AUC GEOGRAPHICA
We are pleased to share that AUC Geographica was awarded an Impact Factor of 0.5 in the 2023 Journal Citation Reports™ released by Clarivate in June 2024. AUC Geographica ranks in Q3 in the field of Geography.
AUC Geographica (Acta Universitatis Carolinae Geographica) is a scholarly academic journal continuously published since 1966 that publishes research in the broadly defined field of geography: physical geography, geo-ecology, regional, social, political and economic geography, regional development, cartography, geoinformatics, demography and geo-demography.
AUC Geographica also publishes articles that contribute to advances in geographic theory and methodology and address the questions of regional, socio-economic and population policy-making in Czechia.
Periodical twice yearly.
Release dates: June 30, December 31
All articles are licenced under Creative Commons Attribution 4.0 International licence (CC BY 4.0), have DOI and are indexed in CrossRef database.
AUC Geographica is covered by the following services: WOS, EBSCO, GeoBibline, SCOPUS, Ulrichsweb and Directory of Open Access Journals (DOAJ).
The journal has been covered in the SCOPUS database since 1975 – today
https://www.scopus.com/source/sourceInfo.uri?sourceId=27100&origin=recordpage
The journal has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 52 (1) 2017, this publication will be indexed and abstracted in Emerging Sources Citation Index.
The journal has been indexed by the Polish Ministry of Science and Higher Education (MSHE) on the list of scientific journals recommended for authors to publish their articles. ICI World of Journals; Acta Universitatis Carolinae, Geographica.
Journal metrics 2023
Web of Science
Impact factor (JCR®): 0.5
Journal Citation Indicator (JCI): 0.20
Rank (JCI): Q3 in Geography
Scopus
Cite Score: 1.2
Rank (ASJC): Q3 in Geography, Planning and Development; Q3 in General Earth and Planetary Sciences
The journal is archived in Portico.
AUC GEOGRAPHICA, 1–22
Understanding children’s exposure to landslides in Nicaragua
Gema Velásquez-Espinoza, Ricardo J. Garnica-Peña, Irasema Alcántara-Ayala
DOI: https://doi.org/10.14712/23361980.2025.8
published online: 25. 04. 2025
abstract
This article evaluates the integration of disaster risk reduction strategies within the educational framework of Nicaragua, with a particular emphasis on children’s exposure to landslides and their vulnerability to climate-induced disasters. A comprehensive multi-stage methodology combines geospatial modelling, demographic analysis, and risk assessment to systematically assess landslide susceptibility and its implications for school infrastructure and student safety. The analysis is structured into three distinct phases. The first phase focuses on developing a Landslide Susceptibility Model, utilising historical landslide data along with geophysical parameters to create a robust predictive tool. The second phase entails a geospatial overlay that juxtaposes the identified susceptibility zones with the locations of educational institutions. In the third phase, the analysis centres on the demographic characteristics of children residing in high-risk areas, offering insights into their exposure. The findings identify regions that exhibit elevated risks of landslides, thus posing significant threats to school infrastructure and educational continuity. Moreover, the study highlights the dual role of schools in disaster-prone regions, where they are frequently repurposed as emergency shelters during crises, exacerbating disruptions to education. By integrating geospatial risk assessment with demographic analysis, this research provides a framework for evaluating children’s exposure to landslides and calls for incorporating disaster risk reduction strategies into the planning processes of the educational sector.
keywords: children’s exposure; landslides; disaster risk reduction; Integrated Disaster Management; Education-centred approach
references (79)
1. Ahsanuzzaman, Muhammad, Q. I. (2020): Children's vulnerability to natural disasters: Evidence from natural experiments in Bangladesh. World Development Perspectives 19: 100228. CrossRef
2. Alcántara-Ayala, I., Rodríguez-Velázquez, D., Garnica-Pena, R. J., Maldonado-Martínez, A. (2020): Multi-Sectoral Reflections and Efforts in Strengthening Partnerships to Reduce Disaster Risk in Mexico: The First MuSe-IDRiM Conference. International Journal of Disaster Risk Science 11, 686-691. CrossRef
3. Alcántara-Ayala, I., Sassa, K. (2021): Contribution of the International Consortium on Landslides to the implementation of the Sendai Framework for Disaster Risk Reduction: engraining to the Science and Technology Roadmap. Landslides 18(1), 21-29. CrossRef
4. Apronti, P. T., Osamu, S., Otsuki, K., Kranjac-Berisavljevic, G. (2015): Education for Disaster Risk Reduction (DRR): Linking Theory with Practice in Ghana's Basic Schools. Sustainability 7(7), 9160-9186. CrossRef
5. Arengi, J. T., Hodgson, G. V. (2000): Overview of the Geology and Mineral Industry of Nicaragua. International Geology Review 42(1), 45-63. CrossRef
6. Armas, I. (2012): Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania. Natural Hazards 60, 937-950. CrossRef
7. Baez, J. E., Santos, I. V. (2007): Children's Vulnerability to Weather Shocks: A Natural Disaster as a Natural Experiment. Available online: https://conference.iza.org/conference_files/chldc2007/baez_j3321.pdf (accessed on 5. 10. 2024).
8. Bartlett, S. (2009): Children in the Context of Climate Change: A Large and Vulnerable Population, 133-148. In Population Dynamics and Climate Change, edited by J. M. Guzmán, G. Martine, G. McGranahan, D. Schensul and C. Tacoli. New York: UNFPA; London: IIED.
9. Bhandari, S., Ghimire, M., Mahat, P. (2024): Landslide Susceptibility Mapping and Vulnerability Assessment in the Badigad Watershed of Western Nepal. Journal of Institute of Science and Technology 29(1), 50-73. CrossRef
10. Bonham-Carter, G. F., Agterberg, F. P., Wright, D. F. (1990): Weights of evidence modelling: a new approach to mapping mineral potential. In Agterberg, F. P., Bonham-Carter, G. F. (Eds.), Statistical applications in the earth sciences, Geological Survey of Canada, Paper 89-9, 171-183. CrossRef
11. Bonham-Carter, G. (1994): Geographic Information Systems for Geoscientists. Modelling with GIS. Tarrytown, N. Y., Pergamon, Elsevier Science Ltd., Computer Methods in the Geosciences 13, 398 p.
12. Boyden, J., Mann, G. (2005): Children's Risk, Resilience, and Coping in Extreme Situations. In Ungar, M. (Ed.), Children's risk, resilience, and coping in extreme situations, 3-26. SAGE Publications, Inc. CrossRef
13. Brown, O. (2008): Migration and Climate Change. International Organization for Migration (IOM). Geneva. CrossRef
14. Burrows, K., Desai, M. U., Pelupessy, D. C., Bell, M. L. (2021): Mental wellbeing following landslides and residential displacement in Indonesia. SSM-Mental Health 1: 100016. CrossRef
15. Clauss-Ehlers, C. S., Weist, M. D. (Eds.) (2004): Community Planning to Foster Resilience in Children. Springer New York, NY, 377p. CrossRef
16. CODIRECCIÓN - SINAPRED (2020): Informe final de misión. Huracán Eta y Iota. Nicaragua (in Spanish).
17. Conde, A. C., y Saldaña, Z. S. (2007): Cambio climático en América Latina y el Caribe: Impactos, vulnerabilidad y adaptación. Revista Ambiente y Desarrollo 23(2), 23-30, Santiago de Chile (in Spanish).
18. Consorcio ERN América Latina (n.d.): Probabilistic analysis of natural hazards and risks (Análisis Probabilista de Amenazas y Riesgos Naturales). Volume III. Review of important historical events (Revisión de eventos históricos importantes). Technical Report ERN-CAPRA-T2-1. Available online: https://ecapra.org/sites/default/files/documents/ERN-CAPRA-R7-T2-1%20-%20Eventos%20Hist%C3%B3ricos%20Importantes%20NIC.pdf (accessed on 3. 9. 2023, in Spanish).
19. Cornwell, K., Inder, B. (2015): Child Health and Rainfall in Early Life. The Journal of Development Studies 51(7), 865-880. CrossRef
20. Cupples, J. (2007): Gender and Hurricane Mitch: reconstructing subjectivities after disaster. Disasters 31(2), 155-175. CrossRef
21. Dahal, R. K., Hasegawa, S. (2008): Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 100(3-4), 429-443. CrossRef
22. Devoli, G., Morales, A., Høeg, K. (2007a): Historical landslides in Nicaragua - collection and analysis of data. Landslides 4, 5-18. CrossRef
23. Devoli, G., Strauch, W., Chávez, G., Høeg, K. (2007b): A landslide database for Nicaragua: a tool for landslide-hazard management. Landslides 4, 163-176. CrossRef
24. ECLAC, PNUD (2008): Impacto del huracán Félix en las Región Autónoma del Atlántico Norte y de las Lluvias Torrenciales en el Noroeste de Nicaragua. México (in Spanish).
25. ECLAC (1988): Daños Ocasionados por el Huracán Joan en Nicaragua: Sus efectos sobre el desarrollo económico y las condiciones de vida y requerimientos para la rehabilitación y reconstrucción. México: Comisión Económica para América Latina y El Caribe (in Spanish).
26. ECLAC (1999): Nicaragua: Evaluación de los daños ocasionados por el huracán Mitch 1998. Sus implicaciones para el desarrollo económico y social y el medio ambiente. México: Comisión Económica para América Latina y El Caribe (in Spanish).
27. ECLAC (2008): Nicaragua: Evolución Económica durante 2007 y perspectiva para el 2008. México: Comisión Económica para América Latina y El Caribe (in Spanish).
28. ECLAC (2011): La economía del cambio climático en Centroamérica. México: Comisión Económica para América Latina y El Caribe (in Spanish).
29. EIRD (Estrategia Internacional para la Reducción de Desastres de las Naciones Unidas) and OPS (Organización Panamericana de la Salud) (2000). Huracán Mitch: Una mirada a algunas tendencias temáticas para la reducción del riesgo. San José, Costa Rica (in Spanish).
30. Elming, S. A. (1998): Estudio paleomagnético y determinaciones de edad K-Ar en rocas Terciarias de Nicaragua, Centro América: Universidad Tecnológica de Lulea, Suecia 0, 1-19 (in Spanish).
31. Fernandez, R., Correal, J. F., D'Ayala, D., Medaglia, A. L. (2023): Towards disaster risk mitigation on large-scale school intervention programs. International Journal of Disaster Risk Reduction 90: 103655. CrossRef
32. Ferraro, R., Vicente, G., Ba, M., Gruber, A., Scofield, R., Li, Q., Weldon, R. (1999): Satellite techniques yield insight into devastating rainfall from Hurricane Mitch. Eos, Transactions American Geophysical Union 80(43), 505-511. CrossRef
33. Few, R., Ramírez, V., Armijos, M. T., Hernández, L. A. Z., Marsh, H. (2021): Moving with risk: Forced displacement and vulnerability to hazards in Colombia. World Development 144: 105482. CrossRef
34. Galindo, S. J. A., y Alcántara-Ayala, I. (2015): Inestabilidad de laderas e infraestructura vial: análisis de susceptibilidad en la Sierra Nororiental de Puebla México. Investigaciones Geográficas, boletín, núm. 88, 122-145, Instituto de Geografía, UNAM, México (in Spanish).
35. Gemenne, F. (2011): Climate-induced population displacements in a 4 C+ world. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369(1934), 182-195. CrossRef
36. Getachew, N., Meten, M. (2021): Weights of evidence modeling for landslide susceptibility mapping of Kabi-Gebro locality, Gundomeskel area, Central Ethiopia. Geoenvironmental Disasters 8(6). CrossRef
37. Helldén, D., Andersson, C., Nilsson, M., Ebi, K. L., Friberg, P., Alfvén, T. (2021): Climate change and child health: a scoping review and an expanded conceptual framework. Lancet Planet Health 5(3), e164-e175. CrossRef
38. Henríquez, S. V., García Maldonado, F. V. (Coords.) (2023): Infancia y movilidades: La educación como espacio para tejer relaciones interculturales. Ed. Universidad de Almería (in Spanish).
39. INETER (Instituto Nicaragüense de Estudios Territoriales) (2003): Base cartográfica de Nicaragua. Managua (in Spanish).
40. IFRC (Federación Internacional de Sociedad de la Cruz Roja y de la Media Luna Roja) (2020). Informe Mundia sobre desastres 2020: Contra Calor y Marea. Un empeño conjunto ante las repercusiones humanitarias del cambio climático. Ginebra, Suiza (in Spanish).
41. Instituto Geográfico Nacional, Servicio Geológico Nacional y Catastro y Recursos Naturales (1974): Geological map of the Republic of Nicaragua, 1:1000,000 (in Spanish).
42. INEC (Instituto Nacional de Estadísticas y Censo) (2006): VIII Censo de población y IV de Vivienda. Población: Municipios (in Spanish).
43. INIDE (Instituto Nacional de Información de Desarrollo) (2022): Anuario Estadístico 2021. Available online: https://www.inide.gob.ni/Home/Anuarios (accessed on 2. 10. 2024).
44. Izadkhah, Y. O., Hosseini, M. (2005): Towards resilient communities in developing countries through education of children for disaster preparedness. International Journal of Emergency Management 2(3), 138-148. CrossRef
45. Kerle, N., De Vries, B. V. W. (2001): The 1998 debris avalanche at Casita volcano, Nicaragua - investigation of structural deformation as the cause of slope instability using remote sensing. Journal of Volcanology and Geothermal Research 105(1-2), 49-63. CrossRef
46. Kuang, S. J. (1971): Estudio geológico del Pacifico de Nicaragua. Nicaragua Catastro e Inventario de Recursos Naturales (in Spanish).
47. Lee, M.-S., Bhang, S.-Y. (2018): Assessment Tools for the Mental Health of School-Aged Children and Adolescents Exposed to Disaster: A Systematic Review (1988-2015). Journal of the Korean Academy of Child and Adolescent Psychiatry 29(3), 88-100. CrossRef
48. Lee, S., Choi, J., Min, K. (2002): Landslide susceptibility analysis and verification using the Bayesian probability model. Environmental Geology 43, 120-131. CrossRef
49. Lee, S., Choi, J. (2004): Landslide susceptibility mapping using GIS and the weight-of-evidence model. International Journal of Geographical Information Science 18(8), 789-814. CrossRef
50. McBirney, A. R., Williams, H. (1965): Volcanic history of Nicaragua. Univ. California Publ. Geol. Sci., Berkley and Los Angeles 55, 1-65.
51. MINED (n.d.) (a): Available online: https://www.mined.gob.ni/estrategia-nacional-de-educacion-en-todas-sus-modalidades/ (accessed on 10. 10. 2024).
52. MINED (n.d.) (b): Mapa Interactivo de la educación en Nicaragua Available online: https://serviciosenlinea.mined.gob.ni/mapa-de-la-educacion/Index.aspx (accessed on 10. 10. 2024).
53. Mitchell, T., Haynes, K., Hall, N., Choong, W., Oven, K. (2008): The roles of children and youth in communicating disaster risk. Children, youth and environments 18(1), 254-279. CrossRef
54. Mitchell, T., Tanner, T., Hayes, K. (2009): Children as agents of change for disaster risk reduction: Lessons from El Salvador and the Philippines. London: PLAN International. Available online: https://www.ipcc.ch/apps/njlite/srex/njlite_download.php?id=7040 (accessed on 25. 9. 2024).
55. Neal, J., Hawker, L. (2023): FABDEM V1-2. Available online: https://research-information.bris.ac.uk/en/datasets/fabdem-v1-2 (accessed on 25. 9. 2024).
56. Oficina Ejecutiva de los Censos (1975): Censo Nacionales 1971. Población por Municipios. Volumen IV. República de Nicaragua (in Spanish).
57. Oh, H. J., Lee, S. (2011): Landslide susceptibility mapping on Panaon Island, Philippines using a geographic information system. Environment Earth Science 62, 935-951. CrossRef
58. Parsons Corporation (1972): The geology of western Nicaragua: Nicaragua, Tax Improvement and Natural resources Inventory Project. Final Technical Report 4.
59. Peek, L. (2008): Children and disasters: Understanding Vulnerability, Developing Capacities, and Promoting Resilience - An introduction. Children, Youth and Environments 18(1), 1-29. CrossRef
60. Petal, M. (2009): Disaster Risk Reduction Education. Disaster Management: Global Challenges and Local Solutions. Universities Press, India, 285-301.
61. Potapov, P., Hansen, M. C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X.-P., Baggett, A., Kommareddy, I., Kommareddy, A. (2022): The Global 2000-2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results. Frontiers Remote Sensing 3: 856903. CrossRef
62. Pradhan, B., Oh, H.-J., Buchroithner, M. (2010): Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomatics, Natural Hazard and Risk 1(3), 199-223. CrossRef
63. Regmi, N. R., Giardino, J. R., Vitek, J. D. (2010): Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115(1-2), 172-187. CrossRef
64. Ruiz-Cortés, N. S., Alcántara-Ayala, I. (2020): Landslide exposure awareness: a community-based approach towards the engagement of children. Landslides 17, 1501-1514. CrossRef
65. Sassa, K. (2019): The Kyoto Landslide Commitment 2020: first signatories. Landslides 16, 2053-2057. CrossRef
66. Sassa, K. (2020): Launching session of the Kyoto Landslide Commitment 2020. Landslides 17, 1743-1744. CrossRef
67. Sassa, K. (2021): The Kyoto Landslide Commitment 2020: launched. Landslides 18, 5-20. CrossRef
68. Sujatha, E. R., Kumaravel, P., Rajamanickam, G. V. (2014): Assessing landslide susceptibility using Bayesian probability-based weight of evidence model. Bulletin of Engineering Geology and the Environment 73, 147-161. CrossRef
69. Tomaszewski, B., Walker, A., Gawlik, E., Lane, C., Williams, S., Orieta, D., McDaniel, C., Plummer, M., Nair, A., San Jose, N., Terrell, N., Pecsok, K., Thomley, E., Mahoney, E., Haberlack, E., Schwartz, D. (2020): Supporting disaster resilience spatial thinking with serious geogames: project Lily Pad. ISPRS International Journal of Geo-Information 9(6): 405. CrossRef
70. Uddin, R., Philipsborn, R., Smith, D., Mutic, A., Thompson, L. M. (2021): A global child health perspective on climate change, migration and human rights. Current Problems in Pediatric and Adolescent Health Care 51(6): 101029. CrossRef
71. UNFCCC (United Nations Framework Convention on Climate Change) (2015): Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 2. 10. 2024).
72. UNISDR (2015): Sendai framework for disaster risk reduction 2015-2030. United Nations International Strategy for Disaster Reduction, UNDR. Geneva, Switzerland. Available online: https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf (accessed on 2. 10. 2024).
73. UNICEF (2021): La crisis climática es una crisis de los derechos de la infancia: Presentación del índice de Riesgo Climático de la Infancia. New York: Fondo de las Naciones Unidas para la Infancia (in Spanish).
74. UNICEF (s.f.): El cambio climático y los niños y niñas desarraigados. UNICEF para cada infancia (in Spanish).
75. Velásquez-Espinoza, G., Alcántara-Ayala, I. (2023): The chronological account of the impact of tropical cyclones in Nicaragua between 1971 and 2020. AUC Geographica 58(1), 74-95. CrossRef
76. Velásquez-Espinoza, G., Alcántara-Ayala, I. (2024): Tropical Cyclones in Nicaragua: Historical Impact and Contemporary Exposure to Disaster Risk. International Journal of Disaster Risk Science 15, 579-593. CrossRef
77. World Bank (n.d.): Nicaragua overview. Available online: https://www.worldbank.org/en/country/nicaragua/overview (accessed on 2. 10. 2024).
78. World Bank (2008): Nicaragua Poverty Assessment. Poverty Reduction and Economic Management Sector, Latin America and the Caribbean Region Report No. 39736-NI. Washington, D. C.: World Bank. Available online: https://documents1.worldbank.org/curated/en/235491468297893170/pdf/397360ESW0vol110gray0cover01PUBLIC1.pdf (accessed on 2. 10. 2024).
79. Zuñiga, R. A. (2022): La tormenta perfecta: desplazamientos internos por desastres durante la pandemia por COVID 19 en países latinoamericanos y caribeños, en clave de género. Researching Internal Displacement (in Spanish).
Understanding children’s exposure to landslides in Nicaragua is licensed under a Creative Commons Attribution 4.0 International License.
210 x 297 mm
periodicity: 2 x per year
print price: 200 czk
ISSN: 0300-5402
E-ISSN: 2336-1980