AUC GEOGRAPHICA
We are pleased to share that AUC Geographica was awarded an Impact Factor of 0.9 in the 2024 Journal Citation Reports™ released by Clarivate in June 2025. AUC Geographica ranks in Q3 in the field of Geography.
AUC Geographica (Acta Universitatis Carolinae Geographica) is a scholarly academic journal continuously published since 1966 that publishes research in the broadly defined field of geography: physical geography, geo-ecology, regional, social, political and economic geography, regional development, cartography, geoinformatics, demography and geo-demography.
AUC Geographica also publishes articles that contribute to advances in geographic theory and methodology and address the questions of regional, socio-economic and population policy-making in Czechia.
Periodical twice yearly.
Release dates: June 30, December 31
All articles are licenced under Creative Commons Attribution 4.0 International licence (CC BY 4.0), have DOI and are indexed in CrossRef database.
AUC Geographica is covered by the following services: WOS, EBSCO, GeoBibline, SCOPUS, Ulrichsweb and Directory of Open Access Journals (DOAJ).
The journal has been covered in the SCOPUS database since 1975 – today
https://www.scopus.com/source/sourceInfo.uri?sourceId=27100&origin=recordpage
The journal has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 52 (1) 2017, this publication will be indexed and abstracted in Emerging Sources Citation Index.
The journal has been indexed by the Polish Ministry of Science and Higher Education (MSHE) on the list of scientific journals recommended for authors to publish their articles. ICI World of Journals; Acta Universitatis Carolinae, Geographica.
Journal metrics 2024
Web of Science
Impact factor (JCR®): 0.9
Journal Citation Indicator (JCI): 0.30
Rank (IF): Q3 in Geography
Scopus
Cite Score: 1.3
Rank (ASJC): Q3 in Geography, Planning and Development; Q3 in General Earth and Planetary Sciences
The journal is archived in Portico.
AUC GEOGRAPHICA, 1–21
Shifting seasons: Long-term crop dynamics across agroclimatic regions of Czechia
Jiří Tomíček, Jan Mišurec, Markéta Potůčková
DOI: https://doi.org/10.14712/23361980.2025.22
published online: 27. 11. 2025
abstract
This study analyzes the evolution of phenological (start-of-season, end-of-season, length-of-season, day of maximum-of-season) and productivity (small and large seasonal integrals) parameters for six major crop types in Czechia (winter cereals, spring cereals, winter rapeseed, fodder crops, sugar beetroot, and corn), using a 35-year Landsat time series (1986–2020). The leaf area index (LAI) was retrieved using an artificial neural network regression model trained on PROSAIL radiative transfer simulations and validated with extensive in situ measurements collected in 2017 and 2018 in the lowlands of Central Bohemia. The supervised classification of Landsat quarterly composites enabled the identification of crop spatial patterns for each growing season. Phenological and productivity indicators were then derived from LAI time series aggregated at the level of ten agro-climatic regions using the threshold approach. Changes in phenological and productivity parameters over the examined period were assessed through the linear least squares regression analysis and the significance of trends was tested. Results revealed significant negative trends in the end-ofseason and day of maximum-of-season for winter and spring cereals, winter rapeseed (up to –0.7 days/year), and fodder crops (up to –1.6 days/year), indicating an earlier maturation and harvest. Significant differences in trends in phenological and productivity parameters were observed between agro-climatic regions in more than 40% of cases, and the response was observed to be highly crop-specific. While the shift in harvest dates and the shortening of the season for corn and fodder crops were more pronounced in warmer regions, the shift in winter rapeseed phenology occurred more rapidly in colder regions. The findings underscore the relevance of crop type and regional climate in shaping phenological responses, offering a basis for future research and planning of agricultural adaptation strategies.
keywords: Landsat; leaf area index; PROSAIL; land surface phenology; productivity; Czechia
references (72)
1. ARCSI GitHub. Available online: https://github.com/remotesensinginfo/arcsi (accessed on 20 June 2025).
2. Brown, M. E., de Beurs, K. M., Marshall, M. (2012): Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years. Remote Sensing of Environment 126, 174-183. CrossRef
3. Campioli, M., Marchand, L. J., Zahnd, C., Zuccarini, P., McCormack, M. L., Landuyt, D., Lorer, E., Delpierre, N., Gričar, J., Vitasse, Y. (2025): Environmental Sensitivity and Impact of Climate Change on leaf-, wood- and root Phenology for the Overstory and Understory of Temperate Deciduous Forests. Current Forestry Reports 11: 1. CrossRef
4. Caparros-Santiago, J. A., Rodriguez-Galiano, V., Dash, J. (2021): Land surface phenology as indicator of global terrestrial ecosystem dynamics: A systematic review. ISPRS Journal of Photogrammetry and Remote Sensing 171, 330-347. CrossRef
5. Chaves, E. D., Picoli, M. C. A., Sanches, I. D. (2020): Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sensing 12(18): 3062. CrossRef
6. Chmielewski, F.-M. (2013): Phenology in Agriculture and Horticulture. In Schwartz, M. (Ed.), Phenology: An Integrative Environmental Science. Dordrecht: Springer, 539-561. CrossRef
7. Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J.-C., Skakun, S. V., Justice, C. (2018): The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment 219, 145-161. CrossRef
8. Crhová, L., Kliegrová, S., Lipina, P., Tolasz, R., Valeriánová, A. (2022): Klimatologická ročenka České republiky 2021. Praha: Český hydrometeorologický ústav. Available online: https://info.chmi.cz/rocenka/meteo2021/ (accessed on 20 March 2025, in Czech).
9. de Beurs, K. M., Henebry, G. M. (2010): Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology. In Hudson, I., Keatley, M. (Eds.), Phenological Research. Dordrecht: Springer. CrossRef
10. Decree No. 327/1998. Ministry of Agriculture of the Czech Republic. Available online: https://faolex.fao.org/docs/pdf/cze124894.pdf (accessed on 20 June 2025).
11. Dhakar, R., Sehgal, V. K., Chakraborty, D., Sahoo, R. N., Mukherjee, J. (2021): Field scale wheat LAI retrieval from multispectral Sentinel 2A-MSI and LandSat 8-OLI imagery: effect of atmospheric correction, image resolutions and inversion techniques. Geocarto International 36(18), 2044-2064. CrossRef
12. Dhillon, M. S., Dahms, T., Kübert-Flock, C., Liepa, A., Rummler, T., Arnault, J., Steffan-Dewenter, I., Ullmann, T. (2023a): Impact of STARFM on Crop Yield Predictions: Fusing MODIS with Landsat 5, 7, and 8 NDVIs in Bavaria Germany. Remote Sensing 15(6): 1651. CrossRef
13. Dhillon, M. S., Kübert-Flock, C., Dahms, T., Rummler, T., Arnault, J., Steffan-Dewenter, I., Ullmann, T. (2023b): Evaluation of MODIS, Landsat 8 and Sentinel-2 Data for Accurate Crop Yield Predictions: A Case Study Using STARFM NDVI in Bavaria, Germany. Remote Sensing 15(7): 1830. CrossRef
14. Dong, T., Liu, Jiangui, Qian, B., He, L., Liu, Jane, Wang, R., Jing, Q., Champagne, C., McNairn, H., Powers, J., Shi, Y., Chen, J. M., Shang, J. (2020): Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data. ISPRS Journal of Photogrammetry and Remote Sensing 168, 236-250. CrossRef
15. dos Santos Luciano, A. C., Picoli, M. C. A., Duft, D. G., Rocha, J. V., Leal, M. R. L. V., le Maire, G. (2021): Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm. Computers and Electronics in Agriculture 184: 106063. CrossRef
16. Eklundh, L., Jönsson, P. (2015): TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics. In Kuenzer, C., Dech, S., Wagner, W. (Eds.), Remote Sensing Time Series. Remote Sensing and Digital Image Processing 22. Cham: Springer. CrossRef
17. Eklundh, L., Jönsson, P. (2016): TIMESAT for Processing Time-Series Data from Satellite Sensors for Land Surface Monitoring. In Ban, Y. (Ed.), Multitemporal Remote Sensing. Remote Sensing and Digital Image Processing 20. Cham: Springer. CrossRef
18. Fitchett, J. M., Grab, S. W., Thompson, D. I. (2015): Plant phenology and climate change: Progress in methodological approaches and application. Progress in Physical Geography 39(4), 460-482. CrossRef
19. Gao, F., Zhang, X. (2021): Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities. Journal of Remote Sensing 2021: 8379391. CrossRef
20. Gašparović, M., Pilaš, I., Radočaj, D., Dobrinić, D. (2024): Monitoring and Prediction of Land Surface Phenology Using Satellite Earth Observations - A Brief Review. Applied Sciences 14(24): 12020. CrossRef
21. Gitelson, A. A., Peng, Y., Masek, J. G., Rundquist, D. C., Verma, S., Suyker, A., Baker, J. M., Hatfield, J. L., Meyers, T. (2012): Remote estimation of crop gross primary production with Landsat data. Remote Sensing of Environment 121, 404-414. CrossRef
22. Hajkova, L., Nekovar, J., Richterova, D., Koznarova, V., Sulovska, S., Vavra, A., Vozenilek, V. (2012): Phenological Observation in the Czech Republic - History and Present. Phenology and Climate Change. InTech, 71-100. CrossRef
23. Hanes, J. M., Liang, L., Morisette, J. T. (2014): Land Surface Phenology. In Hanes, J. M. (Ed.), Biophysical Applications of Satellite Remote Sensing. Springer Remote Sensing/Photogrammetry. Berlin, Heidelberg: Springer. CrossRef
24. Hassan, T., Gulzar, R., Hamid, M., Ahmad, R., Waza, S. A., Khuroo, A. A. (2023): Plant phenology shifts under climate warming: a systematic review of recent scientific literature. Environmental Monitoring and Assessment 196: 36. CrossRef PubMed
25. HR-VPP: User Manual. Available online: https://land.copernicus.eu/en/technical-library/product-user-manual-of-seasonal-trajectories/ (accessed on 20 June 2025).
26. Htitiou, A., Möller, M., Riedel, T., Beyer, F., Gerighausen, H. (2024): Towards Optimising the Derivation of Phenological Phases of Different Crop Types over Germany Using Satellite Image Time Series. Remote Sensing 16(17): 3183. CrossRef
27. Huang, X., Fu, Y., Wang, J., Dong, J., Zheng, Y., Pan, B., Skakun, S., Yuan, W. (2022): High-Resolution Mapping of Winter Cereals in Europe by Time Series Landsat and Sentinel Images for 2016-2020. Remote Sensing 14(9): 2120. CrossRef
28. Huang, X., Liu, J., Zhu, W., Atzberger, C., Liu, Q. (2019): The optimal threshold and vegetation index time series for retrieving crop phenology based on a modified dynamic threshold method. Remote Sensing 11(23): 2725. CrossRef
29. Jeong, S.-J., Ho, C.-H., Gim, H.-J., Brown, M. E. (2011): Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology 17(7), 2385-2399. CrossRef
30. Jönsson, P., Eklundh, L. (2004): TIMESAT - a program for analyzing time-series of satellite sensor data. Computers & Geosciences 30(8), 833-845. CrossRef
31. Kaspar, F., Zimmermann, K., Polte-Rudolf, C. (2014): An overview of the phenological observation network and the phenological database of Germany's national meteorological service (Deutscher Wetterdienst). Advances in Science and Research 11, 93-99. CrossRef
32. Koch, E., Bruns, E., Chmielewski, F. M., Defila, C., Lipa, W., Menzel, A. (2007): Guidelines for plant phenological observations. World Climate Data and Monitoring Programme 1484, 1-41. Available online: https://library.wmo.int/viewer/51138/download?file=wmo-td_1484_en.pdf&type=pdf&navigator=1 (accessed on 20 June 2025).
33. Köppen climate classification. Available online: https://www.britannica.com/science/Koppen-climate-classification (accessed on 20 June 2025).
34. Lieth, H. (1974): Purposes of a Phenology Book. In Lieth, H. (Ed.), Phenology and Seasonality Modeling. Ecological Studies 8. Berlin, Heidelberg: Springer. CrossRef
35. Liu, F., Chen, Y., Shi, W., Zhang, S., Tao, F., Ge, Q. (2017): Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback. Journal of Geographical Sciences 27, 1085-1099. CrossRef
36. Lobell, D. B., Gourdji, S. M. (2012): The Influence of Climate Change on Global Crop Productivity. Plant Physiology 160(4), 1686-1697. CrossRef PubMed PubMed Central
37. Menzel, A. (2000): Trends in phenological phases in Europe between 1951 and 1996. International Journal of Biometeorology 44, 76-81. CrossRef PubMed
38. Meroni, M., d'Andrimont, R., Vrieling, A., Fasbender, D., Lemoine, G., Rembold, F., Seguini, L., Verhegghen, A. (2021): Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2. Remote Sensing of Environment 253: 112232. CrossRef PubMed PubMed Central
39. Michavila, M. A., Vicente-Serrano, S. M., Llovería, R. M., Cai, Z., Eklundh, L. (2024): Evaluación espacialmente continua de la dinámica de la fenología vegetal en España entre 1983 y 2020 a partir de imágenes de satélite. Cuadernos de Investigación Geográfica 50(1), 145-178. CrossRef
40. Misra, G., Cawkwell, F., Wingler, A. (2020): Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sensing 12(17): 2760. CrossRef
41. Mourad, R., Jaafar, H., Anderson, M., Gao, F. (2020): Assessment of Leaf Area Index Models Using Harmonized Landsat and Sentinel-2 Surface Reflectance Data over a Semi-Arid Irrigated Landscape. Remote Sensing 12(19): 3121. CrossRef
42. Nord, E. A., Lynch, J. P. (2009): Plant phenology: a critical controller of soil resource acquisition. Journal of Experimental Botany 60(7), 1927-1937. CrossRef PubMed
43. Olesen, J. E., Børgesen, C. D., Elsgaard, L., Palosuo, T., Rötter, R. P., Skjelvåg, A. O., Peltonen-Sainio, P., Börjesson, T., Trnka, M., Ewert, F., Siebert, S., Brisson, N., Eitzinger, J., van Asselt, E. D., Oberforster, M., van der Fels-Klerx, H. J. (2012): Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Additives & Contaminants: Part A 29(10), 1527-1542. CrossRef PubMed
44. Pei, J., Tan, S., Zou, Y., Liao, C., He, Y., Wang, J., Huang, H., Wang, T., Tian, H., Fang, H., Wang, L., Huang, J. (2025): The role of phenology in crop yield prediction: Comparison of ground-based phenology and remotely sensed phenology. Agricultural and Forest Meteorology 361: 110340. CrossRef
45. Pluto-Kossakowska, J. (2021): Review on Multitemporal Classification Methods of Satellite Images for Crop and Arable Land Recognition. Agriculture 11(10): 999. CrossRef
46. Qin, G., Wu, J., Li, C., Meng, Z. (2024): Comparison of the hybrid of radiative transfer model and machine learning methods in leaf area index of grassland mapping. Theoretical and Applied Climatology 155, 2757-2773. CrossRef
47. Richter, K., Hank, T. B., Vuolo, F., Mauser, W., D'Urso, G. (2012): Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping. Remote Sensing 4(3), 561-582. CrossRef
48. Rodriguez-Galiano, V. F., Dash, J., Atkinson, P. M. (2015): Intercomparison of satellite sensor land surface phenology and ground phenology in Europe. Geophysical Research Letters 42(7), 2253-2260. CrossRef
49. Řezník, T., Pavelka, T., Herman, L., Lukas, V., Širůček, P., Leitgeb, Š., Leitner, F. (2020): Prediction of Yield Productivity Zones from Landsat 8 and Sentinel-2A/B and Their Evaluation Using Farm Machinery Measurements. Remote Sensing 12(12): 1917. CrossRef
50. Schreier, J., Ghazaryan, G., Dubovyk, O. (2021): Crop-specific phenomapping by fusing Landsat and Sentinel data with MODIS time series. European Journal of Remote Sensing 54(sup1), 47-58. CrossRef
51. Shen, Y., Zhang, X., Yang, Z., Ye, Y., Wang, J., Gao, S., Liu, Y., Wang, W., Tran, K. H., Ju, J. (2023): Developing an operational algorithm for near-real-time monitoring of crop progress at field scales by fusing harmonized Landsat and Sentinel-2 time series with geostationary satellite observations. Remote Sensing of Environment 296: 113729. CrossRef
52. Sisheber, B., Marshall, M., Mengistu, D., Nelson, A. (2022): Tracking crop phenology in a highly dynamic landscape with knowledge-based Landsat-MODIS data fusion. International Journal of Applied Earth Observation and Geoinformation 106: 102670. CrossRef
53. Sisheber, B., Marshall, M., Mengistu, D., Nelson, A. (2023): Detecting the long-term spatiotemporal crop phenology changes in a highly fragmented agricultural landscape. Agricultural and Forest Meteorology 340: 109601. CrossRef
54. Skakun, S., Vermote, E., Franch, B., Roger, J.-C., Kussul, N., Ju, J., Masek, J. (2019): Winter Wheat Yield Assessment from Landsat 8 and Sentinel-2 Data: Incorporating Surface Reflectance, Through Phenological Fitting, into Regression Yield Models. Remote Sensing 11(15): 1768. CrossRef
55. Sparks, T. H., Carey, P. D. (1995): The Responses of Species to Climate Over Two Centuries: An Analysis of the Marsham Phenological Record, 1736-1947. Journal of Ecology 83(2), 321-329. CrossRef
56. Springer, T. L., Aiken, G. E. (2015): Harvest frequency effects on white clover forage biomass, quality, and theoretical ethanol yield. Biomass and Bioenergy 78, 1-5. CrossRef
57. Tomíček, J., Mišurec, J., Lukeš, P. (2021): Prototyping a Generic Algorithm for Crop Parameter Retrieval across the Season Using Radiative Transfer Model Inversion and Sentinel-2 Satellite Observations. Remote Sensing 13(18): 3659. CrossRef
58. Tomíček, J., Mišurec, J., Lukeš, P., Potůčková, M. (2022): Retrieval of Harmonized LAI Product of Agricultural Crops from Landsat OLI and Sentinel-2 MSI Time Series. Agriculture 12(12): 2080. CrossRef
59. Unc, A., Altdorff, D., Abakumov, E., Adl, S., Baldursson, S., Bechtold, M., Cattani, D. J., Firbank, L. G., Grand, S., Guðjónsdóttir, M., Kallenbach, C., Kedir, A. J., Li, P., McKenzie, D. B., Misra, D., Nagano, H., Neher, D. A., Niemi, J., Oelbermann, M., Overgård Lehmann, J., Parsons, D., Quideau, S., Sharkhuu, A., Smreczak, B., Sorvali, J., Vallotton, J. D., Whalen, J. K., Young, E. H., Zhang, M., Borchard, N. (2021): Expansion of Agriculture in Northern Cold-Climate Regions: A Cross-Sectoral Perspective on Opportunities and Challenges. Frontiers in Sustainable Food Systems 5. CrossRef
60. Van Tricht, K., Degerickx, J., Gilliams, S., Zanaga, D., Battude, M., Grosu, A., Brombacher, J., Lesiv, M., Bayas, J. C. L., Karanam, S., Fritz, S., Becker-Reshef, I., Franch, B., Mollà-Bononad, B., Boogaard, H., Pratihast, A. K., Koetz, B., Szantoi, Z. (2023): WorldCereal: a dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping. Earth System Science Data 15(12), 5491-5515. CrossRef
61. Webb, N., Nicholl, C., Wood, J., Potter, E. (2016): SunScan Manual, Version 3.3
62. Delta-T Devices Ltd.: Cambridge, UK, 1-82. Available online: https://delta-t.co.uk/wp-content/uploads/2017/02/SSI-UM_v3.3.pdf (accessed on 20 January 2025).
63. Wielgolaski, F.-E. (1974): Phenology in Agriculture. In Lieth, H. (Ed.), Phenology and Seasonality Modeling Studies 8. Berlin, Heidelberg: Springer. CrossRef
64. Wolanin, A., Camps-Valls, G., Gómez-Chova, L., Mateo-García, G., van der Tol, C., Zhang, Y., Guanter, L. (2019): Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations. Remote Sensing of Environment 225, 441-457. CrossRef
65. Xu, J., Quackenbush, L. J., Volk, T. A., Im, J. (2022): Estimation of shrub willow biophysical parameters across time and space from Sentinel-2 and unmanned aerial system (UAS) data. Field Crops Research 287: 108655. CrossRef
66. Yuan, X., Li, S., Chen, J., Yu, H., Yang, T., Wang, C., Huang, S., Chen, H., Ao, X. (2024): Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy 14(7): 1360. CrossRef
67. Zhang, H., Zhang, Y., Liu, K., Lan, S., Gao, T., Li, M. (2023): Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms. Computers and Electronics in Agriculture 213: 108250. CrossRef
68. Zhang, X., Liu, L., Henebry, G. M. (2019): Impacts of land cover and land use change on long-term trend of land surface phenology: a case study in agricultural ecosystems. Environmental Research Letters 14(4): 044020. CrossRef
69. Zhang, X., Tan, B., Yu, Y. (2014): Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982-2010. International Journal of Biometeorology 58, 547-564. CrossRef PubMed
70. Zhou, J., Jia, L., Menenti, M. (2015): Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote Sensing of Environment 163, 217-228. CrossRef
71. Zhu, Z., Wang, S., Woodcock, C. E. (2015): Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sensing of Environment 159, 269-277. CrossRef
72. Zhu, Z., Woodcock, C. E. (2012): Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment 118, 83-94. CrossRef

Shifting seasons: Long-term crop dynamics across agroclimatic regions of Czechia is licensed under a Creative Commons Attribution 4.0 International License.
297 x 210 mm
periodicity: 2 x per year
print price: 200 czk
ISSN: 0300-5402
E-ISSN: 2336-1980