AUC GEOGRAPHICA
AUC GEOGRAPHICA

We are pleased to share that AUC Geographica was awarded an Impact Factor of 0.5 in the 2023 Journal Citation Reports™ released by Clarivate in June 2024. AUC Geographica ranks in Q3 in the field of Geography.

AUC Geographica (Acta Universitatis Carolinae Geographica) is a scholarly academic journal continuously published since 1966 that publishes research in the broadly defined field of geography: physical geography, geo-ecology, regional, social, political and economic geography, regional development, cartography, geoinformatics, demography and geo-demography.

AUC Geographica also publishes articles that contribute to advances in geographic theory and methodology and address the questions of regional, socio-economic and population policy-making in Czechia.

Periodical twice yearly.
Release dates: June 30, December 31

All articles are licenced under Creative Commons Attribution 4.0 International licence (CC BY 4.0), have DOI and are indexed in CrossRef database.

AUC Geographica is covered by the following services: WOS, EBSCO, GeoBibline, SCOPUS, Ulrichsweb and Directory of Open Access Journals (DOAJ).

The journal has been covered in the SCOPUS database since 1975 – today
https://www.scopus.com/source/sourceInfo.uri?sourceId=27100&origin=recordpage

The journal has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 52 (1) 2017, this publication will be indexed and abstracted in Emerging Sources Citation Index.

The journal has been indexed by the Polish Ministry of Science and Higher Education (MSHE) on the list of scientific journals recommended for authors to publish their articles. ICI World of Journals; Acta Universitatis Carolinae, Geographica.

Journal metrics 2023

Web of Science
Impact factor (JCR®): 0.5
Journal Citation Indicator (JCI): 0.20
Rank (JCI): Q3 in Geography

Scopus
Cite Score: 1.2
Rank (ASJC): Q3 in Geography, Planning and Development; Q3 in General Earth and Planetary Sciences

The journal is archived in Portico.

AUC GEOGRAPHICA, Vol 57 No 1 (2022), 3–15

Rainfall Thresholds of the 2014 Smutná Valley Debris Flow in Western Tatra Mountains, Carpathians, Slovakia

Tereza Dlabáčková, Zbyněk Engel

DOI: https://doi.org/10.14712/23361980.2022.1
published online: 10. 02. 2022

abstract

An extensive debris flow occurred, in the Smutná valley, Western Tatra Mts. in Slovakia on 15 May 2014. The aim of this study is to describe the morphology of the observed debris flow and to evaluate the conditions that preceded its formation as well as the previous activity of debris flows on this path. The observed debris flow is among the most extensive ones in terms of morphometric characteristics in the Roháčská valley and its tributaries (e.g., the length of the erosion-accumulation zone of ~600 m, volume >1200 m3). However, compared to previous studies from the Western Tatra Mts., it belongs to the average sized debris flows, or a minor event in terms of the general size classification based on the volume of debris flows. A similarly extensive debris flow was recorded on this track in the early 1970s after which only two additional minor events have been recorded there until 2014. The monthly precipitation totals in the 2013/2014 winter season were low compared to the long-term average. The main triggering factor for debris flow initiation was continuous rainfall that lasted 29 hours resulting in ~120–135 mm of precipitation. Most of the derived global empirical thresholds for debris flow initiation were exceeded as well as rainfall thresholds suggested by the published studies for the Western Tatra Mts.

keywords: debris flow; rainfall thresholds; morphometric analysis; Western Tatra Mts.; Carpathians; Slovakia

references (55)

1. Aleotti, P. (2004): A warning system for rainfall-induced shallow failures. Engineering Geology 73, 247-265. CrossRef

2. Annunziati, A., Focardi, A., Focardi, P., Martello, S., Vannocci, P. (2000): Analysis of the rainfall thresholds that induced debris flows in the area of Apuan Alps - Tuscany, Italy (19 June 1996 storm). In: Proceedings EGS Plinius Conference on Mediterranean Storms, Maratea, Italy, 485-493.

3. Caine, N. (1980): The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows. Geografiska Annaler 62A(1-2), 23-27. CrossRef

4. Corominas, J., Moya, J. (1996): Historical landslides in the Eastern Pyrenees and their relation to rainy events. In: J. Chacon, C. Irigaray, T. Fernandez (Eds.), Landslides. A.A. Balkema, Rotterdam, 125-132.

5. Dlabáčková, T. (2018): Geomorfologické podmínky murových procesů v centrální části Západních Tater. Diploma thesis, Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague.

6. Engel, Z., Česák, J., Escobar, V. R. (2011): Rainfall-related debris flows in Carhuacocha Valley, Cordillera Huayhuash, Peru. Landslides 8(3), 269-278. CrossRef

7. Ferber, T. (2002): The age and origin of talus cones in the light of lichenometric research. The Skalnisty and Zielony talus cones, High Tatra Mountains, Poland. Studia Geomorphologica Carpatho-Balcanica 36, 77-89.

8. Gądek, B., Grabiec, M., Kędzia, S., Rączkowska, Z. (2016): Reflection of climate changes in the structure and morphodynamics of talus slopes (the Tatra Mountains, Poland). Geomorphology 263, 39-49. CrossRef

9. Guzzetti, F., Peruccacci, S., Rossi, M., Stark, C. P. (2007): Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics 98(3), 239-267. CrossRef

10. <bez popisu> CrossRef

11. Ilinca, V. (2014): Characteristics of debris flows from the lower part of the Lotru River basin (South Carpathians, Romania). Landslides 11(3), 505-512. CrossRef

12. Ingr, M., Šarík, I. (1970): Suťový prúd v Roháčoch. Mineralia Slovaca 2(8), 309-313.

13. Innes, J. L. (1983): Debris flows. Progress in Physical Geography 7(4), 469-501. CrossRef

14. Iverson, R. M. (1997): The physics of debris flows. Reviews of Geophysics 35(3), 245-296. CrossRef

15. Jakob, M. (2005): A size classification for debris flows. Engineering geology 79(3-4), 151-161. CrossRef

16. Jakob, M., Hungr, O. (2005): Introduction. In: M. Jakob, O. Hungr (Eds.), Debris-flow hazards and related phenomena. Springer, Berlin. CrossRef

17. Jibson, R. W. (1989): Debris flow in southern Porto Rico. Geological Society of America, Special Paper 236, 29-55. CrossRef

18. Jurczak, P., Migoń, P., Kaczka, R. (2012): Występowanie i wybrane cechy morfometryczne szlaków spływów gruzowych w Tatrach i Karkonoszach. Czasopismo Geograficzne 83(1-2), 29-46.

19. Kanji, M. A., Massad, F., Cruz, P. T. (2003): Debris flows in areas of residual soils: occurrence and characteristics. Int. Workshop on Occurrence and Mechanisms of Flows in Natural Slopes and Earthfills. Associacione Geotecnica Italiana, Sorrento, 1-11.

20. Kapusta, J., Stankoviansky, M., Boltižiar, M. (2010): Changes in activity and geomorphic effectiveness of debris flows in the High Tatra Mts. within the last six decades (on the example of the Velická dolina and Dolina Zeleného plesa valleys). Studia Geomorphologica Carpatho-Balcanica 44, 5-34.

21. Kedzia, S. (2010): The age of debris surfaces on the Żółta Turnia Peak (the Polish Tatra Mts.). Geomorphologia Slovaca et Bohemica 10(2), 29-38.

22. Kłapyta, P. (2015): Relief of selected parts of the Western Tatra Mountains. In: K. Dabrowska, M. Guzik (Eds.), Atlas of the Tatra Mountains: Abiotic Nature. TPN, Zakopane.

23. Kotarba, A., Kaszowski, L., Krzemień, K. (1987): High-mountain denudational system of the Polish Tatra Mountains. Ossolineum, Wrocław.

24. Kotarba, A. (1989): On the age of debris flows in the Tatra Mountains. Studia Geomorphologica Carpatho-Balcanica 23, 139-152.

25. Kotarba, A. (1991): On the Ages and Magnitude of Debris Flows in the Polish Tatra Mountains. Bulletin of the Polish Academy of Sciences 39(2), 129-135.

26. Kotarba, A. (1992): High-energy geomorphic events in the Polish Tatra Mountains. Geografiska Annaler 74A(2-3), 123-131. CrossRef

27. Kotarba, A. (1994): Geomorfologiczne skutki katastrofalnych letnich ulew w Tatrach Wysokich. Acta Universitatis Nicolai Copernici, Geografia 27, 21-34.

28. Kotarba, A. (1997): Formation of high‐mountain talus slopes related to debris‐flow activity in the High Tatra Mountains. Permafrost and Periglacial Processes 8(2), 191-204. CrossRef

29. Kotarba, A. (1998): Morfogenetyczna rola opadow deszczowych w modelowaniu rzezby Tatr podczas letniej powodzi w roku 1997. Dokumentacja Geograficzna 12, 9-23.

30. Kotarba, A. (2004): Zdarzenia geomorfologiczne w Tatrach Wysokich podczas małej epoki lodowej. Rola Małej Epoki Lodowej w przekształcaniu środowiska przyrodniczego Tatr. Prace Geograficzne 197, 9-55.

31. Kotarba, A. (2007): Geomorphic activity of debris flows in the Tatra Mts. and in other European mountains. Geographia Polonica 80(2), 137-150.

32. Kotarba, A., Rączkowska, Z., Długosz, M., Boltižiar, M. (2013): Recent Debris Flows in the Tatra Mountains. In: D. Lóczy (Ed.), Geomorphological impacts of extreme weather: Case Studies from Central and Eastern Europe. Springer, Dordrecht. CrossRef

33. Králiková, S., Vojtko, R., Sliva, L'., Minár, J., Fügenschuh, B., Kováč, M. Hók, J. (2014): Cretaceous-Quaternary tectonic evolution of the Tatra Mts (Western Carpathians): constraints from structural, sedimentary, geomorphological, and fission track data. Geologica Carpathica 65(4), 307-326. CrossRef

34. Krzemień, K. (1988): The dynamics of debris flows in the upper part of the Starorobocianska valley (Western Tatra Mts). Studia Geomorphologica Carpatho-Balcanica 22, 123-144.

35. Krzemień, K., Libelt, P., Mączka, T. (1995): Geomorphological conditions of the timberline in the Western Tatra Mountains. Seszyty Naukowe Uniwersytetu Jagiellonskiego, Prace Geograficzne 98, 153-170.

36. Łajczak, A., Migoń, P. (2007): The 2002 debris flow in the Babia Góra massif-implications for the interpretation of mountainous geomorphic systems. Studia Geomorphologica Carpatho-Balcanica 41, 97-116.

37. Midriak, R. (1993): Západné Tatry - reliéf, ohrozenosť a deštrukcia ich povrchu. Osveta, Martin, 51-86.

38. Nemčok, J., Bezák, V., Biely, A., Gorek, A., Gross, P., Halouzka, R., Janák, R., Kahan, M., Mello, Š., Reichwalder, J., Zelman, J. (1994). Geologická mapa Tatier 1 : 50 000 [Geological map of the Tatra Mts. 1 : 50 000]. State Geological Institute of Dionýz Štúr, Bratislava.

39. Niedźwiedź, T. (1992): Climate of the Tatra Mountains. Mountain Research and Development 12, 131-146. CrossRef

40. Niedźwiedź, T., Łupikasza, E., Pińskwar, I., Kundzewicz, Z. W., Stoffel, M., Małarzewski, Ł. (2015): Variability of high rainfalls and related synoptic situations causing heavy floods at the northern foothills of the Tatra Mountains. Theoretical and Applied Climatology, 119(1), 273-284. CrossRef

41. Pasuto, A., Silvano, S. (1998): Rainfall as a trigger of shallow mass movements. A case study in the Dolomites, Italy. Environmental Geology 35(2-3), 184-189. CrossRef

42. Piotrowska, K. Danel, W., Iwanow, A., Gaździcka, E., Rączkowski, W., Bezák, V., Maglay, J., Polák, M., Kohút, M., Gross, P. (2015): Geology. In: K. Dabrowska, M. Guzik (Eds.), Atlas of the Tatra Mountains: Abiotic Nature. TPN, Zakopane.

43. Rebetez, M., Lugon, R., Baeriswyl, P. A. (1997): Climatic change and debris flows in high mountain regions: the case study of the Ritigraben torrent (Swiss Alps). Climatic change 36, 371-389. CrossRef

44. Sandersen, F., Bakkehøi, S., Hestnes, E., Lied, K. (1996): The influence of meteorological factors on the initiation of debris flows, rockfalls, rockslides and rockmass stability. In: K. Senneset (Ed.), Landslides. A.A. Balkema, Rotterdam, 97-114.

45. Smolíková, J., Blahut, J., Vilímek, V. (2016): Analysis of rainfall preceding debris flows on the Smědavská hora Mt., Jizerské hory Mts., Czech Republic. Landslides 13(4), 683-696. CrossRef

46. Šilhán, K., Pánek, T. (2010): Fossil and recent debris flows in medium-high mountains (Moravskoslezské Beskydy Mts, Czech Republic). Geomorphology, 124(3-4), 238-249. CrossRef

47. Šilhán, K., Tichavský, R. (2016): Recent increase in debris flow activity in the Tatras Mountains: Results of a regional dendrogeomorphic reconstruction. Catena 143, 221-231. CrossRef

48. Šilhán, K., Tichavský, R. (2017): Snow avalanche and debris flow activity in the High Tatras Mountains: New data from using dendrogeomorphic survey. Cold Regions Science and Technology 134, 45-53. CrossRef

49. Tichavský, R., Šilhán, K., Tolasz, R. (2017): Tree ring-based chronology of hydro-geomorphic processes as a fundament for identification of hydro-meteorological triggers in the Hrubý Jeseník Mountains (Central Europe). Science of the Total Environment, 579, 1904-1917. CrossRef

50. Ustrnul, Z., Walawender, E., Czekierda, D., Šťastný, P., Lapin, M., Mikulová, K. (2015): Precipitation and snow cover. In: K. Dabrowska, M. Guzik (Eds.), Atlas of the Tatra Mountains: Abiotic Nature. TPN, Zakopane.

51. Wieczorek, G. F., Glade, T. (2005): Climatic factors infuencing occurrence of debris flows. In: M. Jakob, O. Hungr (Eds.), Debris flow hazard and related phenomena. Springer, Berlin, 325-362. CrossRef

52. Wilson, R. C., Torikai, J. D., Ellen, S. D. (1992): Development of rainfall thresholds for debris flows in the Honolulu District, Oahu. US Geological Survey Open-File Report 92-521. CrossRef

53. Záruba, Q., Mencl, V. (1969): Landslides and their control. Elsevier, New York.

54. Zezere, J. L., Rodrigues, M. L. (2002): Rainfall thresholds for landsliding in Lisbon Area (Portugal). In: J. Rybář, J. Stemberk, P. Wagner (Eds.), Landslides. Routledge, London, 333-338. CrossRef

55. Żmudzka, E., Nejedlík, P., Mikulová, K. (2015): Temperature, thermal indices. In: K. Dabrowska, M. Guzik (Eds.), Atlas of the Tatra Mountains: Abiotic Nature. TPN, Zakopane.

Creative Commons License
Rainfall Thresholds of the 2014 Smutná Valley Debris Flow in Western Tatra Mountains, Carpathians, Slovakia is licensed under a Creative Commons Attribution 4.0 International License.

210 x 297 mm
periodicity: 2 x per year
print price: 200 czk
ISSN: 0300-5402
E-ISSN: 2336-1980

Download