape spaces. Urban Forestry & Urban Greening 54: 126788. CrossRef

30. Hayata, N., Ino, S. (1998). The Differences in Eye Movements and Visual Impressions in Response to Static versus Motion Picture Imagery of Streetscapes. Journal for Geometry and Graphics 2(1), 85-91.

31. Hayek, U. W., Müller, K., Göbel, F., Kiefer, P., Spielhofer, R., Gret-Regamy, A. (2019): 3D Point Clouds and Eye Tracking for Investigating the Perception and Acceptance of Power Lines in Different Landscapes. Multimodal Technologies and Interaction 3(2): 40. CrossRef

32. Hooge, I. T. C., Niehorster, D. C., Nyström, M., Hessels, R. S. (2024): Large eye-head gaze shifts measured with a wearable eye tracker and an industrial camera. Behavioral Research Methods. CrossRef

33. Just, M. A., Carpenter, P. A. (1980): A theory of reading: from eye fixation to comprehension. Psychological Review 87(4), 329-354. CrossRef

34. Kaduk, T., Goeke, C., Finger, H., König, P. (2023): Webcam eye tracking close to laboratory standards: Comparing a new webcam-based system and the EyeLink 1000. Behavioral Research Methods. CrossRef

35. Kang, Y., Kim, E. J. (2019): Differences of Restorative Effects While Viewing Urban Landscapes and Green Landscapes. Sustainability 11(7): 2129. CrossRef

36. Kaplan, R. et al. (1989): Environmental Preference: A Comparison of Four Domains of Predictors. Environment and behavior 21(5), 509-530. CrossRef

37. Ke, F., Liu, R., Sokolikj, Z., Dahlstrom-Hakki, I., Israel, M. (2024): Using eye-tracking in education: review of empirical research and technology. Educational technology research and development. CrossRef

38. Khachatryan, H., Rihn, A., Hansen, G., Clem, T. (2020): Landscape Aesthetics and Maintenance Perceptions: Assessing the Relationship between Homeowners' Visual Attention and Landscape Care Knowledge. Land Use Policy 95: 104645. CrossRef

39. Khaledi, H. J., Khakzand, M., Faizi, M. (2022): Landscape and Perception: A systematic review. Landscape Online 97, 1098. CrossRef

40. Kiefer, P., Giannopoulos, I., Raubal, M. (2014): Where Am I? Investigating Map Matching During Self-Localization With Mobile Eye Tracking in an Urban Environment. Transactions in GIS 18(5), 660-686. CrossRef

41. Klein, C., Ettinger, U. (eds.) (2019): Eye Movement Research. Springer Cham. CrossRef

42. Lappi, O. (2015). Eye tracking in the Wild: the Good, the Bad and the Ugly. Journal of Eye Movement Research 8(5), 1-21. CrossRef

43. Lewis, P. K. (1979): Axioms for Reading the Landscape. In: Meinig, D. W., The Interpretation of Ordinary Landscape: Geographical Essays (pp. 1-12). Oxford University Press, Oxford.

44. Li, Q., Huang, Z., Christianson, K. (2016): Visual attention toward tourism photographs with text: An eye-tracking study. Tourism Management 54, 243-258. CrossRef

45. Liener, P., Sütterlin, B., Siegrist, M. (2017): The influence of high-voltage power lines on the feelings evoked by different Swiss surroundings. Energy Research & Social Science 23, 46-59. CrossRef

46. Lin, C. J., Chang, C.-C., Lee, Y. H. (2014): Evaluating camouflage design using eye movement data. Applied Ergonomics 45(3), 714-723. CrossRef

47. Liu, Y., Hu, M., Zhao, B. (2019): Audio-visual interactive evaluation of the forest landscape based on eye-tracking experiments. Urban Forestry & Urban Greening, 46: 126476. CrossRef

48. Liu, Y., Hu, M., Zhao, B. (2020): Interactions between forest landscape elements and eye movement behavior under audio-visual integrated conditions. Journal of Forest Research 25(1), 21-30. CrossRef

49. Lynch, K. (1960): The Image of the City. M. I. T., Cambridge and London.

50. Marconi, M., Do Carmo Blanco, N., Zimmer, C., Guyon, A. (2023): Eye movements in response to different cognitive activities measured by eyetracking: a prospective study on some of the neurolinguistics programming theories. Journal of Eye Movement Research 16(2). CrossRef

51. Misthos, L-M., Pavlidis, A., Karabassakis, E., Menegaki, M., Krassanakis, V., Nakos, B. (2020): Exploring the visual impact from open pit mines applying eye movement analyses on mining landscape photographs. International Journal of Mining, Reclamation and Environment 34(9), 609-624. CrossRef

52. Nathanael, D., Portouli, E., Gkikas, K., Papakostopoulos, V. (2012): What does a motorcyclist look at while driving at urban arterials? Work 41(Supplement 1), 4900-4906. CrossRef

53. Nordh, H. (2012): Quantitative methods of measuring restorative components in urban public parks. Journal of Landscape Architecture 7(1), 46-53. CrossRef

54. Nordh, H., Hagerhall, C. M., Holmqvist, K. (2013): Tracking Restorative Components: Patterns in Eye Movements as a Consequence of a Restorative Rating Task. Landscape Research 38(1), 101-116. CrossRef

55. Page, M. J., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372: n71. CrossRef

56. Petružálek, J., Šefara, D., Franěk, M., Kabeláč, M. (2018): Scene perception while listening to music: an eye-tracking study. In ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland, June 14-17, 2018. CrossRef

57. Pihel, J., Sang, Å. O., Hagerhall, C., Nyström, M. (2015): Expert and novice group differences in eye movements when assessing biodiversity of harvested forests. Forest Policy and Economics 56, 20-26. CrossRef

58. Potocka, I. (2013): The Lakescape in the Eyes of a Tourist. Quaestiones Geographicae 32(3), 85-97. CrossRef

59. Raptis, G. E., Fidas, C. A., Avouris, N. M. (2016): Using Eye Tracking to Identify Cognitive Differences: A Brief Literature Review. PCI '16: Proceedings of the 20th Pan-Hellenic Conference on Informatics, no. 21, 1-6. CrossRef

60. Ren, X. (2019): Consensus in factors affecting landscape preference: A case study based on a cross-cultural comparison. Journal of Environmental Management 252: 109622. CrossRef

61. Ren, X., Kang, J. (2015): Interactions between landscape elements and tranquility evaluation based on eye tracking experiments. The Journal of the Acoustical Society of America 138(5), 3019-3022. CrossRef

62. Sang, Å. O., Hagerhall, C., Pihel, J., Holmqvist, K. (2014): Swedish Pasture-An Exploration of Perceptual Attributes and Categorisation. Landscape Research 39(4), 402-416. CrossRef

63. Sang, Å. O., Tveit, M. S., Pihel, J., Hägerhäll, C. M. (2016): Identifying cues for monitoring stewardship in Swedish pasture landscapes. Land Use Policy 53, 20-26. CrossRef

64. Sayegh, A., Rudin, J., Andreani, S., Yan, X., Li, L. (2015): A New Method for Urban Spatial Analysis: Measuring Gaze, Attention, and Memory in the Built Environment UrbanGIS'15: Proceedings of the 1st International ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics. Bellevue, WA, USA. CrossRef

65. Saxena, S., Fink, L. K., Lange, E. B. (2023): Deep learning models for webcam eye tracking in online experiments. Behavioral Research Methods 56, 3487-3503. CrossRef

66. Schumann, F., Einhäuser-Treyer, W., Vockeroth, J., Bartl, K., Schneider, E., König, P. (2008): Salient features in gaze-aligned recordings ofhuman visual input during free exploration of natural environments. Journal of Vision 8(14), 1-17. CrossRef

67. Scott, N., Zhang, R., Le, D., Moyle, B. (2019): A review of eye-tracking research in tourism. Current Issues in Tourism 22(10), 1244-1261. CrossRef

68. Shynu, R. V., Santhosh Kumar, K. G., Sambath, R. D. (2022): Factors influencing environmental perception: A Systematic Review. Journal of Physics: Conference Series 1950: 012040. CrossRef

69. Smith, G. A. (2002): Place-based education: Learning to be where we are. Phi Delta Kappan 83(8), 584-594. CrossRef

70. Spanjar, G., Suurenbroek, F. (2020): Eye-Tracking the City: Matching the Design of Streetscapes in High-Rise Environments with Users' Visual Experiences. Journal of Digital Landscape Architecture 5, 374-385. CrossRef

71. Spiers, H. J., Maguire, E. A. (2008): The dynamic nature of cognition during wayfinding. Journal of Environmental Psychology 28(3), 232-249. CrossRef

72. Stelling-Konczak, A., Vlakveld, W. P., van Gent, P., Commandeur, J. J. F., van Wee, B., Hagenzieker, M. (2018): A study in real traffic examining glance behaviour of teenage cyclists when listening to music: Results and ethical considerations. Transportation Research Part F: Traffic Psychology and Behaviour 55, 47-57. CrossRef

73. Stevenson, M. P., Dewhurst, R., Schilhab, T., Bentsen, P. (2019): Cognitive Restoration in Children Following Exposure to Nature: Evidence from the Attention Network Task and Mobile Eye Tracking. Frontiers in Psychology 10: 4. CrossRef

74. Strzelecki, A. (2020): Eye-Tracking Studies of Web Search Engines: A Systematic Literature Review. Information 11(6): 300. CrossRef

75. Takahashi, M., Fujibayashi, K., Shimonaka, T., Sato, M., Sawa, K. (2001): Analysis of colors used on outdoor advertising in urban landscape: a case study in Osaka city. Proc. SPIE 4421, 9th Congress of the International Colour Association, 6 June 2002. CrossRef

76. Tveit, M. et al. (2006). Key concepts in a framework for analysing visual landscape character. Landscape Research 31(3), 229-255. CrossRef

77. Valsecchi, M., Akbarinia, A., Gil-Rodriguez, R., Gegenfurtner, K. R. (2020): Pedestrians Egocentric Vision: Individual and Collective Analysis. ETRA '20 Short Papers: ACM Symposium on Eye Tracking Research and Applications, Stuttgart, Germany. CrossRef

78. Valsecchi, M., Codispoti, M. (2022): Eye tracking applied to tobacco smoking: current directions and future perspectives. Journal of Eye Movement Research 15(1). CrossRef

79. Valtchanov, D., Ellard, C. (2015): Cognitive and affective responses to natural scenes: Effects of low level visual properties on preference, cognitive load and eye-movements. Journal of Environmental Psychology 43, 184-195. CrossRef

80. Wang, M., Zhao, M., Lin, M., Cao, W., Zhu, H., An, N. (2020): Seeking lost memories: application of a new visual methodology for heritage protection. Geographical Review 110(4), 556-574. CrossRef

81. Wang, T. C., Tsai, C. L., Tang, T. W. (2018): Exploring Advertising Effectiveness of Tourist Hotels' Marketing Images Containing Nature and Performing Arts: An Eye-Tracking Analysis. Sustainability 10(9), 3038. CrossRef

82. Widgren, M. (2004): Can Landscape Be Read? In: Palang, H., Sooväli, H., Antrop, M., Setten, G. (ed.), European Rural Landscape: Persistence and Change in a Globalising Environment. Springer, Dordrecht. CrossRef

83. Worthy, D. A., Lahey, J. N., Priestley, S. L., Palma, M. A. (2024): An examination of the effects of eye-tracking on behavior in psychology experiments. Behavior Research Methods. CrossRef

84. Zhu, X., Zhang, Y., Zhao, W. (2020): Differences in Environmental Information Acquisition from Urban Green - A Case Study of Qunli National Wetland Park in Harbin, China. Sustainability 12(19): 8128. CrossRef

Creative Commons License
Using eye tracking to study reading landscape: a systematic review is licensed under a Creative Commons Attribution 4.0 International License.

210 x 297 mm
vychází: 2 x ročně
cena tištěného čísla: 200 Kč
ISSN: 0300-5402
E-ISSN: 2336-1980

Ke stažení