AUC GEOGRAPHICA

AUC GEOGRAPHICA

We are pleased to share that the AUC Geographica was awarded an Impact Factor of 0.6 in the 2022 Journal Citation Reports™ released by Clarivate in June 2023. AUC Geographica ranks (JCI) in Q3 in Geography.

AUC Geographica (Acta Universitatis Carolinae Geographica) is a scholarly academic journal continuously published since 1966 that publishes research in the broadly defined field of geography: physical geography, geo-ecology, regional, social, political and economic geography, regional development, cartography, geoinformatics, demography and geo-demography.

AUC Geographica also publishes articles that contribute to advances in geographic theory and methodology and address the questions of regional, socio-economic and population policy-making in Czechia.

Periodical twice yearly.
Release dates: June 30, December 31

All articles are licenced under Creative Commons Attribution 4.0 International licence (CC BY 4.0), have DOI and are indexed in CrossRef database.

AUC Geographica is covered by the following services: WOS, EBSCO, GeoBibline, SCOPUS, Ulrichsweb and Directory of Open Access Journals (DOAJ).

The journal has been covered in the SCOPUS database since 1975 – today
https://www.scopus.com/source/sourceInfo.uri?sourceId=27100&origin=recordpage

The journal has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 52 (1) 2017, this publication will be indexed and abstracted in Emerging Sources Citation Index.

The journal has been indexed by the Polish Ministry of Science and Higher Education (MSHE) on the list of scientific journals recommended for authors to publish their articles. ICI World of Journals; Acta Universitatis Carolinae, Geographica.

Journal metrics 2022

Web of Science
Impact factor (JCR®): 0.6
Journal Citation Indicator (JCI): 0.24
Rank (JCI): Q3 in Geography

Scopus
Cite Score: 1.1
Rank (ASJC): Q3 in Geography, Planning and Development; Q3 in General Earth and Planetary Sciences

The journal is archived in Portico.

AUC GEOGRAPHICA, 1–16

Hazards profile of the Shigar Valley, Central Karakoram, Pakistan: Multicriteria hazard susceptibility assessment

Munazza Afreen, Fazlul Haq, Bryan G. Mark

DOI: https://doi.org/10.14712/23361980.2024.5
published online: 22. 05. 2024

abstract

The rapid deglaciation in the Upper Indus Basin (UIB) significantly impacts local landscapes, watersheds, and basin-wide hydrology. While creating new opportunities, such as emerging landscapes and hydrological changes, deglaciation simultaneously heightens the risk of glacio-hydrological hazards in adjacent and downstream regions. With limited available land for agriculture and settlements, communities around glaciers expand human activities toward newly formed floodplains and deglaciating valleys, necessitating a comprehensive understanding of associated risks and vulnerabilities. This study employs Geographical Information System (GIS) and Remote Sensing products for a multicriteria hazards susceptibility assessment in the Shigar Valley, located in the downstream of major Himalayan glaciers – the Baltoro (63 km) and Biafo (67 km) glaciers. The research reveals that 28.3% of the valley is highly susceptible to multiple hazards, emphasizing the urgency of informed decision-making in the region. Only 0.03% area lies in the very low susceptible category, 9.7% in the low susceptible, 60.6% in the moderately susceptible, and 1.04% in the very highly susceptible categories. These findings highlight the need for proactive measures, adaptive strategies, and sustainable development in the Shigar Valley to mitigate the escalating risks posed by deglaciation and changing hydrological patterns.

keywords: glacial hazards; landslides; snow avalanches; floods; multi-hazards; hazard susceptibility

references (99)

1. Abbas, Z., Khan, S., Alam, J. et al. (2017): Medicinal plants used by inhabitants of the Shigar Valley, Baltistan region of Karakorum range-Pakistan. J Ethnobiology Ethnomedicine 13: 53. CrossRef

2. Abella, E. A. C., Van Westen, C. J. (2008): Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphology 94(3-4), 453-466. CrossRef

3. Adhikari, R., Gautam, D., Jha, P., Aryal, B., Ghalan, K., Rupakhety, R., Dong, Y., Rodrigues, H., Motra, G. (2019): Bridging multi-hazard vulnerability and sustainability: approaches and applications to Nepali highway bridges. In: Noroozinejad Farsangi, E., Takewaki, I., Yang, T., Astaneh-Asl, A., Gardoni, P. (eds) Resilient Structures and Infrastructure. Springer, Singapore. CrossRef

4. Afreen, M., Haq, F., Mukhtar, Z. (2022): Flood susceptibility analysis of the Panjkora Valley Northern Pakistan, using frequencyratio approach. International Journal of Disaster Resilience in the Built Environment 13(5), 601-614. CrossRef

5. Ahmed, T., Rehman, K., Shafique, M., Ali, W. (2023): GIS-based earthquake potential analysis in Northwest Himalayan, Pakistan. Environmental Earth Sciences 82(4), 113. CrossRef

6. Ali, F., Zhang, J.-H., Alam, M., Sajjad, M., Abbas, S., Hussain, A., Ramzan, M., Hussain, F. (2023): Avalanche Susceptibility mapping of District Shigar, Pakistan using GIS-based MCDA-AHP modeling, 16 January 2023, PREPRINT (Version 1) available at Research Square. CrossRef

7. Ali, S., Khan, G., Qureshi, J. A., Hassan, M., Kheirandish, S. (2023): Climatic and topographic controls on glacial changes (1973-2020) in Shigar Basin, Central Karakoram, Northern Pakistan. Environmental Science and Pollution Research 30, 74889-74899. CrossRef

8. Al-Taani, A., Al-husban, Y., Ayan, A. (2023): Assessment of potential flash flood hazards. Concerning land use/land cover in Aqaba Governorate, Jordan, using a multi-criteria technique. The Egyptian Journal of Remote Sensing and Space Science 26(1), 17-24. CrossRef

9. Andrabi, T., Daniels, B., Das, J. (2023): Human capital accumulation and disasters: Evidence from the Pakistan earthquake of 2005. Journal of Human Resources 58(4), 1057-1096. CrossRef

10. Aslam, B., Zafar, A., Qureshi, U. A., Khalil, U. (2021): Seismic investigation of the northern part of Pakistan using the statistical and neural network algorithms. Environmental Earth Sciences 80, 1-18. CrossRef

11. Baig, S. U., Rehman, M. U., Janjua, N. N. (2021): District-level disaster risk and vulnerability in the Northern mountains of Pakistan. Geomatics, Natural Hazards and Risk 12(1), 2002-2022. CrossRef

12. Bajracharya, R. M., Shrestha, H. L., Shakya, R., Sitaula, B. K. (2015): Agro-forestry systems as a means to achieve carbon co-benefits in Nepal. Journal of Forest and Livelihood 13(1), 59-68. CrossRef

13. Bajracharya, S. R., Maharjan, S., Shrestha, F., Sherpa, T., Wagle, N., Shrestha, A. (2020): Inventory of glacial lakes and identification of potentially dangerous glacial lakes in the Koshi, Gandaki, and Karnali River Basins of Nepal, the Tibet Autonomous Region of China and India. International Centre for Integrated Mountain Development, United Nations Development Programme, Kathmandu, Nepal. CrossRef

14. Bandyopadhyay, J., Rahaman, S. H., Karan, C. (2023): Agricultural potential zone mapping with surface water resource management using geo-spatial tools for Jhargram district, West Bengal, India. Knowledge-Based Engineering and Sciences 4(1), 1-18.

15. Batool, S., Khan, T., Karim, R., Zafar, M., Ahmed, S. (2016): Climate Change and Agricultural Transformation in Shigar Valley, Gilgit-Baltistan, Pakistan: A Commune-Scientific Perception. International Journal of Environment, Agriculture and Biotechnology 1(4), 902-906. CrossRef

16. Belay, S., Goedert, J., Woldesenbet, A., Rokooei, S. (2022): AHP based multi criteria decision analysis of success factors to enhance decision making in infrastructure construction projects. Cogent Engineering 9(1): 2043996. CrossRef

17. Belazreg, N. E. H., Hasbaia, M., Şen, Z., Ferhati, A. (2023): Flood risk mapping using multi-criteria analysis (MCA) through AHP method case of El-Ham wadi watershed of Hodna basin (Algeria): Natural hazards 120, 1023-1039. CrossRef

18. Bhutiyani, M., Kale, V. S., Pawar, N. (2008): Changing streamflow patterns in the rivers of northwestern Himalaya: implications of global warming in the 20th century. Current Science, 618-626.

19. Bui, D. T., Ngo, P.-T. T., Pham, T. D., Jaafari, A., Minh, N. Q., Hoa, P. V., Samui, P. (2019): A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena 179, 184-196. CrossRef

20. Calligaris, C., Tariq, S., Khan, H., Poretti, G. (2017): Landslide Susceptibility Analysis in Arandu Area Shigar Valley, CKNP (Gilgit-Baltistan- Pakistan): In: Mikos, M., Tiwari, B., Yin, Y., Sassa, K. (eds) Advancing Culture of Living with Landslides. WLF 2017. Springer, Cham. CrossRef

21. Campbell, J.G. (2004): Inventory of Glaciers and Glacial Lakes and the Identification of Potential Glacial Lake Outburst Floods (GLOFs) Affected by Global Warming in the Mountains of India, Pakistan and China/Tibet Autonomous Region. International Centre for Integrated Mountain Development (ICIMOD) G. P. O. Box 3226, Kathmandu, Nepal.

22. Chen, W., Zhang, S. (2021): GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling. Catena 203: 105344. CrossRef

23. Chen, W., Shahabi, H., Zhang, S., Khosravi, K., Shirzadi, A., Chapi, K., Pham, B. T., Zhang, T., Zhang, L., Chai, H. (2018): Landslide susceptibility modeling based on GIS and novel bagging-based kernel logistic regression. Applied Sciences 8(12): 2540. CrossRef

24. Cheng, X., Cheng, Y., Zhang, N., Zhao, S., Cui, H., Zhou, H. (2020): Purification of flavonoids from Carex meyeriana Kunth based on AHP and RSM: Composition analysis, antioxidant, and antimicrobial activity. Industrial Crops and Products 15: 112900. CrossRef

25. Chowdhury A., Kroczek T., Kumar De S., Vilímek V., Chand Sharma M., Debnath M. (2021): Glacial Lake Evolution (1962-2018) and Outburst Susceptibility of Gurudongmar Lake Complex in the Tista basin, Sikkim Himalaya (India): Water 13(24): 3565. CrossRef

26. Clark-Ginsberg, A., Easton-Calabria, L. C., Patel, S. S., Balagna, J., Payne, L. A. (2021): When disaster management agencies create disaster risk: a case study of the US's Federal Emergency Management Agency. Disaster Prevention and Management: An International Journal 30(4/5), 447-461. CrossRef

27. Farhat, B., Souissi, D., Mahfoudhi, R., Chrigui, R., Sebei, A., Ben Mammou, A. (2023): GIS-based multi-criteria decision-making techniques and analytical hierarchical process for delineation of groundwater potential. Environmental Monitoring and Assessment 195(2): 285. CrossRef

28. Faryabi, M. (2023): A fuzzy logic approach for land subsidence susceptibility mapping: the use of hydrogeological data. Environmental Earth Sciences 82(9): 209. CrossRef

29. Fatima, S. U., Khan, M. A., Shaukat, S. S., Alamgir, A., Siddiqui, F., and Sulman, N. (2022): Geo-Spatial Assessment of Water Quality in Shigar Valley, Gilgit Baltistan, Pakistan. Health 14(5), 535-552. CrossRef

30. Gao, Y., Liu, S., Qi, M., Xie, F., Wu, K., Zhu, Y. (2021) Glacier-Related Hazards Along the International Karakoram Highway: Status and Future Perspectives. Frontiers in Earth Science 9:611501. CrossRef

31. Gilany S.N., Iqbal, J. (2016): Geospatial analysis of glacial hazard prone areas of Shigar and Shayok basins. International Journal of Innovation and Applied Studies 14(3), 623-644.

32. Gilany, S. N., Iqbal, J. (2017): Glacial avalanche hazard's comparative geospatial analysis in Shigar and Shyok basins. In 2017 Fifth International Conference on Aerospace Science and Engineering (ICASE), Islamabad, Pakistan, 1-7. CrossRef

33. Gizaw, E. A., Bawoke, G. T., Alemu, M. M., Anteneh, Z. L. (2023): Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria decision analysis method in Fetam-Yisir catchment, Blue Nile Basin, Ethiopia. Applied Geomatics 15, 659-681. CrossRef

34. Ha-Mim, N. M., Rahman, M. A., Hossain, M. Z., Fariha, J. N., Rahaman, K. R. (2022): Employing multi-criteria decision analysis and geospatial techniques to assess flood risks: A study of Barguna district in Bangladesh. International Journal of Disaster Risk Reduction 77: 103081. CrossRef

35. Hasson, S., Lucarini, V., Khan, M. R., Petitta, M., Bolch, T., and Gioli, G. (2014): Early 21st century snow cover state over the western river basins of the Indus River system. Hydrology and Earth System Sciences 18(10), 4077-4100. CrossRef

36. Hewitt, K. (1998): Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology 26(1-3), 47-80. CrossRef

37. Hewitt, K. (1999): Quaternary Moraines vs Catastrophic Rock Avalanches in the Karakoram Himalaya, Northern Pakistan. Quaternary Research 51(3), 220-237. CrossRef

38. Hewitt, K., Gosse, J., Clague, J. J. (2011): Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya. GSA Bulletin 123(9-10), 1836-1850. CrossRef

39. Hu, J., Chen, J., Chen, Z., Cao, J., Wang, Q., Zhao, L., Zhang, H., Xu, B., Chen, G. (2018): Risk assessment of seismic hazards in hydraulic fracturing areas based on fuzzy comprehensive evaluation and AHP method (FAHP): A case analysis of Shangluo area in Yibin City, Sichuan Province, China. Journal of Petroleum Science and Engineering 170, 797-812. CrossRef

40. Iqbal, J. M., Shah, H. F., Chaudhry, A. H., Baig, N. M. (2014): Impacts of Attabad Lake (Pakistan) and its future outlook. European Scientific Journal 10(8), 107-120.

41. Ishaque, W., Tanvir, R., Mukhtar, M. (2022): Climate Change and Water Crises in Pakistan: Implications on Water Quality and Health Risks. Journal of Environment and Public Health 22: 5484561. CrossRef

42. Jaiswal, K., Wald, D., Porter, K. (2010): A global building inventory for earthquake loss estimation and risk management. Earthquake Spectra 26(3), 731-748. CrossRef

43. Jaiswal, P., and van Westen, C. J. (2010): Use of remote sensing data for landslide susceptibility mapping in central Nepal. Proceedings of the International Conference on Geoinformatics for Disaster Management 4-6.

44. Javidan, N., Kavian, A., Pourghasemi, H. R., Conoscenti, C., Jafarian, Z., Rodrigo-Comino, J. (2021): Evaluation of multi-hazard map produced using MaxEnt machine learning technique. Scientific reports 11(1): 6496. CrossRef

45. Kaur, H., Gupta, S., Parkash, S., Thapa, R., Gupta, A., Khanal, G. C. (2019): Evaluation of landslide susceptibility in a hill city of Sikkim Himalaya with the perspective of hybrid modelling techniques. Annals of GIS 25(2), 113-132. CrossRef

46. Kaur, P., and Singh, B. (2019): Multi-hazard vulnerability assessment of Indian Himalayan region using geospatial technique. Natural Hazards 98(1), 435-456.

47. Ke, C., He, S., Qin, Y. (2023): Comparison of natural breaks method and frequency ratio dividing attribute intervals for landslide susceptibility mapping. Bulletin of Engineering geology and the Environment 82: 384. CrossRef

48. Khan, A., Farah, H., Khan, S., Azmat, M. (2023): Comparative assessment of spatiotemporal variability in cryosphere and hydro-climatic regime of the Hunza, Astore and Shigar Basins (Hindukush-Karakoram-Himalaya Region) in Pakistan. Arabian Journal of Geosciences 16(5), 350-365. CrossRef

49. Khattak, I., Rahman, F., Haq, F. (2012): The Flood Event of July 2010: Socioeconomic Disruptions in Lower Dir District. The Journal of Humanities and Social Sciences 20(2), 57-76.

50. Khurshid, A., Yielding, G., Ahmad, S., Davison, I., Jackson, J. A., King, G. C. P., Zuo, L. B. (1984): The seismicity of northernmost Pakistan. Tectonophysics 109(3-4), 209-226. CrossRef

51. Kornejady, A., Pourghasemi, H. R., Afzali, S. F. (2019): Presentation of RFFR New Ensemble Model for Landslide Susceptibility Assessment in Iran. In: Pradhan, S., Vishal, V., Singh, T. (eds) Landslides: Theory, Practice and Modelling. Advances in Natural and Technological Hazards Research 50. Springer, Cham. CrossRef

52. Kropáček J., Vilímek V., Mehrishi P. (2021): A preliminary assessment of Chamoli ice and rock fall in Indian Himalayas by remote sensing. Landslides 18, 3489-3497. CrossRef

53. Kumar, A., Gupta, A. K., Bhambri, R., Verma, A., Tiwari, S. K., Asthana, A. (2018): Assessment and review of hydrometeorological aspects for cloudburst and flash flood events in the third pole region (Indian Himalaya): Polar Science 18, 5-20. CrossRef

54. Kumar, M., Singh, P., Singh, P. (2023): Machine learning and GIS-RS-based algorithms for mapping the groundwater potentiality in the Bundelkhand region, India. Ecological Informatics 74: 101980. CrossRef

55. Kumari, N., Chowdary, V., Waghaye, A., Tiwari, K. (2016): Assessment of surface Runoff and Sediment Yield using WEPP model. Nature Environment and Pollution Technology 15(2), 491.

56. Kursunoglu, S., Kursunoglu, N., Hussaini, S., Kaya, M. (2021): Selection of an appropriate acid type for the recovery of zinc from a flotation tailing by the analytic hierarchy process. Journal of Cleaner Production 283: 124659. CrossRef

57. Lee, S., Seo, K. K. (2016): A hybrid multi-criteria decision-making model for a cloud service selection problem using BSC, fuzzy Delphi method and fuzzy AHP. Wireless Personal Communications 86, 57-75. CrossRef

58. Li, R., Huang, S., Dou, H. (2023): Dynamic Risk Assessment of Landslide Hazard for Large-Scale Photovoltaic Power Plants under Extreme Rainfall Conditions. Water 15(15): 2832. CrossRef

59. Li, X., Sovilla, B., Jiang, C., Gaume, J. (2020): The mechanical origin of snow avalanche dynamics and flow regime transitions. The Cryosphere 14(10), 3381-3398. CrossRef

60. Lutz, A.F., Immerzeel, W., Kraaijenbrink, P., Shrestha, A.B., Bierkens, M.F. (2016): Climate change impacts on the upper Indus hydrology: sources, shifts and extremes. PloS ONE 11(11): e0165630. CrossRef

61. Majeed, M., Lu, L., Anwar, M. M., Tariq, A., Qin, S., El-Hefnawy, M. E., El-Sharnouby, M., Li, Q., Alasmari, A. (2023): Prediction of flash flood susceptibility using integrating analytic hierarchy process (AHP) and frequency ratio (FR) algorithms. Frontiers in Environmental Science 10: 1037547. CrossRef

62. Meshram, S., Tirivarombo, S., Meshram, C., Alvandi, E. (2023): Prioritization of soil erosion-prone sub-watersheds using fuzzy-based multi-criteria decision-making methods in Narmada basin watershed, India. International Journal of Environmental Science and Technology 20(2), 1741-1752. CrossRef

63. Moharir, K. N., Pande, C. B., Gautam, V. K., Singh, S. K., Rane, N. L. (2023): Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Environmental Research 228: 115832. CrossRef

64. Mokarram, M., Negahban, S., Abdeldjalil, B. (2021): GIS-based fuzzy-analytic network process (FAHP), fuzzy-analytic hierarchy process (FANP) methods and feature selection algorithm (FSA) to determine earthquake-prone areas in Kermanshah Province. Environmental Earth Sciences 80: 633. CrossRef

65. Mondal, M., Haldar, S., Biswas, A., Mandal, S., Bhattacharya, S., Paul, S. (2021): Modeling cyclone-induced multi-hazard risk assessment using analytical hierarchical processing and GIS for coastal West Bengal, India. Regional Studies in Marine Science 44: 101779. CrossRef

66. Mushtaq, F., Farooq, M., Tirkey, A. S., Sheikh, B. A. (2023): Analytic Hierarchy Process (AHP) Based Soil Erosion Susceptibility Mapping in Northwestern Himalayas: A Case Study of Central Kashmir Province. Conservation 3(1), 32-52. CrossRef

67. Okoli, J., Nahazanan, H., Nahas, F., Kalantar, B., Shafri, H. Z. M., Khuzaimah, Z. (2023): High-Resolution Lidar-Derived DEM for Landslide Susceptibility Assessment Using AHP and Fuzzy Logic in Serdang, Malaysia. Geosciences 13(2): 34. CrossRef

68. Olaya Calderon, L. J., Cocuccioni, S., Romagnoli, F., Atun, F., Pittore, M., Schneiderbauer, S., van Westen, C., Sliuzas, R., Armas, I., Mocanu, R., and Kundak, S. (2024): Analysing historical disasters to support multi-hazard risk assessment: enhancing forensic analysis through Impact Chains, EGU General Assembly 2024, Vienna, Austria, 14-19 Apr 2024, EGU24-10177. CrossRef

69. Olii, M. R., Olii, A., Pakaya, R., Olii, M. Y. U. P. (2023): GIS-based analytic hierarchy process (AHP) for soil erosion-prone areas mapping in the Bone Watershed, Gorontalo, Indonesia. Environmental Earth Sciences 82(9), 1-14. CrossRef

70. OpenAI. (2023): ChatGPT: Language Models for Drafting Assistance. OpenAI, Available at: https://chat.openai.com/.

71. Ozegin, K., Ilugbo, S., Ogunseye, T. (2023): Groundwater exploration in a landscape with heterogeneous geology: an application of geospatial and analytical hierarchical process (AHP) techniques in the Edo north region, in Nigeria. Groundwater for Sustainable Development 20: 100871. CrossRef

72. Park, S., Son, S., Han, J., Lee, S., Kim, J. (2018): Groundwater vulnerability assessment using an integrated DRASTIC model using frequency ratio and analytic hierarchy process in GIS. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 4-13 April 2018.

73. Pham, Q. B., Achour, Y., Ali, S. A., Parvin, F., Vojtek, M., Vojteková, J., Al-Ansari, N., Achu, A., Costache, R., Khedher, K. M. (2021): A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomatics, Natural Hazards and Risk 12(1), 1741-1777. CrossRef

74. Pham, B. T., Bui, D. T., Prakash, I., Indrajit, I., and Revhaug, I. (2021): GIS-based multi-hazard susceptibility assessment in Central Vietnam. Natural Hazards 105(3), 3113-3140.

75. Piao, Y., Lee, D., Park, S., Kim, H. G., Jin, Y. (2022): Multi-hazard mapping of droughts and forest fires using a multi-layer hazards approach with machine learning algorithms. Geomatics, Natural Hazards and Risk 13(1), 2649-2673. CrossRef

76. Rehman, A., Song, J., Haq, F., Ahamad, M. I., Sajid, M., Zahid, Z. (2021): Geo-physical hazards microzonation and suitable site selection through multicriteria analysis using geographical information system. Applied Geography 135: 102550. CrossRef

77. Rehman, A., Song, J., Haq, F., Mahmood, S., Ahamad, M. I., Basharat, M., Mehmood, M. S. (2022): Multi-hazard susceptibility assessment using the analytical hierarchy process and frequency ratio techniques in the Northwest Himalayas, Pakistan. Remote Sensing 14(3), 554. CrossRef

78. Richardson, S. D., Reynolds, J. M. (2000): An overview of glacial hazards in the Himalayas. Quaternary International 65, 31-47. CrossRef

79. Saaty, T. L. (2008): Decision making with the analytic hierarchy process. International Journal of Services Sciences 1(1), 83-98. CrossRef

80. Saifi, S., Turner B., John, T. (2022): Over 900 killed by Pakistan monsoon rains and floods, including 326 children. CNN, August 24, 2022.

81. Sangha, K. K., Evans, J., Edwards, A., Russell-Smith, J. (2019): Measuring environmental losses from natural disasters: A case study of costing bushfires in the Northern Territory. Australian Journal of Emergency Management 34(4), 31-39.

82. Scapozza, C., Bartelt, P. (2003): Triaxial tests on snow at low strain rate. Part II. Constitutive behaviour. Journal of Glaciology 49(164), 91-101. CrossRef

83. Scapozza, C., Ambrosi, C., Cannata, M., Strozzi, T. (2019): Glacial lake outburst flood hazard assessment by satellite Earth observation in the Himalayas (Chomolhari area, Bhutan). Geographica Helvetica 74(1), 125-139. CrossRef

84. Schmidt, M. (2008): Land use, land administration and land rights in Shigar, Baltistan. In Modern Ladakh, 241-266. Brill. CrossRef

85. Seong, Y. B., Bishop, M. P., Bush, A., Clendon, P., Copland, L., Finkel, R. C., Shroder, J. F. (2009): Landforms and landscape evolution in the Skardu, Shigar and Braldu valleys, central Karakoram. Geomorphology 103(2), 251-267. CrossRef

86. Shekar, P. R., Mathew, A. (2023): Assessing groundwater potential zones and artificial recharge sites in the monsoon-fed Murredu river basin, India: An integrated approach using GIS, AHP, and Fuzzy-AHP. Groundwater for Sustainable Development 23: 100994. CrossRef

87. Shrestha, H. L., Poudel, N. S., Bajracharya, R. M., Sitaula, B. K. (2019): Mapping and Modelling of Land Use Change in Nepal. Journal of Forest and Livelihood 18 (1), 39-53. CrossRef

88. Shroder, Jr., Owen, J. F., Seong, L. A., Bishop, Y. B., Bush, M. P., Caffee, A., Kamp, U. (2011): The role of mass movements on landscape evolution in the Central Karakoram: Discussion and speculation. Quaternary International 236(1-2), 34-47. CrossRef

89. Ujjwal, K., Garg, S., Hilton, J., Aryal, J., Forbes-Smith, N. (2019): Cloud Computing in natural hazard modeling systems: Current research trends and future directions. International Journal of Disaster Risk Reduction 38: 101188. CrossRef

90. Upwanshi, M., Damry, K., Pathak, D., Tikle, S., Das, S. (2023): Delineation of potential groundwater recharge zones using remote sensing, GIS, and AHP approaches. Urban Climate 48: 101415. CrossRef

91. Usman, M. (2016): A study on the enhancing earthquake frequency in northern Pakistan: is the climate change responsible? Natural Hazards 82, 921-931. CrossRef

92. Van Westen, C. J. (2000): The modelling of landslide hazards using GIS. Surveys in geophysics 21(2), 241-255. CrossRef

93. Wang, S. W., Munkhnasan, L., Lee, W.-K. (2021): Land use and land cover change detection and prediction in Bhutan's high altitude city of Thimphu, using cellular automata and Markov chain. Environmental Challenges 2: 100017. CrossRef

94. Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., Kunz, M. (2020): Natural hazard risk assessments at the global scale. Natural Hazards and Earth System Sciences 20(4), 1069-1096. CrossRef

95. Ward, P. J., Jongman, B.,Weiland, F. S., Bouwman, A., van Beek, R., Bierkens, M. F., … and Winsemius, H. C. (2020): Strong influence of El Niño Southern Oscillation on flood risk around the world. Proceedings of the National Academy of Sciences, 117(37), 22952-22958.

96. Yang, L., Luo, W., Zhao, P., Zhang, Y., Kang, S., Giesy, J. P., Zhang, F. (2021): Microplastics in the Koshi River, a remote alpine river crossing the Himalayas from China to Nepal. Environmental Pollution 290: 118121. CrossRef

97. Yao, Y., Khan, A. Z. (2022): Predicting Pakistan's next flood. Science 378 (6619). CrossRef

98. Youssef, A. M., Pourghasemi, H. R. (2021): Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geoscience Frontiers 12(2), 639-655. CrossRef

99. Zhou, S., Chen, G., Fang, L., Nie, Y. (2016): GIS-based integration of subjective and objective weighting methods for regional landslides susceptibility mapping. Sustainability 8(4): 334. CrossRef

Creative Commons License
Hazards profile of the Shigar Valley, Central Karakoram, Pakistan: Multicriteria hazard susceptibility assessment is licensed under a Creative Commons Attribution 4.0 International License.

210 x 297 mm
periodicity: 2 x per year
print price: 200 czk
ISSN: 0300-5402
E-ISSN: 2336-1980

Download