We are pleased to share that the AUC Geographica was awarded an Impact Factor of 0.6 in the 2022 Journal Citation Reports™ released by Clarivate in June 2023. AUC Geographica ranks (JCI) in Q3 in Geography.

AUC Geographica (Acta Universitatis Carolinae Geographica) is a scholarly academic journal continuously published since 1966 that publishes research in the broadly defined field of geography: physical geography, geo-ecology, regional, social, political and economic geography, regional development, cartography, geoinformatics, demography and geo-demography.

AUC Geographica also publishes articles that contribute to advances in geographic theory and methodology and address the questions of regional, socio-economic and population policy-making in Czechia.

Periodical twice yearly.
Release dates: June 30, December 31

All articles are licenced under Creative Commons Attribution 4.0 International licence (CC BY 4.0), have DOI and are indexed in CrossRef database.

AUC Geographica is covered by the following services: WOS, EBSCO, GeoBibline, SCOPUS, Ulrichsweb and Directory of Open Access Journals (DOAJ).

The journal has been covered in the SCOPUS database since 1975 – today

The journal has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 52 (1) 2017, this publication will be indexed and abstracted in Emerging Sources Citation Index.

The journal has been indexed by the Polish Ministry of Science and Higher Education (MSHE) on the list of scientific journals recommended for authors to publish their articles. ICI World of Journals; Acta Universitatis Carolinae, Geographica.

Journal metrics 2022

Web of Science
Impact factor (JCR®): 0.6
Journal Citation Indicator (JCI): 0.24
Rank (JCI): Q3 in Geography

Cite Score: 1.1
Rank (ASJC): Q3 in Geography, Planning and Development; Q3 in General Earth and Planetary Sciences

The journal is archived in Portico.

AUC GEOGRAPHICA, Vol 58 No 2 (2023), 238–249

Improving vegetation spatial distribution mapping in arid and on coastal dune systems using GPR in Tottori Prefecture (Japan)

Christopher Gomez, Jiaqi Liu, Jing Wu, Frans Persendt, Balazs Bradak, Yousefi Saleh, Danang Sri Hadmoko

published online: 18. 12. 2023


In this article, desertification and dune progression over vegetation was quantified using remote sensing data. However, vegetation buried under sand blowout could not be counted using this method. Therefore, to estimate the extent of buried vegetation, a GPR campaign was conducted over the coastal sand-dune of Tottori Prefecture (Japan) in combination with a high-resolution topographic UAV-based survey of the topography. The results show that buried vegetation exists underneath sand-blowout, especially near the dune ridges, and can extend from 20 to 30 meters further than the estimate based on airborne remote sensing. Furthermore, the presence of palaeo-vegetation in palaeodune layers also provides the information on the long-term evolution of sand dunes, which can be used to reconstruct Quaternary coastal environments.

keywords: coastal dune; ground penetrating radar; buried vegetation; vegetation mapping

references (52)

1. Annan, A. P. (2005): Ground penetrating radar in near surface geophysics. In D. K. Butler (Eds): Near-Surface Geophysics. Investigations in Geophysics 13, 357-438. CrossRef

2. Anthony, E. J., Mrani-Aloui, M., Hequette, A. (2010): Shoreface sand supply and mid- to late Holocene Aeolian dune formation on the storm-dominated macrotidal coast of the southern North Sea. Marine Geology 276(1-4), 100-104. CrossRef

3. Barton, C. V. M., Montagu, K. D. (20004): Detection of tree roots and determination of root diameters by ground-penetrating radar under optimal conditions. Tree Physiology 24(12), 1323-1331. CrossRef

4. Bertran, P., Andrieux, E., Bateman, M. D., Fuchs, M., Klinge, M., Marembert, F. (2020): Mapping and chronology of coversands and dunes from the Aquitaine southwest France. Aeolian Research 47: 100628. CrossRef

5. Bristow, C. S., Jol, H. M., Augustinus, P., Wallis, I. (2010a): Slipfaceless 'whaleback' dunes in a polar desert, Victoria Valley, Antarctica, Insights from ground penetrating radar. Geomorphology 114(3), 361-372. CrossRef

6. Bristow, C. S., Augustinus, P. C., Wallis, I. C., Jol, H. M., Rhodes, E. J. (2010b): Investigation of the age and migration of reversing dunes in Antarctica using GPR and OSL, with implications for GPR on Mars. Earth and Planetary Sciences Letters 289(1-2), 30-42. CrossRef

7. Butnor, J. R., Doolittle, J. A., Kress, L., Cohen, S., Johnsen, K. H. (2001): Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree Physiology 21(17), 1269-2001. CrossRef

8. Buynevich, I. V., Bitinas, A., Pupienis, D. (2007): Lithological anomalies in a relict coastal dune: Geophysical and palaeoenvironmental markers. Geophysical Research Letters 34(9): L09707, 1-5. CrossRef

9. Buynevich, I. V., Savarese, M., Allen Curran, H., Bitinas, A., Glumac, B., Pupienis, D., Kopcznski, K., Dobrotin, N., Gnivecki, P., Park Boush, L., Damusyte, A. (2017): Sand incursion into temperate (Lithuania) and tropical (the Bahamas) maritime vegetation: georadar visualization of target-rich Aeolian lithosomes. Estuarine Coastal Shelf Sciences 195, 69-75. CrossRef

10. Chandlers, C. L., Rabedaugh, J., McBride, J. H., Morris, T. H., Narteau, C., Arnold, K., Lorenz, R. D., Barnes, J. W., Hayes, A., Rodriguez, S., Rittenour, T. (2022): Near-surface structure of a large linear dune and an associated crossing dune of the northern Namib sand Sea from Ground Penetrating Radar: Implications for the history of large linear dunes on Earth and Titan. Aeolian Research 57:100813. CrossRef

11. Davis, J. L., Annan, A. P. (1989): Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting 37(5), 531-551. CrossRef

12. Conyers, L. B., Goodman, D. (1997): Ground-penetrating radar: an introduction for archaeologists. Walnut, Creek, CA: AltaMira Press.

13. Ettinger, S., Manville, V., Kruse, S., Paris, R. (2014): GPR-derived architecture of a lahar-generated fan at Cotopaxi volcano, Ecuador. Geomorphology 213, 225-239. CrossRef

14. Feagin, R. A., Furman, M., Salgado, K., Martinez, M. L., Innocenti, R. A., Eubanks, K., Figlus, J., Huff, T. P., Sigren, J., Silva, R. (2019): The role of beach and sand dune vegetation in mediating wave run up erosion. Estuarine Coast Shelf Sciences 219, 97-106. CrossRef

15. Fu, T., Wu, Y., Tan, L., Li, D., Wen, Y. (2019): Imaging the structure and reconstructing the development of a barchan dune using ground-penetrating radar. Geomorphology 341, 192-202. CrossRef

16. Gomez, C., Lavigne, F., Lespinasse, N., Hadmoko, D. S., Wassmer, P. (2008): Longitudinal structure of pyroclastic-flow deposits, re-vealed by GPR survey at Merapi Volcano, Java, Indonesia. Journal of Volcanology Geothermal Research 176(4), 439-447. CrossRef

17. Gomez, C., Lavigne, F., Hadmoko, D.S., Lespinasse, N., Wassmer, P. (2009): Block-and-ash flow deposition: A conceptual model from a GPR survey on pyroclastic-flow deposits at Merapi Volcano, Indonesia. Geomorphology 110(3-4), 118-127. CrossRef

18. Gomez, C., Lavigne, F. (2010): Transverse architecture of lahar terraces, inferred from radargrams: preliminary results from Semeru Volcano, Indonesia. Earth Surface Processes and Landforms 35(9), 1116-1121. CrossRef

19. Gomez, C., Lavigne, F., Lespinasse, N. (2010): L'apport du Radar Geologique pour l'etude des impacts geomorphologiques du tsuna-mi du 26 Decembre 2004, In F. Lavigne, R. Paris (Eds.): Le Tsunami du 26 Decembre 2004. Publications de la Sorbonne, Paris, France. 127-136. CrossRef

20. Gomez, C. (2022): Point-cloud Technologies for Geomorphologists: from data acquisition to processing, Springer, Heidelberg, Germany. CrossRef

21. Hong, S. H., Lee, E. Y. (2016): Restoration of eroded coastal sand dunes using plant and soil-conditioner mixture. International Biodeterioration and Biodegradation 113, 161-168. CrossRef

22. Hughes, D. A., Metzler, M. (1998): Assessment of three monthly rainfall-runoff models for estimating the water resource yield of semiarid catchments in Namibia, Hydrological Sciences Journal 43(2), 283-297. CrossRef

23. JMA (2023) Annual Rainfall at the coast of Tottori. Data from the Japanese Meteorological Agency (in Japanese), (accessed on 9 December 2023).

24. Kain, C., Gomez, C., Wassmer, P., Lavigne, F., Hart, D. (2014): Truncated dunes as evidence of the 2004 tsunami in North Sumatra and environmental recovery post-tsunami. New-Zealand Geographer 70(3), 165-178. CrossRef

25. Kassas, M. (1995): Desertification: a general review. Journal of Arid Environment 30(2), 115-128. CrossRef

26. Kenworthy, J. B. Botanical surveys. (1990): In W. Ritchie; L. Kingham (Eds.): The St Fergus Coastal Environment: The physical and Biological Characteristics. C.E.M.P. Aberdeen University Research and Industrial Services, Aberdeen, United Kingdom.

27. Kutiel, P., Cohen, O., Shoshany, M., Shub, M. (2004): Vegetation establishment on the southern Israeli coastal sand dunes between the years 1965 and 1999. Landscape and Urban Planning 67(1-4), 141-156. CrossRef

28. Laporte-Fauret, Q., Lubac, B., Castelle, B., Michalet, R., Marieu, V., Bombrun, L., Launeau, P., Giraud, M., Normandin, C., Rosebery, D. (2020): Classification of Atlantic Coastal Sand Dune Vegetation Using In Situ, UAV, and Airborne Hyperspectral Data. Remote Sensing 12(14): 2222. CrossRef

29. Lavigne, F., Paris, R., Grancher, D., Wassmer, P., Brunstein, D., Vautier, F., Leone, F., Flohic, F., De Coster, B., Gunawan, T., Gomez, C., Setiawan, A., Cahyadi, R., Fachrizal. (2009): Reconstruction of Tsunami Inland Propagation on December 26, 2004 in Banda Aceh, Indonesia, through Field Investigations. Pure and Applied Geophysics 166, 259-281. CrossRef

30. Lee, M. S., Do, J. O., Park, M. S., Jung, S., Lee, K. H., Bae, K. S., Park, S. J., Kim, S. B. (2006): Dominance of Lysobacter sp. In the rhizo-sphere of two coastal sand dune plant species, Calystegia soldanella and Elymus mollis. Antonie Van Leuwenhoek International Journal 90¸ 19-70. CrossRef

31. Levin, N., Kidron, G. J., Ben-Dor, E. (2006): The spatial and temporal variability of sand erosion across a stabilizing coastal dune field. Sedimentology 53, 697-715. CrossRef

32. Martinez, M. L., Moreno-Casasola, P., Vazquez, G. (1997): Effects of disturbance by sand movement and inundation by water on tropical dune vegetation dynamics. Canadian Journal of Botany 75(11), 2005-2014. CrossRef

33. Maun, M. A., Baye, P. R. (1989): The ecology of Ammophila breviligulata Fern on coastal dune ecosystem. CRC Critical Review of Aquatic Sciences 1, 661-681.

34. Menashe, E. (1998): Vegetation and Erosion: A Literature Review. Greenbelt Consulting. 10p. Retrieved from (accessed on 27 November 2022).

35. Murayama, M., Isshiki, N., Sakamoto, T. (1963): Tottori hokubu, Tottori nanbu 1:50,000 Geological map. Chishitsu, 1-8 (in Japanese with English abstract).

36. Musila, W. M., Kinyamario, J. L., Jungerius, P. D. (2001): Vegetation dynamics of coastal sand dunes near Malindi, Kenya. Afrrican Journal of Ecology 39(2), 170-177. CrossRef

37. Iwasato, M., Nagamatsu, D. (2018): Plant species diversity and habitat conditions in a protected large coastal dune area of Western Japan. Landscape and Ecological Engineering 14, 99-113. CrossRef

38. Naruse, T. (1989): Coastal Sand Dunes in Japan. Geographical Review of Japan 62A, 129-144 (in Japanese). CrossRef

39. Neal, A., Roberts, C.L. (2001): Internal structure of a through blowout, determined from migrated ground-penetrating radar profiles. Sedimentology 48(4), 791-810. CrossRef

40. Opelt, L., Berg, G. (2004): Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient poor habitats of Baltic Sea coast. Applied Environmental Microbiology 70(11), 6569-6579. CrossRef

41. Ranwell, D. S. (1972): Ecology of Salt Marshes and Sand Dunes. Chapman & Hall, London, United Kingdom.

42. Reynolds, J. M. (1997): An introduction to Applied and Environmental Geophysics. Wiley, Chichester, United Kingdom.

43. Skornik, K., Gehrels, W. R., Murray, A. S. (2008): Aeolian sand movement and relative sea-level rise in Ho Bugt, western Denmark, during the 'Little Ice Age'. The Holocene 18(6), 951-965. CrossRef

44. Sommerville, A. A., Hansom, J. D., Housley, R. A., Sanderson, D. C. W. (2007): Optically stimulated luminescence (OSL) dating of coastal Aeolian sand accumulation in Sanday, Orkney Islands, Scotland. Holocene 17(5), 627-237. CrossRef

45. Souza Junior, P. L., Santos, Junior, O. F., Fontoura, T. B., Freitas Neto, O. (2020): Drained and undrained behavior of an Aeolian sand from Natal, Brazil. Soil Rocks Technical Note 43(2), 1-8. CrossRef

46. Stringer, L. C. (2008): Reviewing the International Year of Deserts and Desertification 2006: What contribution towards combating global desertification and implementing the United Nations Convention to Combat Desertification? Journal of Arid Environment 72(11), 2065-2074. CrossRef

47. Tamura, T., Kodama, Y., Saitoh, Y., Watanabe, K., Yamaguchi, N., Matsumoto, D. (2010): Ground-penetrating radar profile of the Tottori coastal dunes. Quaternary Research of Japan 49-6, 357-367 (in Japanese). CrossRef

48. Tamura, T., Bateman, M. D., Kodama, Y., Saitoh, Y., Watanabe, K., Yamaguchi., Matsumoto, D. (2011a): Building of shore-oblique transverse dune ridges revealed by ground-penetrating radar and optical dating over the last 500 years on Tottori coast, Japan Sea. Geomorphology 132(3-4), 153-166. CrossRef

49. Tamura, T., Kodama, Y., Bateman, M.D., Saitoh, Y., Watanabe K., Matsumoto, D., Yamaguchi, N. (2011b): Coastal barrier dune con-struction during sea-level highstands in MIS 3 and 5a on Tottori coast-line, Japan. Palaeogeography Palaeoclimatology Palaeocology 308(1-2), 492-501. CrossRef

50. UNCCD (United Nations Convention to Combat Desertification). (2022): Great Green Wall Initiative. UNCCD, Bonn, Germany, (accessed on 27 November 2022).

51. Van Loon-Steensma, J. M., Schelfhout, H. A. (2017): Wide green dikes: a sustainable option with benefits for both nature and land-scape values. Land Use Policy 63, 528-538. CrossRef

52. Yu, K. B., Rhew, H. (2007): Coastal Dunes on the West Coast of Korea; a Geomorphological Perspective. Seoul National University Press, Seoul, Korea.

Creative Commons License
Improving vegetation spatial distribution mapping in arid and on coastal dune systems using GPR in Tottori Prefecture (Japan) is licensed under a Creative Commons Attribution 4.0 International License.

210 x 297 mm
periodicity: 2 x per year
print price: 200 czk
ISSN: 0300-5402
E-ISSN: 2336-1980