AUC GEOGRAPHICA
We are pleased to share that AUC Geographica was awarded an Impact Factor of 0.5 in the 2023 Journal Citation Reports™ released by Clarivate in June 2024. AUC Geographica ranks in Q3 in the field of Geography.
AUC Geographica (Acta Universitatis Carolinae Geographica) is a scholarly academic journal continuously published since 1966 that publishes research in the broadly defined field of geography: physical geography, geo-ecology, regional, social, political and economic geography, regional development, cartography, geoinformatics, demography and geo-demography.
AUC Geographica also publishes articles that contribute to advances in geographic theory and methodology and address the questions of regional, socio-economic and population policy-making in Czechia.
Periodical twice yearly.
Release dates: June 30, December 31
All articles are licenced under Creative Commons Attribution 4.0 International licence (CC BY 4.0), have DOI and are indexed in CrossRef database.
AUC Geographica is covered by the following services: WOS, EBSCO, GeoBibline, SCOPUS, Ulrichsweb and Directory of Open Access Journals (DOAJ).
The journal has been covered in the SCOPUS database since 1975 – today
https://www.scopus.com/source/sourceInfo.uri?sourceId=27100&origin=recordpage
The journal has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 52 (1) 2017, this publication will be indexed and abstracted in Emerging Sources Citation Index.
The journal has been indexed by the Polish Ministry of Science and Higher Education (MSHE) on the list of scientific journals recommended for authors to publish their articles. ICI World of Journals; Acta Universitatis Carolinae, Geographica.
Journal metrics 2023
Web of Science
Impact factor (JCR®): 0.5
Journal Citation Indicator (JCI): 0.20
Rank (JCI): Q3 in Geography
Scopus
Cite Score: 1.2
Rank (ASJC): Q3 in Geography, Planning and Development; Q3 in General Earth and Planetary Sciences
The journal is archived in Portico.
AUC GEOGRAPHICA, 1–17
What do trees reveal about the sliding of the lateral moraine of the Belvedere Glacier (western Italian Alps)?
Irene Maria Bollati, Roberto Sergio Azzoni, Anna Tagliaferri, Gianluca Tronti, Manuela Pelfini, Vít Vilímek, Lukáš Brodský
DOI: https://doi.org/10.14712/23361980.2024.14
published online: 14. 10. 2024
abstract
The debris-covered Belvedere Glacier is an iconic place for investigating glacier dynamics and geomorphological processes typical of high mountain environments. Moreover, being located in an area highly suited to tourism, glacial and geomorphological hazards can evolve into risk scenarios. Particular attention has been paid during this research to the surge-type event that occurred at the beginning of the 21st century, and to the recent sliding of a lateral moraine nearby the chairlift station. Tree sampling was performed (19 trees on the lateral moraine; 10 undisturbed trees), and the results were compared with morphometric measurements on orthophotos of different years. Besides sampling trunks, the six available exposed roots (13 samples) from a tree located along the sliding niche were sampled to identify the exposure time. Morphometric measurements of the touristic trail dislocation indicate a sliding rate of 1.87 m/y – 1.98 m/y (2018–2023), while the regression rate of the sliding niche is 1.70 m/y (2021–2023). The age of trees along the trench is variable (14–49 years), as is the signal of compression wood, enhancing differentially the passage of the surge wave and the subsequent glacier downwasting. The beginning of root exposure occurred between 2017 and 2019, before the effective evidence of large fractures in the ground. Moreover, the roots show traumatic resin ducts in the period between 2020 and 2022, confirming the tree disturbance. In conclusion, the investigated events are recorded differentially in the sampled trees, especially in roots, anticipating the actual commencement of ground failure. A multidisciplinary approach, including remote sensing, field survey, and dendrogeomorphological analysis is essential to define the dynamics of complex systems.
keywords: dendrogeomorphology; paraglacial dynamics; surge-type event; moraine sliding; Belvedere Glacier
references (69)
1. Azzoni, R. S., Franzetti, A., Fontaneto, D., Zullini, A., Ambrosini, R. (2015): Nematodes and rotifers on two Alpine debris-covered glaciers. Italian Journal of Zoology 82(4), 616-623. CrossRef
2. Azzoni, R. S., Pelfini, M., Zerboni, A. (2023): Estimating the evolution of a Post-Little Ice Age deglaciated Alpine Valley through the DEM of Difference (DoD). Remote Sensing 15(12), 3190. CrossRef
3. Ballantyne, C. K. (2002): Paraglacial geomorphology. Quaternary Science Reviews 21(18-19), 1935-2017. CrossRef
4. Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., Quincey D., Thompson T., Toumi R., Wiseman, S. (2012): Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews 114(1-2), 156-174. CrossRef
5. Bodoque, J. M., Ballesteros‐Cánovas, J. A., Lucía, A., Díez‐Herrero, A., Martín‐Duque, J. F. (2015): Source of error and uncertainty in sheet erosion rates estimated from dendrogeomorphology. Earth Surface Processes and Landforms 40, 1146-1157. CrossRef
6. Bodoque, J. M., Ballesteros‐Cánovas, J. A., Lucía, A., Díez‐Herrero, A., Martín‐Duque, J. F. (2015): Source of error and uncertainty in sheet erosion rates estimated from dendrogeomorphology. Earth Surface Processes and Landforms 40(9), 1146-1157. CrossRef
7. Bollati, I., Leonelli, G., Vezzola, L., Pelfini, M. (2015): The role of Ecological Value in Geomorphosite assessment for the Debris-Covered Miage Glacier (Western Italian Alps) based on a review of 2.5 centuries of scientific study. Geoheritage 7, 119-135. CrossRef
8. Bollati, I. M., Pellegrini, M., Reynard, E., Pelfini, M. (2017): Water driven processes and landforms evolution rates in mountain geomorphosites: examples from Swiss Alps. Catena 158, 321-339. CrossRef
9. Bollati, I. M., Crosa Lenz, B., Golzio, A., Masseroli, A. (2018): Tree rings as ecological indicator of geomorphic activity in geoheritage studies. Ecological indicators 93, 899-916. CrossRef
10. Bollati, I. M., Masseroli, A., Mortara, G., Pelfini, M., Trombino, L. (2019): Alpine gullies system evolution: erosion drivers and control factors. Two examples from the western Italian Alps. Geomorphology 327, 248-263. CrossRef
11. Bollati, I. M., Viani, C., Masseroli, A., Mortara, G., Testa, B., Tronti, G., Pelfini M., Reynard, E. (2023): Geodiversity of proglacial areas and implications for geosystem services: A review. Geomorphology 421, 108517. CrossRef
12. Bollati, I. M., Cavalli, M., Masseroli, A., Viani, C., Moraschina, F., Pelfini, M. (2024): Thematic mapping for sediment cascade analysis in small mountain catchments - The case of the Buscagna valley (Lepontine Alps). Geomorphology 446, 109001. CrossRef
13. Bollschweiler, M., Stoffel, M., Schneuwly, D. M., Bourqui, K. (2008): Traumatic resin ducts in Larix decidua stems impacted by debris flows. Tree physiology 28(2), 255-263. CrossRef
14. Caccianiga, M., Andreis, C., Diolaiuti, G., D'Agata, C., Mihalcea, C., Smiraglia, C. (2011): Alpine debris-covered glaciers as a habitat for plant life. The Holocene 21(6), 1011-1020. CrossRef
15. Chiarle, M., Iannotti, S., Mortara, G., Deline, P. (2007): Recent debris flow occurrences associated with glaciers in the Alps. Global and Planetary Change 56(1-2), 123-136. CrossRef
16. Church, M., Ryder, J. M. (1972): Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin 83(10), 3059-3072. CrossRef
17. Cook, E. R. (1985): A time series approach to tree-ring standardization. PhD thesis, University of Arizona.
18. Cruickshank, M. G., Lejour, D., Morrison, D. J. (2006): Traumatic resin canals as markers of infection events in Douglas‐fir roots infected with Armillaria root disease. Forest Pathology 36(5), 372-384. CrossRef
19. Curry, A. M., Ballantyne, C. K. (1999): Paraglacial modification of glacigenic sediment. Geografiska Annaler, Series A: Physical Geography 81(3), 409-419. CrossRef
20. De Bouchard d'Aubeterre, G., Favillier, A., Mainieri, R., Saez, J. L., Eckert, N., Saulnier, M., Peiry, J. L., Stoffel, M., Corona, C. (2019): Tree-ring reconstruction of snow avalanche activity: Does avalanche path selection matter? Science of the Total Environment 684, 496-508. CrossRef
21. De Gaetani, C. I., Ioli, F., Pinto, L. (2021): Aerial and UAV Images for Photogrammetric Analysis of Belvedere Glacier Evolution in the Period 1977-2019. Remote Sensing 13(18), 3787. CrossRef
22. Diolaiuti, G., D'Agata, C., Smiraglia, C. (2003): Belvedere Glacier, Monte Rosa, Italian Alps: Tongue Thickness and Volume Variations in the Second Half of the 20th Century. Arctic Antarctic Alpine Research 35, 255-263. CrossRef
23. Eckstein, D., Bauch, J. (1986): Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwiss. Centralblatt 88, 230-250. CrossRef
24. Fantucci, R. (1997): La dendrogeomorfologia nello studio della dinamica dei versanti: alcune recenti applicazioni in Italia. Geologia tecnica e ambientale 2/97, 21- 31.
25. Favillier, A., Guillet, S., Lopez-Saez, J., Giacona, F., Eckert, N., Zenhäusern, G., Peiry, J. L., Stoffel, M., Corona, C. (2023): Identifying and interpreting regional signals in tree-ring based reconstructions of snow avalanche activity in the Goms valley (Swiss Alps). Quaternary Science Reviews 307: 108063. CrossRef
26. Fyffe, C. L., Reid, T. D., Brock, B. W., Kirkbride, M. P., Diolaiuti, G., Smiraglia, C., Diotri, F. (2014): A distributed energy-balance melt model of an alpine debris-covered glacier. Journal of Glaciology 60(221), 587-602. CrossRef
27. Garavaglia, V., Pelfini, M., Bini, A., Arzuffi, L., Bozzoni, M. (2009): Recent evolution of debris-flow fans in the Central Swiss Alps and associated risk assessment: two examples in Roseg Valley. Physical Geography 30(2), 105-129. CrossRef
28. Garavaglia, V., Pelfini, M., Motta, E. (2010): Glacier stream activity in the proglacial area of an italian debris-covered glacier: an application of dendroglaciology. Geografia Fisica e Dinamica Quaternaria 33(1), 2010, 15-24.
29. Garavaglia, V., Pelfini, M. (2011): The role of border areas for dendrochronological investigations on catastrophic snow avalanches: a case study from the Italian Alps. Catena 87(2), 209-215. CrossRef
30. Giordan, D., Lanteri, L., Fioraso, G., Bormioli, D., Luino, F., Turconi, L., Chiarle, M., Mortara, G., Tamburini, A. (2022): Itinerario 2.3. Frane in alta quota: il Ghiacciaio del Belvedere e la parete Est del Monte Rosa. In: Calcaterra, D., Cencetti, C., Meisina, C., Revellino, P., Frane d'Italia. Associazione Italiana Geologia Applicata Ambientale. Luciano Ed., pp. 81-84.
31. Gray, M., Gordon, J. E., Brown, E. J. (2013): Geodiversity and the ecosystem approach: the contribution of geoscience in delivering integrated environmental management. Proceedings of the Geologists' Association 124(4), 659-673. CrossRef
32. Guida, D., Pelfini, M., Santilli, M. (2008): Geomorphological and dendrochronological analyses of a complex landslide in the Southern Apennines. Geografiska Annaler: Series A, Physical Geography 90(3), 211-226. CrossRef
33. Haeberli, W., Kääb, A., Paul, F., Chiarle, M., Mortara, G., Mazza, A., Deline P., Richardson, S. (2002). A surge-type movement at Ghiacciaio del Belvedere and a developing slope instability in the east face of Monte Rosa, Macugnaga, Italian Alps. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography 56(2), 104-111. CrossRef
34. Hupp, C., Carey, W. P. (1990): Dendrogeomorphic approach to estimating slope retreat. Geology 18, 658-661. CrossRef
35. Ioli, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Passoni, D., Pinto, L. (2021): Mid-term monitoring of glacier's variations with UAVs: The example of the Belvedere Glacier. Remote Sensing 14(1), 28. CrossRef
36. Ioli, F., Bruno, E., Calzolari, D., Galbiati, M., Mannocchi, A., Manzoni, P., Martini, M., Bianchi, A., Cina, A., De Michele, C., Pinto, L. (2023): A replicable open-source multi-camera system for low-cost 4D glacier monitoring. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives), XLVIII-M-1-2023, 137-144. CrossRef
37. Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., Schlüchter, C. (2009): Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews 28(21-22), 2137-2149. CrossRef
38. Kääb, A., Huggel, C., Barbero, S., Chiarle, M., Cordola, M., Epifani, F., Haebelri, W., Mortara, G., Semino, P., tamburini, A., Viazzo, G. (2004) Glacier hazards at Belvedere Glacier and the Monte Rosa East Face, Italian Alps: processes and mitigation. INTERPRAEVENT 2004-RIVA/TRIENT., pp. 67-78.
39. Kääb, A., Huggel, C., Fischer, L., Guex, S., Paul, F., Roer, I., Salzmann, N., Schlaefli, S., Schmutz, K., Schneider, D., Strozzi, T., Weidmann, Y. (2005): Remote sensing of glacier-and permafrost-related hazards in high mountains: An overview. Natural Hazard Earth Systems 5, 527-554. CrossRef
40. Klimeš, J., Novotný, J., Novotná, I., Jordán de Urries, B., Vilímek, V., Emmer, A., Strozzi, T., Kusák, M., Rapre, A.C., Hartvich, F., Frey, H. (2016): Landslides in moraines as triggers of glacial lake outburst floods: example from Palcacocha Lake (Cordillera Blanca, Peru). Landslides 13(6), 1461-1477. CrossRef
41. Leonelli, G., Pelfini, M., Cherubini, P. (2008): Exploring the potential of tree-ring chronologies from the Trafoi Valley (Central Italian Alps) to reconstruct glacier mass balance. Boreas 37, 169-198. CrossRef
42. Leonelli, G., Pelfini, M. (2013): Past surface instability of Miage debris-covered glacier tongue (Mont Blanc Massif, Italy): a decadal-scale tree-ring-based reconstruction. Boreas 42, 613-622. CrossRef
43. Leonelli, G., Coppola, A., Baroni, C., Salvatore, M.C., Maugeri, M., Brunetti, M., Pelfini, M. (2016): Multispecies dendroclimatic reconstructions of summer temperature in the European Alps enhanced by trees highly sensitive to temperature. Climatic Change 137, 275-291. CrossRef
44. Manconi, A., Giordan, D. (2015): Landslide early warning based on failure forecast models: the example of the Mt. de La Saxe rockslide, northern Italy, Natural Hazards and Earth System Science 15(7), 1639-1644. CrossRef
45. Mazza, A. (1998): Evolution and dynamics of Ghiacciaio Nord delle Locce (Valle Anzasca, Western Alps) from 1854 to the present. Geografia Fïsica e Dinamica Quaternaria 21, 233-243.
46. Mazza, A. (2003): The kinematics wave theory: a possible application to "Ghiacciaio del Belvedere" (Valle Anzasca, Italian Alps). Preliminary hypothesis. Terra glacialis 6, 23-36.
47. Mehta, M., Kumar, V., Kunmar, P., Sain, K. (2023): Response of the Thick and Thin Debris-Covered Glaciers between 1971 and 2019 in Ladakh Himalaya, India - A Case Study from Pensilungpa and Durung-Drung Glaciers. Sustainability 15(5): 4267. CrossRef
48. Monterin, U. (1923): Il Ghiacciaio di Macugnaga dal 1870 al 1922. Bollettino del Comitato Glaciologico Italiano 5, 12-40.
49. Mortara, G., Chiarle, M., Tamburini, A., Mercalli, L., Cat Berro, D. (2023): a vent'anni dal Lago Effimero (Ghiacciaio del Belvedere, Monte Rosa): eredità di un evento emblematico per le Alpi. Nimbus 90, 26-41.
50. Mortara, G., Carton, A., Chiarle, M., Tamburini, A. (2017). Ai piedi della parete più alta delle Alpi. In: Società Geologica Italiana, Itinerari glaciologici nella Alpi Italiane - Il ghiacciaio del Belvedere al Monte Rosa. Guide Geologiche Regionali 12 193-214.
51. Mourey, J., Ravanel, L., Lambiel, C. (2022): Climate change related processes affecting mountaineering itineraries, mapping and application to the Valais Alps (Switzerland). Geografiska Annaler: Series A, Physical Geography 104(2), 109-126. CrossRef
52. Nakawo, M., Yabuki, H., Sakai, A. (1999): Characteristics of Khumbu Glacier, Nepal Himalaya: recent change in the debris-covered area. Annals of Glaciology 28, 118-122. CrossRef
53. Paleari M. (2014) Evoluzione delle pareti alpine di alta montagna ed effetti sull'approccio alpinistico: l'esempio dell'alta Valle Anzasca, Parete Est del Monte Rosa, Italia. Unpublished thesis.
54. Paul, F., Rastner, P., Azzoni, R. S., Diolaiuti, G., Fugazza, D., Le Bris, R., Nemec, J., Rabatel, A., Ramusovic, M., Schwaizer, G., Smiraglia, C. (2020): Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2. Earth System Science Data 12(3), 1805-1821. CrossRef
55. Pelfini, M. (1999): Dendrogeomorphological study of glacier fluctuations in the Italian Alps during the Little Ice Age. Annals of Glaciology 28, 123-128. CrossRef
56. Pelfini, M., Santilli, M. (2006): Dendrogeomorphological analyses on exposed roots along two mountain hiking trails in the Central Italian Alps. Geografiska Annaler, Series A: Physical Geography 88(3), 223-236. CrossRef
57. Pelfini, M., Santilli, M., Leonelli, G., Bozzoni, M. (2007): Investigating surface movements of debris-covered Miage glacier, Western Italian Alps, using dendroglaciological analysis. Journal of Glaciology 53(180), 141-152. CrossRef
58. Pelfini, M., Diolaiuti, G., Leonelli, G., Bozzoni, M., Bressan, N., Briosch, D., Riccardi, A. (2012): The influence of glacier surface processes on the short-term evolution of supraglacial tree vegetation: The case study of the Miage Glacier, Italian Alps. The Holocene 22(8), 847-857. CrossRef
59. Richter, M., Fickert, T., Gruninger, F. (2004): Pflanzen auf schuttbedeckten Gletschern - wandernde Kuriositaten. Geooko [Bensheim] 25(3/4), 225-256.
60. Schmidt, B. (1987): Ein dendrochronologischer Befund zum Bau der Stadtmauer der Colonia Ulpia Traiana. Bonner Jahrbuch 187.
61. Serandrei-Barbero, R., Donnici, S., Zecchetto, S. (2022). Past and future behavior of the valley glaciers in the Italian Alps. Frontiers in Earth Science 10, 972601. CrossRef
62. Smiraglia, C., Diolaiuti, G. A. (2015): The New Italian Glacier Inventory; Ev-K2-CNR: Bergamo, Italy. Available online https://sites.unimi.it/glaciol/index.php/en/italian-glacier-inventory (accessed on 20. 2. 2024).
63. Stoffel, M., Bollschweiler, M. (2008): Tree-ring analysis in natural hazards research-an overview. Natural Hazards and Earth System Sciences 8(2), 187-202. CrossRef
64. Stoffel, M., Corona, C., Ballesteros-Cánovas, J. A., Bodoque, J. M. (2013): Dating and quantification of erosion processes based on exposed roots. Earth-Science Reviews 123, 18-34. CrossRef
65. Tamburini, A., Chiarle, M., Mortara, G. (2019): Il collasso delle morene del Ghiacciaio del Belvedere. www.nimbus.it/ghiacciai/2019/190816_BelvedereCollassoMorene.htm.
66. Tampucci, D., Azzoni, R. S., Boracchi, P., Citterio, C., Compostella, C., Diolaiuti, G., Isaia, M., Marano, G., Smiraglia, C., Gobbi, M., Caccianiga, M. (2017): Debris-covered glaciers as habitat for plant and arthropod species: Environmental framework and colonization patterns. Ecological Complexity 32(Part A), 42-52. CrossRef
67. Tichavský, R., Kluzová, O., Šilhán, K. (2019): Differences between the responses of European larch (Larix decidua Mill.) and Norway spruce (Picea abies (L.) Karst) to landslide activity based on dendrogeomorphic and dendrometric data. Geomorphology 330, 57-68. CrossRef
68. VAW (Versuchsanstalt for Wasserbau, Hydrologie und Glaziologi, ETH Zürich) (1983-1985): Ricerche glaciologiche al Lago delle Locce, Macugnaga, Italia; Studi sul comportamento del Ghiacciaio del Belvedere, Macugnaga, Italia; Valutazione dei rischi glaciali nella Regione Macugnaga/Monte Rosa, Relazioni Nr. 97.2, 97.3, 97.4 per La Comunitá Montana della Valle Anzasca.
69. Vejpustková, M., Holuša, J. (2006): Impact of defoliation caused by the sawfly Cephalcia lariciphila (Hymenoptera: Pamphilidae) on radial growth of larch (Larix decidua Mill.). European Journal of Forest Research 125, 391-396. CrossRef
What do trees reveal about the sliding of the lateral moraine of the Belvedere Glacier (western Italian Alps)? is licensed under a Creative Commons Attribution 4.0 International License.
210 x 297 mm
periodicity: 2 x per year
print price: 200 czk
ISSN: 0300-5402
E-ISSN: 2336-1980