AUC GEOGRAPHICA
We are pleased to share that AUC Geographica was awarded an Impact Factor of 0.5 in the 2023 Journal Citation Reports™ released by Clarivate in June 2024. AUC Geographica ranks in Q3 in the field of Geography.
AUC Geographica (Acta Universitatis Carolinae Geographica) is a scholarly academic journal continuously published since 1966 that publishes research in the broadly defined field of geography: physical geography, geo-ecology, regional, social, political and economic geography, regional development, cartography, geoinformatics, demography and geo-demography.
AUC Geographica also publishes articles that contribute to advances in geographic theory and methodology and address the questions of regional, socio-economic and population policy-making in Czechia.
Periodical twice yearly.
Release dates: June 30, December 31
All articles are licenced under Creative Commons Attribution 4.0 International licence (CC BY 4.0), have DOI and are indexed in CrossRef database.
AUC Geographica is covered by the following services: WOS, EBSCO, GeoBibline, SCOPUS, Ulrichsweb and Directory of Open Access Journals (DOAJ).
The journal has been covered in the SCOPUS database since 1975 – today
https://www.scopus.com/source/sourceInfo.uri?sourceId=27100&origin=recordpage
The journal has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 52 (1) 2017, this publication will be indexed and abstracted in Emerging Sources Citation Index.
The journal has been indexed by the Polish Ministry of Science and Higher Education (MSHE) on the list of scientific journals recommended for authors to publish their articles. ICI World of Journals; Acta Universitatis Carolinae, Geographica.
Journal metrics 2023
Web of Science
Impact factor (JCR®): 0.5
Journal Citation Indicator (JCI): 0.20
Rank (JCI): Q3 in Geography
Scopus
Cite Score: 1.2
Rank (ASJC): Q3 in Geography, Planning and Development; Q3 in General Earth and Planetary Sciences
The journal is archived in Portico.
AUC GEOGRAPHICA, 229–239
Dynamics of equilibrium line altitude in glaciers of the Monte Rosa massif in the Alps derived from Sentinel-2 satellite images
Jan Kropáček, Pragya Mehrishi
DOI: https://doi.org/10.14712/23361980.2024.17
published online: 27. 11. 2024
abstract
The equilibrium line altitude (ELA) is an immediate indicator of the mass balance of glaciers. The evolution of the ELA of four major glaciers in the Monte Rosa (European Alps) massif was investigated in this study. We used Sentinel-2 satellite images to derive the end-of-summer snowline altitude (SLA) as an approximation of ELA considering the fluctuations in the snowline at the end of the ablation season (from August to mid-October in 2016–2023). SLA was estimated as a percentile of the histogram of the DEM of each glacier with the applied snow-mask, based on the normalised difference snow index (NDSI). ELA was determined as the maximum snowline elevation reached in the season. We found the mean ELA for the studied period as 3560, 3230, 3430 and 3570 m above the sea level for Gornergletscher, Belvedere Glacier, Grenzgletscher, and Lys Glacier respectively. These differences are likely due to the variation in slope orientation and amount of snow accumulation. An increase in ELA was found for all the glaciers in the studied period amounting to 22.7, 8.3, 33.1 and 27.0 m/y respectively. The pattern of temporal behaviour was similar for all the glaciers, although we expected a different behaviour of the Belvedere Glacier, which is characterized by various local effects, such as frequent avalanching and rough topography.
keywords: snowline; equilibrium line altitude; Monte Rosa massif; mountain glaciers; cryosphere
references (59)
1. Ahlmann, H. W. S. (1924): Le niveau de glaciation comme fonction de l'accumulation d'humidité sous forme solide: Méthode pour le calcul de l'humidité condensée dans la haute montagne et pour l'étude de la fréquence des glaciers. Geografiska Annaler 6(3-4), 223-272. CrossRef
2. Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., Nieplova, E. (2007): HISTALP - historical instrumental climatological surface time series of the Greater Alpine Region. International Journal of Climatology: A Journal of the Royal Meteorological Society 27(1), 17-46. CrossRef
3. Barcaza, G., Aniya, M., Matsumoto, T., Aoki, T. (2009): Satellite derived equilibrium lines in Northern Patagonia Icefield, Chile, and their implications to glacier variations. Arctic Antarctic and Alpine Research 41, 174-182. CrossRef
4. Benn, D. I., Lehmkuhl, F. (2000): Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International 65-66, 15-29. CrossRef
5. Berthier, E., Arnaud, Y., Baratoux, D., Vincent, C., Rémy, F. (2004): Recent rapid thinning of the "Mer de Glace" glacier derived from satellite optical images. Geophysical Research Letters 31(17). CrossRef
6. Bloomberg, L. P. (2023): Alpine Heat Wave Pushes Freezing Level Above Europe's Glaciers, SWI swissinfo.ch. Available online: https://www.swissinfo.ch/eng/alpine-heat-wave-pushes-freezing-level-above-europe-s-glaciers/48752620 (accessed on 5. 12. 2023).
7. Braithwaite, R. J. (1984): Can the mass balance of a glacier be estimated from its equilibrium-line altitude? Journal of Glaciology 30(106), 364-368. CrossRef
8. Braithwaite, R. J. (1984): Calculation of degree-days for glacier-climate research. Z. Gletscherkd. Glazialgeol 20, 1-20.
9. Braithwaite, R. J., Raper, S. C. B. (2009): Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology 50(53), 127-132. CrossRef
10. Brückner, E. (1886): Die hohen Tauern und ihre Eisbedeckung, eine orometrische Studie. Z. Deutscher und Österreichischer Alpenverein 17, 163-187.
11. Brun, F., Berthier, E., Wagnon, P., Kääb, A., Treichler, D. (2017): A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience 10(9), 668-673. CrossRef
12. Cornes, R. C., van der Schrier, G., van den Besselaar, E. J., Jones, P. D. (2018): An ensemble version of the E‐OBS temperature and precipitation data sets. Journal of Geophysical Research: Atmospheres 123(17), 9391-9409. CrossRef
13. Davaze, L., Rabatel, A., Dufour, A., Hugonnet, R., Arnaud, Y. (2020): Region-wide annual glacier surface mass balance for the European Alps from 2000 to 2016. Frontiers in Earth Science 8:149. CrossRef
14. Demuth, M., Pietroniro, A. (1999): Inferring glacier mass balance using RADARSAT: results from Peyto Glacier, Canada. Geografiska Annaler: Series A, Physical Geography 81(4), 521-540. CrossRef
15. Diolaiuti, G. A., Vezzola, L. C., Senese, A., D'Agata, C., Fugazza, D., Leonelli, G., Pelfini, M. (2016): Recent changes of the ablation tongue and glacier foreland at the Lys Glacier (Italian Alps).
16. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P. (2012): Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote sensing of Environment 120, 25-36. CrossRef
17. Echelmeyer, Κ. A., Harrison, W. D., Larsen, C. F., Sapiano, J., Mitchell, J. E., De Mallie, J., Rabus, B., Adalgeirsdóttir, G. Sombardier, L. (1996): Airborne surface profiling of glaciers: a case-study in Alaska. Journal of Glaciology 42(142), 538-547. CrossRef
18. Gardelle, J., Berthier, E., Arnaud, Y. (2012): Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. Journal of Glaciology 58, 419-422. CrossRef
19. Gross, G., Kerschner, H., Patzelt, G. (1977): Methodische Untersuchungen über die Schneegrenze in alpinen Gletschergebieten. Z. Gletscherkd. Glazialgeol 12(2), 223-251.
20. Hall, D. K., Riggs, G. A. (2010): Normalized-difference snow index (NDSI). Encyclopedia of snow, ice and glaciers. CrossRef
21. Hoinkes, H. (1970): Methoden und Möglichkeiten von Massenhaushaltsstudien auf Gletschern: Ergebnisse der Messreihe Hintereisferner (Ötztaler Alpen) 1953-1968. Z. Gletscherkd. Glazialgeol 6 (1-2), 37-90.
22. Huss, M., Bauder, A., Werder, M., Funk, M., Hock, R. (2007): Glacier-dammed lake outburst events of Gornersee, Switzerland. Journal of Glaciology 53(181), 189-200. CrossRef
23. Huss, M., Sold, L., Hoelzle, M., Stokvis, M., Salzmann, N., Farinotti, D., Zemp, M. (2013): Towards remote monitoring of sub-seasonal glacier mass balance. Annals of Glaciology 54(63), 75-83. CrossRef
24. Kääb, A., Huggel, C., Barbero, S., Chiarle, M., Cordola, M., Epifani, F., Haeberli, W., Mortara, G., Semino, P., Tamburini, A., Viazzo, G. (2004): Glacier hazards at Belvedere Glacier and the Monte Rosa East Face, Italian Alps: processes and mitigation. 1, 67-78.
25. Kerschner, H., Ivy-Ochs, S. (2008): Palaeoclimate from glaciers: Examples from the Eastern Alps during the Alpine Lateglacial and early Holocene. Global and Planetary Change 60(1-2), 58-71. CrossRef
26. Lhotka, O., Kyselý, J. (2024): Three-dimensional analysis reveals diverse heat wave types in Europe. Communications Earth & Environment 5(1), 323. CrossRef
27. Lliboutry, L. (1965): Traité de glaciologie. Tome II: Glaciers, variations du climat, sols gelés, Paris, Masson et Cie.
28. Loewe, F. (1971): Considerations of the origin of the Quaternary ice-sheet in North America. Arctic, Antarctic and Alpine Research 3(4), 331-344. CrossRef
29. Loibl, D., Richter, N., Grünberg, I. (2022): Remote sensing-derived time series of transient snowline altitudes for High Mountain Asia 1986-2021 (preprint). CrossRef
30. Lukas, S., Bradwell, T. (2010): Reconstruction of a Lateglacial (Younger Dryas) mountain ice field in Sutherland, north-western Scotland, and its paleoclimatic implications. Journal of Quaternary Science: Published for the Quaternary Research Association 25(4), 567-580. CrossRef
31. Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., Gascon, F. (2017): Sen2Cor for sentinel 2. Proc. SPIE 10427. Image and Signal Processing for Remote Sensing XXIII (4 October 2017). CrossRef
32. Maisch, M. (2000): The long-term signal of climate change in the Swiss Alps: Glacier retreat since the end of the Little Ice Age and future ice decay scenarios. Geografia fisica e dinamica quaternaria 23(2), 139-151.
33. Mathieu, R., Chinn, T., Fitzharris, B. (2009): Detecting the equilibrium‐line altitudes of New Zealand glaciers using ASTER satellite images. New Zealand Journal of Geology and Geophysics 52(3), 209-222. CrossRef
34. Meier, M. F. (1962): Proposed definitions for glacier mass budget terms. Journal of Glaciology 4(33), 252-263. CrossRef
35. Neckel, N., Kropáček, J., Bolch, T., Hochschild, V. (2014): Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements. Environmental Research Letters 9(1): 014009. CrossRef
36. Østrem, G. (1975): ERTS data in glaciology - an effort to monitor glacier mass balance from satellite imagery. Journal of Glaciology 15(73), 403-415. CrossRef
37. Pandey, A., Kropáček, J. (2023): Rapid formation and drainage of a new glacial lake in the Monte Rosa Massif, Swiss Alps, as observed on Sentinel-2 imagery. Annals of Glaciology, 1-3. CrossRef
38. Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S. Ribolini, A. (2015): A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences 82, 55-62. CrossRef
39. Rabatel, A., Dedieu, J. P., Vincent, C. (2005): Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: validation on three French glaciers, 1994-2002. Journal of Glaciology 51(175), 539-546. CrossRef
40. Rabatel, A., Dedieu, J. P., Thibert, E., Letréguilly, A., Vincent, C. (2008): 25 years (1981-2005) of equilibrium-line altitude and mass-balance reconstruction on Glacier Blanc, French Alps, using remote-sensing methods and meteorological data. Journal of Glaciology 54(185), 307-314. CrossRef
41. Rabatel, A., Bermejo, A., Loarte, E., Soruco, A., Gomez, J., Leonardini, G., Vincent, C., Sicart, J. E. (2012): Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? Journal of Glaciology 58(212), 1027-1036. CrossRef
42. Rabatel, A., Letréguilly, A., Dedieu, J. P., Eckert, N. (2013): Changes in glacier equilibrium-line altitude in the western Alps from 1984 to 2010: evaluation by remote sensing and modeling of the morpho-topographic and climate controls. The Cryosphere 7(5), 1455-1471. CrossRef
43. Racoviteanu, A. E., Rittger, K., Armstrong, R. (2019): An automated approach for estimating snowline altitudes in the Karakoram and eastern Himalaya from remote sensing. Frontiers in Earth Science 7: 220. CrossRef
44. Rastner, P., Prinz, R., Notarnicola, C., Nicholson, L., Sailer, R., Schwaizer, G., Paul, F. (2019): On the automated mapping of snow cover on glaciers and calculation of snow line altitudes from multi-temporal Landsat data. Remote Sensing 11(12): 1410. CrossRef
45. Rettig, L., Lukas, S., Huss, M. (2023): Implications of a rapidly thinning ice margin for annual moraine formation at Gornergletscher, Switzerland. Quaternary Science Reviews 308: 108085. CrossRef
46. RGI 7.0 Consortium (2023): Randolph Glacier Inventory - A Dataset of Global Glacier Outlines, Version 7.0. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. CrossRef
47. Richter, E. (1885): Beobachtungen an den Gletschern der Ostalpen. II. Die Gletscher der Ötzhaler Gruppe im Jahre 1883. Zeitschrift des Deutschen und Österreichischen Alpenvereins 16, 54-65.
48. Rizzi, C., Finizio, A., Maggi, V., Villa, S. (2019): Spatial-temporal analysis and risk characterisation of pesticides in Alpine glacial streams. Environmental pollution 248, 659-666. CrossRef
49. Ryser, C., Lüthi, M., Blindow, N., Suckro, S., Funk, M., Bauder, A. (2013): Cold ice in the ablation zone: Its relation to glacier hydrology and ice water content. Journal of Geophysical Research: Earth Surface 118(2), 693-705. CrossRef
50. Securo, A., Del Gobbo, C., Rettig, L., Pillon, S., De Luca, A., Fontana, D., Fasil, E. B., Colucci, R. R. (2024): A glacier in transition: Surface elevation change, ELA and geomorphic evolution of a very small glacier in the Dolomites (SE Alps). Geomorphology 444: 108956. CrossRef
51. Six, D., Vincent, C. (2014): Sensitivity of mass balance and equilibrium-line altitude to climate change in the French Alps. Journal of Glaciology 60(223), 867-878. CrossRef
52. Smiraglia, C., Maggi, V., Novo, A., Rossi, G., Johnston, P. (2000): Preliminary results of two ice core drillings on Monte Rosa (Colle Gnifetti and Colle del Lys), Italian Alps. Geografia Fisica Dinamica Quaternaria 23, 165-172.
53. Spagnolo, M., Ribolini, A. (2019): Glacier extent and climate in the Maritime Alps during the Younger Dryas. Palaeogeography, Palaeoclimatology, Palaeoecology 536: 109400. CrossRef
54. Truffer, M., Kääb, A., Harrison, W. D., Osipova, G. B., Nosenko, G. A., Espizua, L., Gilbert, A., Fischer, L., Huggel, C., Craw Burns P.A., Lai, A. W. (2021): Glacier surges. In Snow and ice-related hazards, risks, and disasters (Second Edition), 417-466. CrossRef
55. Valovcin, F. R. (1976): Snow/cloud discrimination (No. 349). Meteorology Division, Air Force Geophysics.
56. Villa, S., Negrelli, C., Maggi, V., Finizio, A., Vighi, M. (2006): Analysis of a firn core for assessing POP seasonal accumulation on an Alpine glacier. Ecotoxicology and Environmental Safety 63(1), 17-24. CrossRef
57. Žebre, M., Colucci, R. R., Giorgi, F., Glasser, N. F., Racoviteanu, A. E., Del Gobbo, C. (2021): 200 years of equilibrium-line altitude variability across the European Alps (1901−2100). Climate Dynamics 56, 1183-1201. CrossRef
58. Zeller, H. R. (1893): Die Schneegrenze im Triftgebiet. Jahrb. Geogr. Ges. Bern 11, 198-225.
59. Zemp, M., Hoelzle, M., Haeberli, W. (2007): Distributed modelling of the regional climatic equilibrium line altitude of glaciers in the European Alps. Global and Planetary Change 56(1-2), 83-100. CrossRef
Dynamics of equilibrium line altitude in glaciers of the Monte Rosa massif in the Alps derived from Sentinel-2 satellite images is licensed under a Creative Commons Attribution 4.0 International License.
210 x 297 mm
periodicity: 2 x per year
print price: 200 czk
ISSN: 0300-5402
E-ISSN: 2336-1980