AUC GEOGRAPHICA
We are pleased to share that AUC Geographica was awarded an Impact Factor of 0.5 in the 2023 Journal Citation Reports™ released by Clarivate in June 2024. AUC Geographica ranks in Q3 in the field of Geography.
AUC Geographica (Acta Universitatis Carolinae Geographica) is a scholarly academic journal continuously published since 1966 that publishes research in the broadly defined field of geography: physical geography, geo-ecology, regional, social, political and economic geography, regional development, cartography, geoinformatics, demography and geo-demography.
AUC Geographica also publishes articles that contribute to advances in geographic theory and methodology and address the questions of regional, socio-economic and population policy-making in Czechia.
Periodical twice yearly.
Release dates: June 30, December 31
All articles are licenced under Creative Commons Attribution 4.0 International licence (CC BY 4.0), have DOI and are indexed in CrossRef database.
AUC Geographica is covered by the following services: WOS, EBSCO, GeoBibline, SCOPUS, Ulrichsweb and Directory of Open Access Journals (DOAJ).
The journal has been covered in the SCOPUS database since 1975 – today
https://www.scopus.com/source/sourceInfo.uri?sourceId=27100&origin=recordpage
The journal has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 52 (1) 2017, this publication will be indexed and abstracted in Emerging Sources Citation Index.
The journal has been indexed by the Polish Ministry of Science and Higher Education (MSHE) on the list of scientific journals recommended for authors to publish their articles. ICI World of Journals; Acta Universitatis Carolinae, Geographica.
Journal metrics 2023
Web of Science
Impact factor (JCR®): 0.5
Journal Citation Indicator (JCI): 0.20
Rank (JCI): Q3 in Geography
Scopus
Cite Score: 1.2
Rank (ASJC): Q3 in Geography, Planning and Development; Q3 in General Earth and Planetary Sciences
The journal is archived in Portico.
AUC GEOGRAPHICA, 1–15
Identification of optimal Sentinel-1 SAR polarimetric parameters for forest monitoring in Czechia
Daniel Paluba, Bertrand Le Saux, Francesco Sarti, Přemysl Štych
DOI: https://doi.org/10.14712/23361980.2024.18
published online: 04. 12. 2024
abstract
Time series analysis of synthetic aperture radar data (SAR) offers a systematic, dynamic and comprehensive way to monitor forests. The main emphasis of this study is on the identification of the most suitable and best performing Sentinel-1 SAR polarimetric parameters for forest monitoring. This is accomplished through: 1) a pairwise correlation analysis of SAR polarimetric parameters, multispectral optical vegetation indices and ancillary data, 2) a univariate binary time series classification for differentiation between forest types and 3) a visual exploration of time series. For this purpose, 600 validated broad-leaved and 600 coniferous forest areas in Czechia were used. Nine different SAR polarimetric parameters were examined, including VH and VV polarizations, VV/VH and VH/VV polarization ratios, the Radar Vegetation Index, Radar Forest Degradation Index, polarimetric radar vegetation index and the original and modified versions of the dual polarimetric SAR vegetation index. The pairwise correlation analysis revealed that most of the derived SAR polarimetric parameters were functions of each other with nearly identical behavior (r > |0.96|). The strongest correlation of r ~0.50 between SAR and optical features was found for broad-leaved forest for VV/VH and VH/VV. The highest overall accuracy in the time series classification of forest types was achieved by VH (76%), while for VV, VV/VH and VH/VV it was higher than 60%. Furthermore, the time series analysis of these parameters showed seasonal behaviors of the SAR features in both forest types. These results demonstrated the high relevance of using VH, VV, VV/VH and VH/VV time series in forest monitoring compared to other SAR polarimetric parameters. This study also introduces a novel pipeline to generate multi-modal time series datasets in Google Earth Engine (MMTS-GEE), used to generate data for the analysis. MMTS-GEE combines spatially and temporally aligned SAR and multispectral data, extended with topographic and weather data, and a land cover class label. Its high versatility enables its use in time series analyses, intercomparisons and in machine learning applications for tabular time series data. The GEE code for the proposed tool and analysis is freely available to the research community.
keywords: time series; Google Earth Engine; SAR; time series classification; forest; Sentinel-2; Czechia
references (77)
1. Alvarez-Mozos, J., Villanueva, J., Arias, M., Gonzalez-Audicana, M. (2021): Correlation Between NDVI and Sentinel-1 Derived Features for Maize. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 6773-6776. CrossRef
2. Bai, Z., Fang, S., Gao, J., Zhang, Y., Jin, G., Wang, S., Zhu, Y., Xu, J. (2020): Could Vegetation Index be Derive from Synthetic Aperture Radar? - The Linear Relationship between Interferometric Coherence and NDVI. Scientific Reports 10: 6749. CrossRef
3. Bartels, S. F., Chen, H. Y. H., Wulder, M. A., White, J. C. (2016): Trends in Post-disturbance recovery rates of Canada's forests following wildfire and harvest. Forest Ecology and Management 361, 194-207. CrossRef
4. Benninga, H.-J. F., Van Der Velde, R., Su, Z. (2019): Impacts of Radiometric Uncertainty and Weather-Related Surface Conditions on Soil Moisture Retrievals with Sentinel-1. Remote Sensing 11(17): 2025. CrossRef
5. Bey, A., Sánchez-Paus Díaz, A., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., Bastin, J.-F., Moore, R., Federici, S., Rezende, M., Patriarca, C., Turia, R., Gamoga, G., Abe, H., Kaidong, E., Miceli, G. (2016): Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sensing 8(10): 807. CrossRef
6. Buchhorn, M., Smets, B., Bertels, L., Roo, B. D., Lesiv, M., Tsendbazar, N.-E., Herold, M., Fritz, S. (2020): Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2017: Globe. Zenodo.
7. Chang, J. G., Shoshany, M., Oh, Y. (2018): Polarimetric Radar Vegetation Index for Biomass Estimation in Desert Fringe Ecosystems. IEEE Transactions on Geoscience and Remote Sensing 56(12), 7102-7108. CrossRef
8. Copernicus Climate Change Service (2019): ERA5-Land hourly data from 2001 to present. ECMWF.
9. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., Hansen, M. C. (2018): Classifying drivers of global forest loss. Science 361(6407), 1108-1111. CrossRef
10. De Luca, G., Silva, J. M. N., Modica, G. (2022): Regional-scale burned area mapping in Mediterranean regions based on the multitemporal composite integration of Sentinel-1 and Sentinel-2 data. GIScience & Remote Sensing 59(1), 1678-1705. CrossRef
11. Didan, K. (2021a): MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V061. NASA EOSDIS Land Processes Distributed Active Archive Center.
12. Didan, K. (2021b): MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061. NASA EOSDIS Land Processes Distributed Active Archive Center.
13. Didan, K., Barreto, A. (2018): VIIRS/NPP Vegetation Indices 16-Day L3 Global 500m SIN Grid V001. NASA EOSDIS Land Processes Distributed Active Archive Center.
14. dos Santos, E. P., Da Silva, D. D., o Amaral, C. H. (2021): Vegetation cover monitoring in tropical regions using SAR-C dual-polarization index: seasonal and spatial influences. International Journal of Remote Sensing 42(19), 7581-7609. CrossRef
15. Dostálová, A., Lang, M., Ivanovs, J., Waser, L. T., Wagner, W. (2021): European Wide Forest Classification Based on Sentinel-1 Data. Remote Sensing 13(3): 337. CrossRef
16. Dostálová, A., Milenkovic, M., Hollaus, M., Wagner, W. (2016): Influence of Forest Structure on the Sentinel-1 Backscatter Variation - Analysis with Full-Waveform LiDAR Data. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9-13 May 2016; Volume 740, p. 202.
17. Dostálová, A., Wagner, W., Milenković, M., Hollaus, M. (2018): Annual seasonality in Sentinel-1 signal for forest mapping and forest type classification. International Journal of Remote Sensing 39(21), 7738-7760. CrossRef
18. Dufourg, C., Pelletier, C., May, S., Lefèvre, S. (2024): Satellite Image Time Series Datasets.
19. EUROPEAN SPACE AGENCY, AIRBUS (2022): Copernicus DEM. European Space Agency.
20. Faouzi, J. (2022): Time Series Classification: A review of Algorithms and Implementations. Proud Pen. In press, 978-1-83815241-3, hal-03558165.
21. Filgueiras, R., Mantovani, E. C., Althoff, D., Fernandes Filho, E. I., Cunha, F. F. da (2019): Crop NDVI Monitoring Based on Sentinel 1. Remote Sensing 11(12): 1441. CrossRef
22. Forzieri, G., Dakos, V., Mcdowell, N. G., Ramdane, A., Cescatti, A. (2022): Emerging signals of declining forest resilience under climate change. Nature 608, 534-539. CrossRef
23. Frison, P.-L., Fruneau, B., Kmiha, S., Soudani, K., Dufrêne, E., Le Toan, T., Koleck, T., Villard, L., Mougin, E., Rudant, J.-P. (2018): Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology. Remote Sensing 10(12): 2049. CrossRef
24. Fuster, B., Sánchez-Zapero, J., Camacho, F., García-Santos, V., Verger, A., Lacaze, R., Weiss, M., Baret, F., Smets, B. (2020): Quality Assessment of PROBA-V LAI, fAPAR and fCOVER Collection 300 m Products of Copernicus Global Land Service. Remote Sensing 12(6): 1017. CrossRef
25. Gamon, J. A., Field, C. B., Goulden, M. L., Griffin, K. L., Hartley, A. E., Joel, G., Penuelas, J., Valentini, R. (1995): Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecological Applications 5(1), 28-41. CrossRef
26. Global Forest Watch (2014): Forest Monitoring, Land Use & Deforestation Trends | Global Forest Watch. Available online: https://www.globalforestwatch.org/ (accessed on 16. 7. 2024).
27. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. (2017): Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202, 18-27. CrossRef
28. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., Townshend, J. R. G. (2013): High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342(6160), 850-853. CrossRef
29. Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., De Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., Tyukavina, A. (2021): Global maps of twenty-first century forest carbon fluxes. Nature Climate Change 11, 234-240. CrossRef
30. Hird, J. N., Delancey, E. R., Mcdermid, G. J., Kariyeva, J. (2017): Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping. Remote Sensing 9(12): 1315. CrossRef
31. Holtgrave, A.-K., Röder, N., Ackermann, A., Erasmi, S., Kleinschmit, B. (2020): Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. Remote Sensing 12(18): 2919. CrossRef
32. Huang, S., Tang, L., Hupy, J. P., Wang, Y., Shao, G. (2021): A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research 32, 1-6. CrossRef
33. Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., Ferreira, L. G. (2002): Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83(1), 195-213. CrossRef
34. Jiao, X., Mcnairn, H., Dingle Robertson, L. (2021): Monitoring crop growth using a canopy structure dynamic model and time series of synthetic aperture radar (SAR) data. International Journal of Remote Sensing 42(17), 6433-6460. CrossRef
35. Kim, Y., Van Zyl, J. (2000): On the relationship between polarimetric parameters. GARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings 3, 1298-1300 (Cat. No.00CH37120), Honolulu, HI, USA. CrossRef
36. Kosztra, B., Büttner, G., Hazeu, G., Arnold, S. (2019): Updated CLC illustrated nomenclature guidelines. European Environment Agency. Available online: https://land.copernicus.eu/content/corine-land-cover-nomenclature-guidelines/docs/pdf/CLC2018_Nomenclature_illustrated_guide_20190510.pdf (accessed on 10.4.2024).
37. Lee, J.-S. (1985): Speckle Suppression and Analysis for Synthetic Aperture Radar Images. Proc. SPIE 0556, Intl Conf on Speckle. CrossRef
38. Liu, H. Q., Huete, A. (1995): A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing 33(2), 457-465. CrossRef
39. Löning, M., Király, F., Bagnall, T., Middlehurst, M., Ganesh, S., Oastler, G., Lines, J., Walter, M., Viktorkaz, Mentel, L., Chrisholder, Tsaprounis, L., Rnkuhns, Parker, M., Owoseni, T., Rockenschaub, P., Danbartl, Jesellier, Eenticott-Shell, Gilbert, C., Bulatova, G., Lovkush, Schäfer, P., Khrapov, S., Buchhorn, K., Take, K., Subramanian, S., Meyer, S. M., Aidenrushbrooke, Rice, B. (2022): https://github.com/sktime/sktime/releases. v0.13.4. Zenodo.
40. Ma, J., Li, J., Wu, W., Liu, J. (2023): Global forest fragmentation change from 2000 to 2020. Nature Communications 14: 3752. CrossRef
41. Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M., Mcnairn, H., Rao, Y. S. (2020a): Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sensing of Environment 247: 111954. CrossRef
42. Mandal, D., Ratha, D., Bhattacharya, A., Kumar, V., Mcnairn, H., Rao, Y. S., Frery, A. C. (2020b): A Radar Vegetation Index for Crop Monitoring Using Compact Polarimetric SAR Data. IEEE Transactions on Geoscience and Remote Sensing 58(9), 6321-6335. CrossRef
43. Mašek, J., Tumajer, J., Lange, J., Kaczka, R., Fišer, P., Treml, V. (2023): Variability in Tree-ring Width and NDVI Responses to Climate at a Landscape Level. Ecosystems 26, 1144-1157. CrossRef
44. May, J. L., Healey, N. C., Ahrends, H. E., Hollister, R. D., Tweedie, C. E., Welker, J. M., Gould, W. A., Oberbauer, S. F. (2017): Short-Term Impacts of the Air Temperature on Greening and Senescence in Alaskan Arctic Plant Tundra Habitats. Remote Sensing 9(12), 1338. CrossRef
45. Ministry of Agriculture of the Czech Republic (2022): Information on forests and forestry in the Czech Republic by 2021. Ministry of Agriculture of the Czech Republic.
46. Mountrakis, G., Im, J., Ogole, C. (2011): Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 66(3), 247-259. CrossRef
47. Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N., Reiche, J. (2021): Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sensing 13(10): 1954. CrossRef
48. Myneni, R., Knyazikhin, Y. (2018): VIIRS/NPP Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V001. NASA EOSDIS Land Processes Distributed Active Archive Center.
49. Myneni, R., Knyazikhin, Y., Park, T. (2021): MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500m SIN Grid V061. NASA EOSDIS Land Processes Distributed Active Archive Center. CrossRef
50. Nicolau, A. P. (2024): Cloud Score+ in Action: Land Cover Mapping in Ecuador, Google Earth and Earth Engine. Available online: https://medium.com/google-earth/cloud-score-in-action-land-cover-mapping-in-ecuador-fd1c5c424317 (accessed on 26. 4. 2024).
51. Olesk, A., Voormansik, K., Põhjala, M., Noorma, M. (2015): Forest change detection from Sentinel-1 and ALOS-2 satellite images. IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 522-527. CrossRef
52. Oliveira, W. V. De, Dutra, L. V., Sant'anna, S. J. S. (2023): A Comparison Of Multi-Class Svm Strategies And Kernel Functions For Land Cover Classification. Available online: https://proceedings.science/sbsr-2023/trabalhos/a-comparison-of-multi-class-svm-strategies-and-kernel-functions-for-land-cover-c?lang=en (accessed on 17. 4. 2024).
53. Onačillová, K., Krištofová, V., Paluba, D. (2023): Automatic forest cover classification using Sentinel-2 multispectral satellite data and machine learning algorithms in Google Earth Engine. Acta Geographica Universitatis Comenianae 67(2), 163-185.
54. Paluba, D., Laštovička, J., Mouratidis, A., Štych, P. (2021): Land Cover-Specific Local Incidence Angle Correction: A Method for Time-Series Analysis of Forest Ecosystems. Remote Sensing 13(9): 1743. CrossRef
55. Paluba, D., Papale, L. G., Perivolioti, T.-M., Štych, P., Laštovička, J., Kalaitzis, P., Karadimou, G., Papageorgiou, E., Mouratidis, A. (2023): Unsupervised Burned Area Mapping in Greece: Investigating the Impact of Precipitation, Pre- and Post-Processing of Sentinel-1 Data in Google Earth Engine. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2520-2523. CrossRef
56. Pasquarella, V. (2024): All Clear with Cloud Score+, Google Earth and Earth Engine. Available online: https://medium.com/google-earth/all-clear-with-cloud-score-bd6ee2e2235e (accessed on 26. 4. 2024).
57. Pasquarella, V. J., Brown, C. F., Czerwinski, W., Rucklidge, W. J. (2023): Comprehensive quality assessment of optical satellite imagery using weakly supervised video learning. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, 2125-2135. CrossRef
58. Periasamy, S. (2018): Significance of dual polarimetric synthetic aperture radar in biomass retrieval: An attempt on Sentinel-1. Remote Sensing of Environment, 217, 537-549. CrossRef
59. Pinheiro, M., Miranda, N., Recchia, A., Cotrufo, A., Franceschi, N., Piantanida, R., Schmidt, K., Gisinger, C., Hajduch, G., Vincent, P. (2022): Sentinel-1 instruments status and product performance update for 2022. In: EUSAR 2022; 14th European Conference on Synthetic Aperture Radar, 1-5.
60. Ranson, K. J., Sun, G. (2000): Effects of environmental conditions on boreal forest classification and biomass estimates with SAR. IEEE Transactions on Geoscience and Remote Sensing 38(3), 1242-1252. CrossRef
61. Reiche, J., Mullissa, A., Slagter, B., Gou, Y., Tsendbazar, N.-E., Odongo-Braun, C., Vollrath, A., Weisse, M. J., Stolle, F., Pickens, A., Donchyts, G., Clinton, N., Gorelick, N., Herold, M. (2021): Forest disturbance alerts for the Congo Basin using Sentinel-1. Environmental Research Letters 16(2): 024005. CrossRef
62. Richards, J. A. (2009): The Imaging Radar System In: Remote Sensing with Imaging Radar. Signals and Communication Technology. Springer, Berlin, Heidelberg. CrossRef
63. Rüetschi, M., Small, D., Waser, L. (2019): Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data. Remote Sensing 11(2): 115. CrossRef
64. Saatchi, S. (2019): SAR Methods for Mapping and Monitoring Forest Biomass. In: SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. NASA. Available online: https://ntrs.nasa.gov/api/citations/20190002563/downloads/20190002563.pdf (accessed on 10.4.2024).
65. Sahadevan, D. K., Sitiraju, S., Sharma, J. (2013): Radar Vegetation Index as an Alternative to NDVI for Monitoring of Soyabean and Cotton. In: Indian Cartographer. Jodhpur, 91-96.
66. Schmitt, M., Ahmadi, S. A., Xu, Y., Taşkin, G., Verma, U., Sica, F., Hänsch, R. (2023): There Are No Data Like More Data: Datasets for deep learning in Earth observation. IEEE Geoscience and Remote Sensing Magazine 11(3), 63-97. CrossRef
67. Senf, C., Seidl, R. (2021): Mapping the forest disturbance regimes of Europe. Nature Sustainability 4, 63-70. CrossRef
68. Smets, B., Cai, Z., Elkund, L., Tian, F., Bonte, K., Van Hoost, R., Van De Kerchove, R., Adriaensen, S., De Roo, B., Jacobs, T., Swinnen, E. (2023): High resolution vegetation phenology and productivity (HR-VPP), Daily Raw Vegetation Indices. European Union, Copernicus Land Monitoring Service 2021, European Environment Agency (EEA).
69. Thanh Noi, P., Kappas, M. (2018): Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 18(1): 18. CrossRef
70. Turubanova, S., Potapov, P. V., Tyukavina, A., Hansen, M. C. (2018): Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environmental Research Letters 13: 074028. CrossRef
71. Tyukavina, A., Potapov, P., Hansen, M. C., Pickens, A. H., Stehman, S. V., Turubanova, S., Parker, D., Zalles, V., Lima, A., Kommareddy, I., Song, X.-P., Wang, L., Harris, N. (2022): Global Trends of Forest Loss Due to Fire From 2001 to 2019. Frontiers in Remote Sensing 3: 825190. CrossRef
72. Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., Rüdiger, C., Strauss, P. (2018): Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sensing 10(9): 1396. CrossRef
73. Wang, W. K., Chen, I., Hershkovich, L., Yang, J., Shetty, A., Singh, G., Jiang, Y., Kotla, A., Shang, J. Z., Yerrabelli, R., Roghanizad, A. R., Shandhi, M. M. H., Dunn, J. (2022): A Systematic Review of Time Series Classification Techniques Used in Biomedical Applications. Sensors 22(20): 8016. CrossRef
74. Weiss, M., Baret, F. (2016): S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER. Version 1.1.
75. WMO, United Nations Educational, S., C. O. (UNESCO), Programme (UNEP), U. N. E., SCIENCE (ICSU), I. C. for (2011): Systematic Observation Requirements for Satellite-based Products for Climate Supplemental details to the satellite-based component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC. Available online: https://library.wmo.int/records/item/48411-systematic-observation-requirements-for-satellite-based-products-for-climate-supplemental-details-to-the-satellite-based-component-of-the-implementation-plan-for-the-global-observing-system-for-climate-in-support-of-the-unfccc (accessed on12. 9. 2023).
76. Zanaga, D., Van De Kerchove, R., Daems, D., De Keersmaecker, W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., Lesiv, M., Herold, M., Tsendbazar, N.-E., Xu, P., Ramoino, F., Arino, O. (2022): ESA WorldCover 10 m 2021 v200. CrossRef
77. Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J. M., Joiner, J., Frankenberg, C., Bond-Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R., Chen, M. (2022): Optical vegetation indices for monitoring terrestrial ecosystems globally. Nature Reviews Earth & Environment 3, 477-493. CrossRef
Identification of optimal Sentinel-1 SAR polarimetric parameters for forest monitoring in Czechia is licensed under a Creative Commons Attribution 4.0 International License.
210 x 297 mm
periodicity: 2 x per year
print price: 200 czk
ISSN: 0300-5402
E-ISSN: 2336-1980