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ABSTRACT
The infiltration of water into the soil is a necessary parameter for irrigation systems design. Characterizing its spatial behavior allows 
a site-specific management of water according to soil conditions and crop requirements. The aim of this study is to establish the 
spatial distribution of infiltration in an Andisol by means of two geostatistical approaches: on the one hand by means of functional 
kriging, taking as input infiltration curves (obtained after a smoothing stage), and on the other hand by using classical ordinary 
kriging on the parameters of the Kostiakov and Phillip models. The comparison between these methodologies is carried out taking 
as a criterion the sum of squared errors of a leave-one-out cross-validation analysis. The results show a high correlation between 
observations and predictions (R2 values around 99%), which indicates that the use of functional geostatistics in this context could 
be a good alternative. Moreover, from a descriptive point of view, we can point out that the contour maps of basic infiltration (BI), 
cumulative infiltration (Ci), saturated hydraulic conductivity (Ks), and sorptivity (S) obtained with the observed data, as well as the 
predictions by functional geostatistics, show a very similar behavior, which empirically validates the use of this methodology.
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1. Introduction

Soil management does not usually consider the par-
ticularities of the terrain or its physical properties; 
thus it is important to perform an evaluation based 
on the concepts of sustainability (Martins et al. 2010). 
In efficient and sustainable agricultural production 
systems, it is important to understand the behavior 
of water within the soil in order to be able to use this 
resource reasonably.

Infiltration is a hydrodynamic attribute that con-
cerns the movement of water and that is closely 
related to the capillarity processes and forces asso-
ciated with the adhesion and cohesion of soil parti-
cles (Orjuela-Matta et al. 2010). Moreover, infiltra-
tion is a basic parameter that must be accounted for 
when designing and implementing irrigation systems 
(Chowdary et al. 2006; Machiwal et al. 2006). Oth-
er attributes associated with soil water movement 
include hydraulic conductivity and sorptivity (S). 
Hydraulic conductivity is associated with the resist-
ance of soil pores relative to the soil itself, is used 
to solve drainage and soil conservation problems, 
and depends not only on soil properties but also 
on the soil water content (Jačka et al. 2016). Sorp-
tivity explains the movement of water in the soil as 
an effect of its matric potential, since S is estimated 
as a measure of the ability of a porous medium to 
absorb or desorb fluid by capillarity (Moret-Fernán-
dez et al. 2017).

Understanding soil behavior and its rate of infiltra-
tion over time could help control soil erosion or other 
degradation processes, establish the availability of 
water for crops and the movement of substances in 
the soil, and be used to create strategies for water-
shed management (Orjuela-Matta et al. 2010).

In general, the study of soil infiltration begins with 
experimental trials in a finite group of sites within an 
area of interest. Next, the experimental data are fit to 
theoretical models, such as those of Kostiakov, Lew-
is, Horton, or Philip, among others, and the empirical 
parameters of the models are determined. This pro-
cess concludes with a  calculation of the univariate 
descriptive measures (localization and dispersion), 
obtaining distribution graphs (histograms and box 
plots), conducting multivariate analyses (correlation, 
classification, and principle components), and per-
forming univariate geostatistical analyses (variogram 
estimation, kriging prediction, and creation of maps). 
The spatial behavior can be described (Camacho-Ta-
mayo et al. 2013) and the management zones can be 
established for agricultural production by using these 
tools (Cucunubá-Melo et al. 2011).

Geostatistics (Isaaks, Srivastava 1989) is a  field 
of statistics which is used in practice for predicting 
a variable for non-sampled locations of a region. Spe-
cifically, several variations of kriging and cokriging 
methods (Cressie 1993) are used to fulfill this task. 
These tools are considered when for each sampled 

site we have data for one or several properties (for 
example, hydraulic conductivity, or sorptivity). How-
ever, in many practical situations a large number of 
measurements are recorded continuously (depth, 
time, wavelength, etc.). In these cases, instead of uni-
variate or multivariate data, we have (after a smooth-
ing step) curves or functions (functional data). The 
extension of the classical univariate and multivariate 
geostatistical methods to the context of functional 
data has given rise a new field known as functional 
geostatistics (Giraldo et al. 2010). In particular, krig-
ing and cokriging methods have been extended to 
in order to deal with functional data (Giraldo et al. 
2009; Giraldo et al. 2010). These tools allow predict-
ing curves rather than data of one or several varia-
bles. The application of functional geostatistics starts 
with the application of non-parametric smoothing 
techniques (e.g., kernel or B-spline regression) to 
convert the discrete data at each sampling site (i.e. 
infiltration) into continuous functions. After that, 
functional kriging (Giraldo et al. 2010) can be used 
for predicting curves (instead of scalar values) at 
sites for which information is lacking.

In this study, functional geostatistics is applied to 
infiltration curves in order to evaluate their predictive 
capacity. A cross-validation analysis is performed to 
estimate prediction errors and compare them with 
those obtained using standard univariate kriging 
methods that are used to analyze infiltration data 
(Giraldo et al. 2010). The infiltration curve of each 
site (obtained after smoothing the discrete data) is 
temporally removed and predicted by using function-
al kriging and classical ordinary kriging (in this case, 
the parameters of the Kostiakov and Philip models 
are predicted, and then they are used to construct the 
predicted curve). 

This paper is organized as follows: Section 2 gives 
an overview of the data analyzed, the Kostiakov and 
Phillip models, and the theory of functional geostatis-
tics. Then in Section 3, a comparison between func-
tional and classical univariate kriging methods (based 
on infiltration data) is carried out.

2. Material and methods

2.1 Description of study site
This study was performed at the Marengo Agricul-
tural Center (Centro Agropecuiario Marengo, CAM 
by its initials in Spanish) located in the municipality 
of Mosquera (Cundinamarca, Colombia) at 4°42′ N  
and 74°12′ W and at an altitude of 2,543 m. The mean 
annual temperature in this zone is 13.1 °C, and the 
mean annual rainfall is 665 mm (weather records 
of the National University of Colombia). The area 
described, according to temperature and precipita-
tion characteristics, is classified according to Holdrige 
as a life zone of low montane dry forest (bs-MB) and 
the climate as cold dry (FS).
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The soils of the CAM have been formed from three 
types of parent materials, namely lacustrine clays, 
volcanic ash, and alluvial sediments. The type of relief 
corresponds to terraces and floodplains, specifically 
terrace plains and overflow plains (Bolívar, Ordóñez 
2014).

2.2 In-situ infiltration measurement
An evenly spaced, rigid grid with 75 recording sites 
was created over four plots with mainly kikuyu grass 
(Pennisetum clandestinum). These plots covered an 
area of 16 ha and were located using a GPS Garmin 
Etrex 20 receiver in real time via satellite. At each 
site, a double-ring infiltrometer was used to measure 
water infiltration over a period of 150 minutes (at 1, 
2, 3, 4, 5, 10, 15, 30, 45, 60, 90, 120, and 150 minutes) 
using variable loads and while ensuring that the dif-
ference between the maximum and minimum reading 
was never greater than 100 mm.

2.3 Determination of infiltration characteristics
The results obtained from the field were fit to two 
theoretical infiltration models, the Kostiakov (Equa-
tion 1) and the Philip (Equation 4) models. The param-
eters for these models were estimated by using the R 
software (R Development Core Team 2011) and then 
were used to calculate S, Ks, BI, and Ci and to carry out 
conventional statistical and geostatistical analyses. 

Kostiakov model

I(t) = a ∙ tb	 (1)

where 
I(t) is the cumulative infiltration content (cm) at time 
t and a and b are empirically-derived fit coefficients.

−600(b – 1) = tbase	 (2)

BI = 60 ∙ a ∙ b ∙ tbase
b−1	 (3)

with BI as the basic infiltration (cm h−1).

Philip model

I(t) = S ∙ t1/2 + Ks ∙ t	 (4)

where S depends on the initial soil moisture condi-
tions (cm h−1/2) and Ks is the saturated hydraulic con-
ductivity of the soil (cm h−1).

2.4 Functional geostatistics
Functional geostatistics (Giraldo et al. 2010) offers 
methods for spatial prediction of curves. Usually, the 
discrete data (for example infiltration records) at 
each sampling site are previously recorded in con-
tinuous curves after smoothing them by using basis 
functions (Ramsay, Silverman 2005). Afterward, they 

are used for predicting a whole curve at unsampled 
sites. A cross-validation analysis was carried out. Each 
of the 75 curves was temporarily removed and pre-
dicted based on the remaining 74 by using functional 
kriging (Giraldo 2009). Thus observed and predicted 
curves (by using functional kriging) were obtained for 
each of the 75 sites. The comparison between them 
(cross-validation) was used for evaluating the quality 
of this approach and also to compare with the results 
obtained by means of classical geostatistics.

The functional kriging predictor is defined as fol-
lows (Giraldo 2009):

χ̂(s0 ) = ∑n      λi χ(si); λ1,… .,λn∈ R	 (5)
	

    i=1

where χ̂(s0 ) is the predicted curve at site s0, χ(si) cor-
responds to the curve observed at site si, and i = 1.2,  
… , n and λi = 1, … , n, are the weighting parameters 
that indicate the contributions of each observed curve 
to the predicted curve.

The λi parameters are estimated by solving the fol-
lowing system of equations (Giraldo et al. 2010):

  ∫Tγt (∥s1 – s1∥)dt	 ⋯ 	∫Tγt (∥s1 – sn∥)dt	 1		  λ1
	 ⋮	 ⋱		 ⋮	 ⋮		  ⋮
  ∫Tγt (∥sn – s1∥)dt	 ⋯	∫Tγt (∥sn – sn∥)dt	 1		  λn

	 1	 ⋯		 1	   0 	 	–μ

  ∫Tγt (∥s0 – s1∥)dt
	 ⋮
  ∫Tγt (∥s0 – sn∥)dt

	 1	 	 (6)

where the integrals correspond to the trace-vario-
gram function (Giraldo et al. 2010) evaluated for both 
the distances between observation sites (left matrix) 
and the distances between the observation site and 
the prediction site (right vector). The trace-vario-
gram function is estimated by the method of moments 
(Giraldo et al. 2010):

γ̂(h) =	 1	 ∑i,j∈N(h) ∫T ((χt (si) – χt (sj))2 dt 	 (7)
	 2|N(h)|

where χt(si) is the curve at site i and N(h) = {(si,sj): 
‖si − sj‖ = h} is the number of pairs of sites separat-
ed by a distance h. Once the trace-variogram function 
for a sequence of K values is estimated, a parametric 
semivariance model (spherical, Gaussian, exponen-
tial, etc.) is fit to the scatterplot in order to make an 
estimation at any possible distance between sites.

The results achieved with functional geostatistics 
were compared with those obtained by using conven-
tional geostatistical methods (estimating the semivar-
iogram and using classical ordinary kriging). For this 
process, the variables BI, Ci, S, and Ks from the theo-
retical infiltration models were considered. For each 
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case (each variable), the semivariance function was 
estimated (Cressie 1993):

γ̂(h) =	 1	 ∑n(h)  [z(xi) – z(xi+h)]2	 (8)
	 2N(h)	

i=1

where z(xi) is the value of each variable at a site i, 
z(xi + h) is the value of the same variable at a point 
with a distance h away from the previous point, and 
N(h) is the number of pairs of data separated by the 
distance h. This empirical semivariogram is fit using 
one of the above-mentioned theoretical semivariance 
models. Various criteria are considered for selecting 
the best model, including the coefficient of determina-
tion (R2), the least sum of squared errors (LSSE), and 
the cross-validation correlation (CVC). The shared 
parameters among the theoretical semivariance mod-
els include the nugget (C0), which is a discontinuity in 
the semivariogram at the origin, the variance of the 
process (C), and the reach (r), which is the distance 
until there is a spatial correlation. The nugget-vari-
ance ratio, C/(C0 + C), is also often used as a criteri-
on for model selection. This parameter establishes 
the degree of spatial dependence (DSD) expressed 
by the studied attribute. Cambardella (1994) states 
that if the DSD is greater than 75% the dependence 
is strong, if the DSD is between 25% and 75% the 
dependence is moderate, and if the DSD is less than 
25% the dependence is weak.

3. Results and discussion

In Figure 2, we can see the fit of the data to a decreas-
ing potential curve, which describes the infiltration 
rate. The strong change in the first moments of the 
curve confirms that the soil was in a state of water 
deficit at the time of the test. Given the trend of the 
curves, the results suggest that at some points the 
soil did not reach a condition close to saturation, after 
being subjected to a constant application of water, for 
a period of 150 minutes, especially for those sites that 
they registered a high infiltration rate. This behavior 
was observed for all the infiltration tests performed 
and reported by different authors (Machiwal et al. 
2006; Orjuela-Matta et al. 2010; Latorre et al. 2015).

To provide an example of a functional geostatis-
tical analysis of collected data, a curve was predict-
ed for a site located at coordinates 984475 (W) and 
1009685 (N) (Figure 1), as shown in Figure 2. To per-
form this prediction, the trace-semivariogram func-
tion was estimated using Equation 7. By using this 
function and Equation 6, the λi parameters for the 
functional kriging predictor, as defined in Equation 5, 
were estimated. Additionally, based on the predicted 
curve, the parameters for the theoretical Kostiakov 
and Philip models were estimated (Table 1).

The predicted curve is consistent with the behav-
ior patterns of the observations. After 60 minutes, 

the water entry rate into the soil, or infiltration veloc-
ity, became constant, due to the increased matric 
potential of the soil. According to the observations 

Fig. 1 Distribution of recording sites and identification of random 
sites where the cumulative infiltration (Ci) curve was predicted.

Fig. 2 Cumulative infiltration curve for the site at coordinates of 
984475 (W) and 1009685 (N).

Tab. 1 Parameters estimated for Kostiakov and Philip models for the 
location with coordinates 984475 (W) and 1009685 (N).

Parameter Value

a 1.53

b 0.78

BI (cm h−1) 23.66

Ci (cm) 75.64

S (cm h−1/2) 15.25

Ks (cm h−1) 20.48
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of Montenegro and Malagón (1990), the infiltration 
velocity at the unsampled site was high (12.7–25.4 
cm h−1), potentially due to a greater quantity of micro-
pores (Richmon, Rillo 2006) relative to the sites with 
lower infiltration, which resulted in a high Ks value.

The recorded cumulative infiltration curves and 
the predictions at each site are shown in Figure 3. As 
an indicator of goodness-of-fit, a simple linear regres-
sion (Figure 4) was estimated to compare observed 
and predicted values. This plot shows a  high cor-
relation between them. The R2 (around 99%) con-
firms that the method used allows obtaining good 
predictions.

We compared observed and predicted data of Ci, BI, 
Ks, and S, respectively, by means of descriptive meas-
ures (Table 2), estimated parameters of the semivari-
ogram models (Table 3), and maps of spatial distribu-
tion (Figure 5).

Fig. 3 (a) Cumulative infiltration curves recorded at the 75 sites. (b) Predicted curves at each site using functional kriging.

Fig. 4 Functional cross-validation of the amount of infiltration (Ci).

Tab. 2 Descriptive measures for the Kostiakov and Philip parameters 
estimated from the observed (Obs) and predicted (Pre) data.

Model Parameter Mean Median CV (%) Min Max

Ko
sti

ak
ov

aObs 2.09 1.59 70.87 0.34 6.44

aPre 2.09 1.60 70.82 0.34 6.43

bObs 0.61 0.60 16.08 0.36 0.86

bPre 0.61 0.60 16.08 0.36 0.86

BI Obs 10.65 7.51 97.78 0.33 45.16

BI Pre 10.62 7.49 97.78 0.33 45.09

CiObs 45.08 35.35 77.82 3.90 160.00

CiPre 45.19 35.35 77.96 3.91 160.97

Ph
ili

p

SObs 17.50 14.01 67.29 3.37 53.46

SPre 18.03 14.25 67.12 3.40 53.44

KsObs 5.14 3.59 138.19 −7.65 36.16

KsPre 5.12 3.58 138.40 −7.68 36.02

In both cases (Kostiakov and Phillip models), the 
descriptive values in Table 2 are very similar, indi-
cating a good performance of the functional kriging 
results.

Tab. 3 Parameters of the theoretical semivariogram model fit by 
observed (Obs) and predicted (Pre) basic infiltration values (BI), 
cumulative infiltration (Ci), sorptivity (S), and saturated hydraulic 
conductivity (Ks).

Parameter Model Co Co + C Range (m) CVC DSD

BI Obs Spherical 35.5 103.8 247.9 0.90 0.66

BI Pre Spherical 35.3 103.8 248.0 0.90 0.66

CiObs Exponential 393 1122 290.7 0.91 0.65

CiPre Exponential 404 1133 294.3 0.91 0.64

SObs Exponential 0.10 124.9 94.20 0.79 1.00

SPre Exponential 0.10 131.2 100.5 0.78 1.00

KsObs Exponential 0.10 53.20 268.5 0.82 0.99

KsPre Exponential 0.10 52.90 267.6 0.82 0.99
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The mean of parameter BI (Table 2) indicates 
a moderately rapid infiltration velocity (Montene-
gro, Malagón 1990). However, at the location of the 
study, BI varies from moderately slow to very fast. 
Some high infiltration velocities represent relative-
ly dry soils due to the hydrological stress that they 
are subjected to. Additionally, high CV (greater than 
60%) values indicate general areas or sites where 
infiltration behavior is very different from the other 
sites (Rodríguez-Vásquez et al. 2008; Martins et al. 
2010).

The estimations of the semivariogram parameters 
(Co, Co + C and Range, respectively) were similar (Table 
3), which again indicates a good performance of the 
functional predictor used in this study. In both cas-
es, spherical and exponential models were fit. In this 
sense, it is important to mention that some authors 
have reported problems for fitting semivariogram 
models to these properties (Rodríguez-Vásquez et al. 
2008).

According to the results shown in Table 3, we can 
conclude that there is a moderate spatial dependence 
for Ci and BI, because the values of DSD are greater 
than 25% and lower than 75% (Cambradella et al. 
1974). This behavior is similar to that reported by 
Martins et al. (2010). In addition, the Ks and S show 
Co values close to zero, which indicates a strong spa-
tial dependence. A  similar result was reported by 
Rodríguez-Vásquez et al. (2008) for the same type of 
soil.

The contour maps reveal high spatial variability in 
terms of the soil properties studied (Figure 5). The 
maps generated through the estimations obtained by 
means of functional kriging have a pattern very sim-
ilar to those obtained from the recorded data (only 
minimal differences can be identified in each case). 
We can see in these maps that there is a direct rela-
tionship between the parameters (zones with high 
values of BI have also high values of Ci). This is also 
evidenced with the parameters of the Phillip model.

Fig. 5 Contour maps for observed (left) and predicted (right) data for (A–B) basic infiltration (BI); (C–D) cumulative infiltration (Ci); (E–F) 
saturated hydraulic conductivity (Ks); and (G–H) Sorptivity (S).
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We also note in these maps that there is direct 
relationship between Ks and BI and Ci (zones with 
high values of Ks also have high BI and Ci values). High 
values of Ks result from the passage of time and the 
saturation of soil pores with water, which cause the 
rate of infiltration to reach a constant value (BI) that is 
similar to Ks (Gil, 2002), and consequently the soil can 
drain greater amounts of water and achieve greater 
Ci values.

4. Conclusions

The cross-validation analysis showed a high correla-
tion between the results obtained with observed and 
predicted data (R2 around 99%), which supported the 
use of functional geostatistics. Traditional statistical 
analyses demonstrated the reliability of applying FG 
to predict infiltration curves, given that the descrip-
tive measures of the parameters for the theoretical 
infiltration model were similar for the observed data 
and predictions, even when the parameters displayed 
high spatial variability. 

The estimations of the semivariogram parameters 
and the contours maps were also similar. The contour 
maps for BI, Ci, Ks, and S for the recorded and predicted 
data demonstrate the wide range of these parameters. 
However, the maps also showed the same behavioral 
patterns, which confirmed the congruence between 
the studied models and the efficacy of predicting 
these parameters via FG. This was established even 
when the parameters displayed high spatial variabil-
ity. All the analyses indicate that functional geosta-
tistics can be a useful tool in the study of the spatial 
variability of soil properties.
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