Acta Universitatis Carolinae Kinanthropologica (AUC Kinanthropologica) is an international peer reviewed journal for the publication of research outcomes in the humanities, the social sciences and the natural sciences, as applied to kinathropology. It is a multidisciplinary journal accepting only original unpublished articles in English in the various sub-disciplines and related fields of kinanthropology, such as Anthropology, Anthropomotorics, Sports Pedagogy, Sociology of Sport, Philosophy of Sport, History of Sport, Physiology of Sport And Exercise, Physical Education, Applied Physical Education, Physiotherapy, Human Biomechanics, Psychology of Sport, Sports Training and Coaching, Sport Management, etc. The journal also welcomes interdisciplinary articles. The journal also includes reports of relevant activities and reviews of relevant publications.

The journal is abstracted and indexed by CNKI, DOAJ, EBSCO, ERIH PLUS, SPOLIT, SPORTDiscus, and Ulrichsweb.

AUC KINANTHROPOLOGICA, Vol 57 No 1 (2021), 79–91

Trends in the Brain-Computer Interface

Matej Kostrec, Bohumír Štědroň

announced: 16. 06. 2021


The goal of every human being on our planet is to improve the living conditions not only of his life, but also of all humanity. Digitization, dynamic development of technological equipment, unique software solutions and the transfer of human capabilities into the form of data enable the gradual achievement of this goal. The human brain is the source of all activities (physical, mental, decision-making, etc.) that a person performs. Therefore, the main goal of research is its functioning and the possibility to at least partially replace this functioning by external devices connected to a computer. The Brain-Computer Interface (BCI) is a term which represents a tool for performing external activities through sensed signals from the brain. This document describes various techniques that can be used to collect the neural signals. The measurement can be invasive or non-invasive. Electroencephalography (EEG) is the most studied non-invasive method and is therefore described in more detail in the presented paper. Once the signals from the brain are scanned, they need to be analysed in order to interpret them as computer commands. The presented methods of EEG signal analysis have advantages and disadvantages, either temporal or spatial. The use of the inverse EEG problem can be considered as a new trend to solve non-invasive high-resolution BCI.

keywords: brain-computer interface; electroencephalography (EEG); inverse EEG problem; neuro imaging; medicine; brain activity imaging

references (44)

1. Abdellah, M. (2017). Face au développement des neurotechnologies, des chercheurs défendent la reconnaissance de nouveaux droits fondamentaux. France24 [online]. Available:

2. Bardon, L. (2017). Les neurotechnologies imposent de revisiter les lois liées au droit de l'homme [online]. Available:

3. Bezard, E. (2018). L'interface cerveau-machine: « un dialogue » pour réparer le corps, The Conversation [online]. Available:

4. Charte des droits fondamentaux de l'UE, Journal officiel de lʼUnion européenne C 303/17 - 14.12.2007 [online]. Available:

5. Cheminat, J. (2017). Face au « hacking du cerveau », de nouveaux droits de l'homme?, [online]. Available:

6. Clerc, M., Bougrain, L., & Lotte, F. (2016). Brain-computer interfaces 1: Methods and perspectives (Cognitive Science). London: Wiley-ISTE. CrossRef

7. Clerc, M., Bougrain, L., & Lotte, F. (2016). Brain-computer interfaces 2: Technology and applications (Cognitive Science). London: Wiley-ISTE. CrossRef

8. <bez popisu> CrossRef

9. Dartigues, L. (2018). Une irrésistible ascension? Le neurodroit face à ses critiques. Zilsel 2018/1, no. 3, pp. 63-103. Available on: CrossRef

10. Farnsworth, B. (2017). EEG Headset Prices - An Overview of 15+ EEG Devices. July 2017 [online]. Available:

11. Friedman, D. et al. (2010). Human-Computer Interface Issues in Controlling Virtual Reality with Brain-Computer Interface. In: Human-Computer Interaction, 2010, 25, 67-93. Available: CrossRef

12. Functional magnetic resonance imaging (2020). Wikipedia [online]. Available:

13. Functional near-infrared spectroscopy (2020). Wikipedia [online]. Available:

14. Gevins, A., Le, J., Martin, N. K., Brickett, P., Desmond, J., & Reutter, B. (1994). High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroencephalography and Clinical Neurophysiology, May 1994, 90(5), 337-358. CrossRef

15. Available:

16. Guzman, C.-E. (2017). Face aux neurotechnologies, de nouveaux droits de l'homme s'avèrent nécessaires, Neurosciences Appliquées [online]. Available:

17. Haladová, E., Nechvátalová, L. (2010). Vyšetřovací metody hybného systému. Brno: Národní centrum ošetřovatelství a nelékařských zdravotnických oborů.

18. He, B. (2013). Neural Engineering. Publisher: McGraw-Hill Education, e-book. CrossRef

19. Hemoglobin (2020). Wikipedia [online]. Available:

20. Hermann von Helmholtz (2020). Wikipedia [online]. Available:

21. Interface cerveau-machine (2020). INSERM [online]. Available:

22. Jonathan (2017). L'Imagerie par Résonnance Magnétique (IRM). Entraide-ESI-IDE [online]. Available:

23. Krajča, V., Mohylová, J. Číslicové zpracování neurofyziologických signálů. Praha: Česká technika - nakladatelství ČVUT, 2011.

24. Kübler, A. (2019). The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. Neuroethics [online]. 1-18 [cit. 2019-10-22]. CrossRef

25. Libessart, E. (2018). Interface cerveau-machine: de nouvelles perspectives grâce à l'accélérationmatérielle. Electronique. Ecole nationale supérieure Mines-Télécom Atlantique [online]. Available:

26. Magnetoencephalography (2020). Wikipedia [online]. Available:

27. Malmivuo, J., Plonsey, R. (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. 1st edition (July 27, 1995). Oxford: Oxford University Press. CrossRef

28. Marion, F. (2017). Les « sciences computationnelles », nouvelle frontière pour la connaissance?. Up-Magazine [online]. Available:

29. Megabyte: Interfaces cerveau-machine (BMI): une croissance fulgurante du marché est attendee (2020). Megabyte [online]. Available:

30. Montalto, C. (2013). What are inverse problems? [online]. Available:

31. Nunez, P. L., Silberstein, R. B., Cadusch, P. J., Wijesinghe, R. S., & Westdorp, A. F., Srinivasan, R. (1994). A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroencephalography and Clinical Neurophysiology, Jan. [online], 90(1), 40-57. CrossRef

32. Available:

33. Nunez, P. L., Srinivasan, R. (2009). Electric Fields of the Brain: The neurophysics of EEG [online]. May 2009. Published to Oxford Scholarship.

34. Oullier, P. (2012). Le cerveau etla loi: Analyse de lʼémergence du neurodroit [online]. Available:

35. Pánek, D. (2016). Elektroencefalografické koreláty pohybového chování a výkonnostní zátěže. Praha: Nakl. Karolinum.

36. Richmond, S., Rees, G., & Edwards, S. (2012). I Know What Youʼre Thinking: Brain imaging and mental privacy. Oxford: Oxford University Press. CrossRef

37. Sarracanie, M., LaPierre, C. D., Salameh, N., Waddington, D. E. J., Witzel, T., & Rosen, M. S. (2015). "Low-Cost High-Performance MRI". Scientific Reports, Oct. [online], 5, p. 15177. Available: CrossRef

38. Schomer, D. L., & Lopes Da Silva F. (2012). Niedermeyerʼs Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Publisher: Lippincott Williams & Wilkins.

39. Šesták, J. (2017). Psychologická kontinuita jako klíč k identitě Já. Bakalářská práce [online]. Plzeň: Západočeská univerzita v Plzni, Fakulta filozofická. Available:

40. Šilhavý, R., Šilhavý, P., Prokopová, Z. (2017). Cybernetics Approaches in Intelligent Systems. Editor: Springer. CrossRef

41. Šíma, J. (2019). The Use of Digital Media during the 2018 FIFA World Cup. Proceedings of the International Conference Marketing Identity 2018, pp. 277-288.

42. Vidal, J. J. (1973). Toward direct brain-computer communication. Annual Review of Biophysics and Bioengineering, 2(1), 157-180. Available: CrossRef

43. Žák, R. (2012). Zpracování mozkové aktivity v Bci systémech. Trilobit 1/2012. Editor: Univerzita Tomáše Bati ve Zlíně.

44. Žák, R. (2013). Řízení systémů pomocí aktivizace mozkových center. Zlín: Univerzita Tomáše Bati ve Zlíně.

Creative Commons License
Trends in the Brain-Computer Interface is licensed under a Creative Commons Attribution 4.0 International License.

157 x 230 mm
published: 2 x per year
print price: 190 czk
ISSN: 1212-1428
E-ISSN: 2336-6052