AUC GEOGRAPHICA
AUC GEOGRAPHICA

We are pleased to share that AUC Geographica was awarded an Impact Factor of 0.5 in the 2023 Journal Citation Reports™ released by Clarivate in June 2024. AUC Geographica ranks in Q3 in the field of Geography.

AUC Geographica (Acta Universitatis Carolinae Geographica) is a scholarly academic journal continuously published since 1966 that publishes research in the broadly defined field of geography: physical geography, geo-ecology, regional, social, political and economic geography, regional development, cartography, geoinformatics, demography and geo-demography.

AUC Geographica also publishes articles that contribute to advances in geographic theory and methodology and address the questions of regional, socio-economic and population policy-making in Czechia.

Periodical twice yearly.
Release dates: June 30, December 31

All articles are licenced under Creative Commons Attribution 4.0 International licence (CC BY 4.0), have DOI and are indexed in CrossRef database.

AUC Geographica is covered by the following services: WOS, EBSCO, GeoBibline, SCOPUS, Ulrichsweb and Directory of Open Access Journals (DOAJ).

The journal has been covered in the SCOPUS database since 1975 – today
https://www.scopus.com/source/sourceInfo.uri?sourceId=27100&origin=recordpage

The journal has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 52 (1) 2017, this publication will be indexed and abstracted in Emerging Sources Citation Index.

The journal has been indexed by the Polish Ministry of Science and Higher Education (MSHE) on the list of scientific journals recommended for authors to publish their articles. ICI World of Journals; Acta Universitatis Carolinae, Geographica.

Journal metrics 2023

Web of Science
Impact factor (JCR®): 0.5
Journal Citation Indicator (JCI): 0.20
Rank (JCI): Q3 in Geography

Scopus
Cite Score: 1.2
Rank (ASJC): Q3 in Geography, Planning and Development; Q3 in General Earth and Planetary Sciences

The journal is archived in Portico.

AUC GEOGRAPHICA, Vol 59 No 2 (2024), 184–202

The Belvedere Glacier elevation change between 1951 and 2023

Lukáš Brodský, Shruti Pancholi, Susanne Schmidt, Marcus Nüsser, Roberto Sergio Azzoni, Gianluca Tronti

DOI: https://doi.org/10.14712/23361980.2024.22
published online: 19. 12. 2024

keywords: glacier; remote sensing; elevation change; glacier melt

references (81)

1. Azzoni, R. S., Fugazza, D., Zerboni, A., Senese, A., D'Agata, C., Maragno, D., Carzaniga, A., Cernuschi, M., Diolaiuti, G. A. (2018): Evaluating high-resolution remote sensing data for reconstructing the recent evolution of supra glacial debris: A study in the Central Alps (Stelvio Park, Italy). Progress in Physical Geography: Earth and Environment 42(1), 3-23. CrossRef

2. Azzoni, R. S., Pelfini, M., Zerboni, A. (2023): Estimating the Evolution of a Post-Little Ice Age Deglaciated Alpine Valley through the DEM of Difference (DoD). Remote Sensing 15(12): 3190. CrossRef

3. Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., Quincey, D., Thompson, S., Toumi, R., Wiseman, S. (2012): Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews 114, 156-174. CrossRef

4. Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., Chevallier, P. (2007): Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment 108(3), 327-338. CrossRef

5. Berthier, E., Cabot, V., Vincent, C., Six, D. (2016). Decadal region-wide and glacier-wide mass balances derived from multi-temporal aster satellite digital elevation models. Validation over the mont-blanc area. Frontiers in Earth Science 4: 194833. CrossRef

6. Bhambri, R., Hewitt, K., Kawishwar, P., Pratap, B. (2017): Surge-type and surge-modified glaciers in the Karakoram. Scientific Reports 7: 15391. CrossRef

7. Bhambri, R., Schmidt, S., Chand, P., Nüsser, M., Haritashya, U., Sain, K., Tiwari, S. K., Yadav, J. S. (2023): Heterogeneity in glacier thinning and slowdown of ice movement in the Garhwal Himalaya, India. Science of The Total Environment 875: 162625. CrossRef

8. Bolch, T., Buchroithner, M., Pieczonka, T., Kunert, A. (2008): Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology 54(187), 592-600. CrossRef

9. Bolch, T., Pieczonka, T., Benn, D. I. (2011): Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere 5, 349-358. CrossRef

10. Bolch, T., Kulkarni, A. V., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S.R., Stoffel, M. (2012): The State and Fate of Himalayan Glaciers. Science 336, 310-314. CrossRef

11. Brenner, A. C., DiMarzio, J. P., Zwally, H. J. (2007): Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets, IEEE Transactions on Geoscience and Remote Sensing 45(2), 321-331. CrossRef

12. Brodský, L., Rusnák, S., Schmidt, S., Vilímek, V., Azzoni, R. S., Nüsser, M., Tronti, G., Kropáček, J., Pandey, A. (2024): Interannual spatio-temporal evolution of the supraglacial lakes on the Belvedere Glacier between 2000 and 2023. AUC Geographica 59(2), 214-228. CrossRef

13. Brun, F., Buri, P., Miles, E. S., Wagnon, P., Steiner, J., Berthier, E., Ragettli, S., Kraaijenbrink, P. D. A., Immerzeel, W. W., Pellicciotti, F. (2016): Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry. Journal of Glaciology 62, 684-695. CrossRef

14. Chandrasekharan, A., Ramsankaran, R. (2023): Reconstructing 32 years (1989-2020) of annual glacier surface mass balance in Chandra Basin, Western Himalayas, India. Regional Environmental Change 23: 118. CrossRef

15. Charalampidis, C., Fischer, A., Kuhn, M., Lambrecht, A., Mayer, C., Thomaidis, K., Weber, M. (2018): Mass-Budget Anomalies and Geometry Signals of Three Austrian Glaciers. Frontiers in Earth Science 6: 218. CrossRef

16. Cornes, R., van der Schrier, G., van den Besselaar, E. J. M., Jones, P.D. (2018): An Ensemble Version of the E-OBS Temperature and Precipitation Datasets, Journal of Geophysical Research: Atmospheres 123(17), 9391-9409. CrossRef

17. OpenStreetMap contributors (2017): Available online: https://planet.osm.org, url: https://www.openstreetmap.org (accessed on 10.3.2024).

18. De Gaetani, C. I., Ioli, F., Pinto, L. (2021): Aerial and UAV Images for Photogrammetric Analysis of Belvedere Glacier Evolution in the Period 1977-2019. Remote Sensing 13: 3787. CrossRef

19. Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J., Dehecq, A. (2020): Manifestations and mechanisms of the Karakoram glacier Anomaly. Nature Geoscience 13, 8-16. CrossRef

20. Fischer, L., Huggel, C., Kääb, A., Haeberli, W. (2013): Slope failures and erosion rates on a glacierized high‐mountain face under climatic changes. Earth Surface Processes and Landforms 38(8), 836-846. CrossRef

21. Fischer, M., Huss, M., Hoelzle, M. (2015): Surface elevation and mass changes of all Swiss glaciers 1980-2010. The Cryosphere 9(2), 525-540. CrossRef

22. Fleischer, F., Otto, J., Junker, R.R., Hölbling, D. (2021): Evolution of debris cover on glaciers of the Eastern Alps, Austria, between 1996 and 2015. Earth Surface Processes and Landforms 46(9), 1673-1691. CrossRef

23. Fugazza, D., Valle, B., Caccianiga, M. S., Gobbi, M., Traversa, G., Tognetti, M., Diolaiuti, G. A., Senese, A. (2023): Glaciological and meteorological investigations of an Alpine debris-covered glacier: the case study of Amola Glacier (Italy). Cold Region Science Technology 216: 104008. CrossRef

24. Fujita, K., Nuimura, T. (2011): Spatially heterogeneous wastage of Himalayan glaciers. Proceedings of the National Academy of Sciences of the United States of America 108(34), 14011-14014. CrossRef

25. Fyffe, C. L., Brock, B. W., Kirkbride, M. P., Mair, D. W. F., Arnold, N. S., Smiraglia, C., Diolaiuti, G., Diotri, F. (2019): Do debris-covered glaciers demonstrate distinctive hydrological behaviour compared to clean glaciers? Journal of Hydrology 570, 584-597. CrossRef

26. Gardelle, J., Berthier, E., Arnaud, Y., Kääb, A. (2013): Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere 7(4), 1263-1286. CrossRef

27. Geoportale Piemonte (2014). Available online: http://www.geoportale.piemonte.it (accessed on 15. 1. 2024).

28. Gulley, J., Benn, D. I. (1997): Structural control of englacial drainage systems in Himalayan debris-covered glaciers. Journal of Glaciology 53(182), 399-412. CrossRef

29. Haubeck, K., Prinz, T. (2013): A UAV-Based Low-Cost Stereo Camera System for Archaeological Surveys - Experiences from Doliche (Turkey), International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W2, 195-200. CrossRef

30. Hewitt, K. (2005): The Karakoram anomaly? Glacier expansion and the "elevation effect", Karakoram Himalaya. Mountain Research and Development 25, 332-340. CrossRef

31. Hewitt, K. (2014): Glaciers of the Karakoram Himalaya: Glacial Environments, Processes, Hazards and Resources. Advances in Asian Human-Environmental Research. Springer. CrossRef

32. Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., Steltzer, H. (2019): High Mountain Areas, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 131-202, https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/06_SROCC_Ch02_FINAL.pdf.

33. Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., Kääb, A. (2021): Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726-731. CrossRef

34. Huo, D., Bishop, M. P., Bush, A. B. G. (2021): Understanding Complex Debris-Covered Glaciers: Concepts, Issues, and Research Directions. Frontiers in Earth Science 9: 652279. CrossRef

35. Huss, M. (2013): Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere 7(3), 877-887. CrossRef

36. Huss, M., Bauder, A., Funk, M., Hock, R. (2008): Determination of the seasonal mass balance of four Alpine glaciers since 1865. Journal of Geophysical Research 113(1): F01015. CrossRef

37. Huss, M., Bauder, A. (2009): 20th-century climate change inferred from four long-term point observations of seasonal mass balance. Annals of Glaciology 50(50): 207-214. CrossRef

38. Immerzeel, W., Pellicciotti, F., Bierkens, M. (2013): Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geoscience 6, 742-745. CrossRef

39. Ioli, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Passoni, D., Pinto, L. (2022): Mid-Term Monitoring of Glacier's Variations with UAVs: The Example of the Belvedere Glacier. Remote Sensing 14: 28. CrossRef

40. Jóhannesson, T., Raymond, C., Waddington, E. (1989): Time-Scale for Adjustment of Glaciers to Changes in Mass Balance. Journal of Glaciology 35(121), 355-369. CrossRef

41. Jouvet, G., Huss, M. (2019): Future retreat of Great Aletsch Glacier. Journal of Glaciology 65, 869-872. CrossRef

42. Kääb, A., Huggel, C., Barbero, S., Chiarle, M. Cordola, M., Epifani, F., Haeberli, W., Mortara, G., Semino, P. Tamburini, A., Viazzo, G. (2004): Glacier hazards at Belvedere Glacier and the Monte Rosa East Face, Italian Alps: Processes and Mitigation. Internationales Symposion Interpraevent 2004 - Riva/Trient. https://www.researchgate.net/publication/242231211_Glacier_hazards_at_Belvedere_glacier_and_the_Monte_Rosa_east_face_Italian_Alps_Processes_and_mitigation.

43. Kääb, A., Berthier, E., Nuth, C., Gardelle, J., Arnaud, Y. (2012): Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495-498. CrossRef

44. Kendall, M. G. (1957). Review of Rank Correlation Methods. Biometrika, 44(1/2), 298-298. CrossRef

45. Knuth, F., Shean, D., Bhushan, S., Schwat, E., Alexandrov, O., McNeil, C., Dehecq, A., Florentine, C., O'Neel, S. (2023): Historical Structure from Motion (HSfM): Automated processing of historical aerial photographs for long-term topographic change analysis. Remote Sensing of Environment 285: 113379. CrossRef

46. <bez popisu> CrossRef

47. Kropáček, J., Mehrishi, P., Bollati, I.M., Brodský, L., Pelfini, M., Azzoni, R., Schmidt, S., Nüsser, M., Vilímek, V (2024): Dynamics and related natural hazards of Belvedere Glacier in the Italian Alps: a review. AUC Geographica 59(2), 163-183. CrossRef

48. Laha, S., Kumari, R., Singh, S., Mishra, A., Sharma, T., Banerjee, A., Nainwal, H.C., Shankar, R. (2017). Evaluating the contribution of avalanching to the mass balance of Himalayan glaciers. Annals of Glaciology 58(75pt2), 110-118. CrossRef

49. Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., Zhang, T. (2007): Observations: Changes in Snow, Ice and Frozen Ground. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter4-1.pdf.

50. Mattson, L. E., Gardner, J. S., Young, G. J. (1993): Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. Snow and Glacier Hydrology. IAHS Publication 218, 289-294.

51. Maurer, J. M., Schaefer, J. M., Rupper, S., Corley, A. (2019): Acceleration of ice loss across the Himalayas over the past 40 years. Science Advances 5(6): eaav7266. CrossRef

52. Mölg, N., Ferguson, J., Bolch, T., Vieli, A. (2020): On the influence of debris cover on glacier morphology: How high-relief structures evolve from smooth surfaces. Geomorphology 357: 107092. CrossRef

53. Mondino, E. B. (2015): Multi-temporal image co-registration improvement for a better representation and quantification of risky situations: the Belvedere Glacier case study. Geomatatics, Natural Hazards and Risk 6(5-7), 362-378. CrossRef

54. Mortara, G., Tamburini, A., Ercole, G., Semino, P., Chiarle, M., Godone, F., Guiliano, M., Haeberli, W., Kääb, A., Huggel, Ch., Fischer, L., Cordola, M., Barbero, S., Salandin, A., Rabuffetti, D., Mercalli, L., Cat Berro, D., Carton, A., Mazza, A., Godone, D., Federici, P., Viazzo, G., Epifani, F., Valsesia, T. (2009): Il ghiacciaio del Belvedere e l'emergenza del Lago Effimero. Regione Piemonte. Bussoleno: Societa' Meteorologica Subalpina.

55. Muhammad, S., Tian, L., Ali, S., Latif, Y., Wazir, M. A., Goheer, M. A., Saifullah, M., Hussain, I., Shiyin, L. (2020): Thin debris layers do not enhance melting of the Karakoram glaciers. Science of The Total Environment 746: 141119. CrossRef

56. Nüsser, M., Schmidt, S. (2021): Glacier changes on the Nanga Parbat 1856-2020: A multi-source retrospective analysis. Science of The Total Environment 785: 147321. CrossRef

57. Nuimura, T., Fujita, K., Yamaguchi, S., Sharma, R. R. (2012): Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008. Journal of Glaciology 58(210), 648-656. CrossRef

58. Nuimura, T., Fujita, K., Sakai, A. (2017). Downwasting of the debris-covered area of Lirung Glacier in Langtang Valley, Nepal Himalaya, from 1974 to 2010. Quaternary International 455, 93-101. CrossRef

59. Nuth, C. Kääb, A. (2011): Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere 5(1), 271-290. CrossRef

60. Oerlemans, J., Reichert B.K. (2000): Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. Journal of Glaciology 46(152), 1-6. CrossRef

61. Paul, F., Bolch, T., Kääb, A., Nagler, T., Nuth, C., Scharrer, K., Shepherd, A., Strozzi, T., Ticconi, F., Bhambri, R., Berthier, E., Bevan, S., Gourmelen, N., Heid, T., Jeong, S., Kunz, M., Lauknes, T. R., Luckman, A., Merryman Boncori, J. P., Moholdt, G., Muir, A., Neelmeijer, J., Rankl, M., VanLooy, J., Van Niel, T., (2015): The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sensing of the Environment 162, 408-426. CrossRef

62. Pellicciotti, F., Stephan, C., Miles, E., Herreid, S., Immerzeel, W. W., Bolch, T. (2015): Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999. Journal of Glaciology 61(226), 373-386. CrossRef

63. Pix4D (2024). Pix4Dcapture software available online: https://www.pix4d.com/product/pix4dcapture/ (accessed on 25 January 2024).

64. Racoviteanu, A. E., Nicholson, L., Glasser, N. F., Miles, E., Harrison, S., Reynolds, J. M. (2022): Debris-covered glacier systems and associated glacial lake outburst flood hazards: challenges and prospects. Journal of the Geological Society 179: jgs2021-084. CrossRef

65. Radić, V., Hock, R. (2006): Modeling future glacier mass balance and volume changes using ERA-40 reanalysis and climate models: A sensitivity study at Storglaciären, Sweden. Journal of Geophysical Research: Earth Surface 111(F3): 3003. CrossRef

66. Rignot, E., Rivera, A., Casassa, G. (2003): Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science 302(5644), 434-437. CrossRef

67. Salerno, F., Thakuri, S., Tartari, G., Nuimura, T., Sunako, S., Sakai, A., Fujita, K. (2017): Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers. Earth Planetary Science Letters 471, 19-31. CrossRef

68. Scherler, D., Wulf, H., Gorelick, N. (2018): Global Assessment of Supraglacial Debris‐Cover Extents. Geophysical Research Letters 45(21), 11798-11805. CrossRef

69. Schmidt, S., Nüsser, M. (2009): Fluctuations of Raikot Glacier during the past 70 years: a case study from the Nanga Parbat massif, northern Pakistan. Journal of Glaciology 55(194), 949-959. CrossRef

70. Smiraglia, C., Azzoni, R. S., D'Agata, C. A. R. L. O., Maragno, D., Fugazza, D., Diolaiuti, G. A. (2015): The evolution of the Italian glaciers from the previous database to the New Italian Inventory. Preliminary considerations and results. Geografia Fisica e Dinamica Quaternaria 38(1), 79-87.

71. Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp, M., Braun, M. H. (2020): Rapid glacier retreat and downwasting throughout the European Alps in the early 21st century. Nature Communications 11: 3209. CrossRef

72. Tamburini, A., Villa, F., Fischer, L., Hungr, O., Chiarle, M., Mortara, G. (2013): Slope Instabilities in High-Mountain Rock Walls. Recent Events on the Monte Rosa East Face (Macugnaga, NW Italy). In: Margottini, C., Canuti, P., Sassa, K. (eds.): Landslide Science and Practice. Springer Berlin Heidelberg, Berlin, Heidelberg. CrossRef

73. Thakuri, S., Salerno, F., Smiraglia, C., Bolch, T., D'Agata, C., Viviano, G., Tartari, G. (2014): Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery. The Cryosphere 8(4), 1297-1315. CrossRef

74. Tonolo, F. G., Cina, A., Manzino, A., and Fronteddu, M. (2020): 3D Glacier Mapping by Means of Satellite Stereo Images: The Belvedere Glacier Case Study in the Italian Alps. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020, 1073-1079. CrossRef

75. Truffer, M., Kääb, A., Harrison, W. D., Osipova, G. B., Nosenko, G. A., Espizua, L., Gilbert, A., Fischer, L., Huggel, C., Craw Burns, P. A., Lai, A. W. (2021): Glacier surges, in: Snow and Ice-Related Hazards, Risks, and Disasters. Elsevier, 417-466. CrossRef

76. Westoby, M. J., Rounce, D. R., Shaw, T. E., Fyffe, C. L., Moore, P. L., Stewart, R. L., Brock, B. W. (2020): Geomorphological evolution of a debris‐covered glacier surface. Earth Surface Processes and Landforms 45(14), 3431-3448. CrossRef

77. Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y, Guo, X., Yang, X, Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., Joswiak, D. (2012): Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2, 663-667. CrossRef

78. Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., Cogley, J. G. (2019): Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382-386. CrossRef

79. Zeileis, A., Leisch, F., Hornik, K., and Kleiber, C. (2002). Strucchange: An R package for testing for structural change in linear regression models. Journal of Statistical Software 7(2), 1-38. CrossRef

80. Zemp, M., Hoelzle, M., Haeberli, W. (2009): Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Annals of Glaciology 50(50), 101-111. CrossRef

81. WGMS (2024): Fluctuations of Glaciers Database. World Glacier Monitoring Service (WGMS), Zurich, Switzerland. CrossRef

Creative Commons License
The Belvedere Glacier elevation change between 1951 and 2023 is licensed under a Creative Commons Attribution 4.0 International License.

210 x 297 mm
periodicity: 2 x per year
print price: 200 czk
ISSN: 0300-5402
E-ISSN: 2336-1980