EUROPEAN JOURNAL OF ENVIRONMENTAL SCIENCES

EUROPEAN JOURNAL OF ENVIRONMENTAL SCIENCES
The European Journal of Environmental Sciences offers a mixture of original peer-reviewed research papers, which bring you some of the most exciting developments in environmental sciences in the broadest sense, often with an inter- or trans-disciplinary perspective, focused on the European problems. The journal also includes critical reviews on topical issues, and overviews of the status of environmental protection in particular regions or countries. The journal covers a broad range of topics, including direct or indirect interactions between abiotic or biotic components of the environment, interactions of environment with human society, or environmental sustainability.

EUROPEAN JOURNAL OF ENVIRONMENTAL SCIENCES, Vol 10 No 2 (2020), 133–140

Generation time ratio, rather than voracity, determines population dynamics of insect – natural enemy systems, contrary to classical Lotka-Volterra models

Pavel Kindlmann, Zuzana Štípková, Anthony F. G. Dixon

DOI: https://doi.org/10.14712/23361964.2020.15
announced: 09. 12. 2021

abstract

Population dynamics of a predator-prey system is usually simulated by the classical Lotka-Volterra models, which were successfully applied to the population dynamics of snowshoe hare and lynx and many other predator-prey systems. Attempts were made to apply them also to insect predator-prey systems, but in terms of biological control, they did not reveal the features of the predators that control the abundance of their prey. The most conspicuous example of failure of Lotka-Volterra models applied to insect predator-prey systems are ladybird-aphid systems, in which these models usually fail to fit empirical data. Because of their practical importance and because they are very well studied, we have chosen aphid-ladybird systems as a model. We summarize the results published on various aspects of the population dynamics of aphid-ladybird systems and present them in the context of empirical data. Using new data, we more closely specify the existing metapopulation model of aphid-ladybird interactions. Based on the arguments presented here, we conclude that the ladybird-aphid case can be generalized to insect (and maybe even other) predator-prey systems, where the ratio of the generation times of the predator to that of the prey (GTR) is large. In such systems, the main selection pressure on predators is choosing the best strategy to maximize survival of their offspring, rather than on maximization of the amount of prey eaten. Thus voracity, which is the main determinant of population dynamics in Lotka-Volterra models, loses its role and is replaced by optimization of the choice of oviposition sites in systems with large GTRs.

Creative Commons License
Generation time ratio, rather than voracity, determines population dynamics of insect – natural enemy systems, contrary to classical Lotka-Volterra models is licensed under a Creative Commons Attribution 4.0 International License.

210 x 297 mm
published: 2 x per year
print price: 150 czk
ISSN: 1805-0174
E-ISSN: 2336-1964

Download