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Abstract: Through visualisation, geometry can mediate understanding of some 
demanding arithmetic and algebraic concepts, relationships, processes and situations for pupils. This 
thesis is explained by the method of genetic parallel and of a didactic analysis of two educationally 
interesting problem situations. Theoretical considerations are illustrated by several real experienc-
es. Suggestions for the application of theoretical results are given in conclusion.
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1 Introduction and Methodology

Geometry appears at two levels in school mathematics. At the first level, plane and 
space shapes, relationships, constructions, proofs, etc. are introduced to pupils. At 
the second level, geometry provides support for arithmetic and algebra. Pupils can 
be strongly dependent on the visualisation of arithmetic and algebra. For example, 
some pupils are able to understand the additive structure of integers already in the 
second grade of the primary school with the help of a number line, but without it, 
they cannot carry out additive operations with negative numbers even in the eighth 
grade. The goal of the study is to provide examples of how geometry can help in 
understanding arithmetic or algebraic concepts, processes, relationships and argu-
ments. The geometric support is decisive for some pupils, not only from the point 
of view of understanding the subject matter but also from the point of view of their 
approach to learning. A superficial approach which enables pupils to “meet the 
requirements of knowledge reproduction” changes due to visualisation into a deep 
approach which enables them to “really understand the subject matter” (Mareš, 
1998, p. 39).

Two methods are used in this study. The first is the method of genetic parallel 
which postulates that relations found in the phylogeny are inspirations for revealing 
relations in the ontogeny. An inspiration for the use of the second level of geome-
try in the teaching of mathematics can be found in the sixth century BC when the 

1	 The study was supported by research project No. MSM 0021620862 Teaching profession in the 
environment of changing education requirements and No. P407/11/1740 Critical areas of primary 
school mathematics − analysis of teachers’ didactic practices.

Orbis_scholae_2_2012_2793.indd   57 23.4.13   8:48



Milan Hejný, Darina Jirotková

58 language of shaped psephophory shifted mathematical thinking from the area of 
arithmetic to geometry. We also use the results gained by the study of mathematical 
languages in history by L. Kvasz (2008).

The second research method consists of the didactic analysis of problem situa-
tions. For each such situation, arithmetic, algebraic and geometric approaches are 
shown and didactic phenomena analysed. Short stories which illustrate the analyses 
come from our archives. 

Finally, some suggestions for the use of theoretical results in practice are given. 

2 Method of Genetic Parallel

The following quotation aptly characterises the idea of genetic parallel: 
“The growth of the tree of mathematical knowledge in the mind of one person 

(ontogeny of mathematics) will only be successful if it replicates to a certain extent 
the history of the development of mathematics” (Erdnijev, 1978, p. 197).2 This idea 
is expressed more precisely by Freudenthal (1991, p. 48): “Children should repeat 
the learning process of mankind, not as it factually took place but rather as it would 
have done if people in the past had known a bit more of what we know now.” (Freu-
denthal, 1991, p. 48). Jankvist (2009) illuminates the method of genetic parallel in 
a concise way.

Mathematical knowledge of pre-Greek civilisations from the Nile and Hindu basins 
and Mesopotamia answered the question How?. How can we calculate? How can we 
find? How can we construct? … It was mainly the knowledge of calculation, in the 
present language, arithmetic knowledge. The Greeks were the first to ask for the 
basis (úsia) and cause (aiton, aitia) of things and phenomena. They understood that 
the knowledge of causes is more important than the knowledge of instructions:

[…] we suppose artists to be wiser than men of experience (which implies that Wisdom 
depends in all cases rather on knowledge); and this because the former know the cause, 
but the latter do not. For men of experience know that the thing is so, but do not know 
why, while the others know the ‘why’ and the cause. (Aristotle, The Metaphysics I, p. 1)

Milesian philosophers in the sixth century BC explored the basis, the substance 
of the world. They found it in water, air or indefinite apeiron. Pythagoras claimed 
number to be the essence of the world. “Pythagoras, …, said that ‘all things are num-
bers’. This statement, interpreted in a modern way, is logically nonsense, but what 
he meant was not exactly nonsense.” (Russell, 1965, p. 54). Pythagoras believed 
that all phenomena in the world such as joy, truth, justice, courage, male principle, 
female principle, etc. had their own representations in the world of numbers and 
thus the relations of the world were depicted in the relationships among numbers. 
At present, we would say that the unclear and variable scheme of things is grasped 

2	 Рост древа математических знаний в голове отделного человека (онтогенез математики) 
будет успешным тогда, когда он повторяет в известнoй мере историю cтaнoвлeния этoй 
нayки (филогенез математики).

Orbis_scholae_2_2012_2793.indd   58 23.4.13   8:48



Contribution of Geometry to the Goals of Education in Mathematics 

59by a strict and immaculate scheme of numbers. The knowledge of eternal essences, 
scientific knowledge (epistémé), is more important than practical knowledge of 
counting (phronesis).3

In the Pythagorean school, mathematics as a scientific discipline was born, as 
a discipline looking for exact definitions of concepts, general regularities and their 
proofs. An important by-product, possibly the key one, of this birth was the change 
of language. The language of pebbles (pséfoi), which was used for counting in the 
whole Mediterranean in the sixth century BC, was changed into the language of 
shapes (shaped psephophory; in the contemporary terminology figurative numbers). 
The number previously represented by a pile of pebbles was represented by a shape 
(made by spreading the pebbles into this shape). In this way, figurate numbers orig-
inated (Figure 1).
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Figure 1a Square numbers	 Figure 1b Triangular numbers

In this language, the square represents an infinite sequence of numbers; the 
same applies for the shape of a triangle. On the other hand, all even numbers can 
be described by a single shape, a rectangle of the width 2 and of any length; in brief 
2-rectangle (Figure 2a). Each odd number can be described by a 2-rectangle with 
an appendix (Figure 2b).
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Figure 2a An even number of pebbles arranged	 Figure 2b An odd number of pebbles arranged
as a 2-rectangle	 as a 2-rectangle with an appendix

The new language made it possible to formulate and prove general statements 
which went beyond the horizon of the then illuminated world of numbers. For ex-
ample, the statement 

The sum of two odd numbers is an even number.         (*) 

does not only hold for small numbers which we can imagine but also for numbers 
inconceivably big, such as the number of grains of sand in the desert. If we connect 
two odd numbers (i.e., two 2-rectangles with appendices), the two “appended” 
pebbles make a pair and the result is a 2-rectangle, that is an even number. The 
connection is in Figure 3.

3	 F. Korthagen (2011, p. 36−44) elaborates this typology in more detail.
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Figure 3 The connection of two odd numbers results is a 2-rectangle

The presented proof of the statement (*) holds for all numbers. That is guaran-
teed by the fact that the length of the 2-rectangle with an appendix (both right and 
left ones) can be of any measure. 

It is interesting to note that Pythagoras could have stated the same idea without 
the use of geometry. He could have defined an even number as any number of pairs 
of pebbles and an odd number as any number of pairs of pebbles plus one pebble. 
Why did Pythagoras not do so? Why did he introduce the language of geometry? Most 
probably it was because the arithmetic pairing was understood in a procedural way 
as manipulation, which appears to be unrealisable for big numbers. The geometric 
shape is understood in a conceptual way as a ready-made object which exists re-
gardless whether we can or cannot imagine it; an object which we know through its 
properties, not through sensory experience; an abstract object. And thus the birth 
of mathematics is connected to the change of language: the number, previously un-
derstood in a procedural way as a pile of pebbles, is now understood as a concept, 
as a geometric shape. 

The change of language is a key constituent of the historical development of 
mathematics. L. Kvasz (2008, p. 16) presents six points of view from which he studies 
the development of the languages of mathematics:
1.	�� logical power − how complex formulas can be proven in the language;
2.	� expressive power − what new things can the language express, which were inex-

pressible in the previous stages;
3.	�� explanatory power − how the language can explain the failures which occurred 

in the previous stages;
4.	��� integrative power − what sort of unity and order the language enables us to con-

ceive there, where we perceived just unrelated particular cases in the previous 
stages;

5.	��� logical boundaries − marked by occurrence of unexpected paradoxical expres-
sions;

6.	�� expressive boundaries − marked by failures of the language to describe some 
complex situation. 
If we apply the first five points on the birth of shaped psephophory as a new 

language, we can see that there is a series of cognitive and meta-cognitive shifts: 
1.	� from items to generality and from the concrete to the abstract;
2.	�� from the work with numbers before the horizon (small numbers) to the work with 

any number;
3.	��� from the practical relationships to the theoretical ones (from phronesis to 

epistémé);
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614.	� from a set of instructions of calculation, to a systematically shaped psephophory 
(in other words, from a process to a concept);

5. from sensory evidence to general proofs.

3 Didactic Analyses of Problem Situations

Let us now consider the second of the research methods used, the analysis of 
tasks which allow for both arithmetic and geometric solutions. We will show how 
predominantly procedural arithmetic or algebraic solutions become more under-
standable by the use of geometric concepts. Two illustrations will be given.

3.1 Task 1: Prove statement (*).

In the arithmetic language, the parity of the number can be found through the 
record of the number in a decimal system: number n is even iff4 its last digit is 0, 
2, 4, 6, or 8; number n is odd iff its last digit is 1, 3, 5, 7, or 9. Let us add, that the 
positional decimal system was discovered more than 1500 years after Pythagoras. 
Nevertheless, our pupils know this powerful language and already in the third grade 
most of them also know that the parity of the number is given by its last digit.

An arithmetic proof of the statement (*) lies in checking the following fact: the sum 
of any two numbers from 1, 3, 5, 7, 9 equals the number which ends with the digit 0, 
2, 4, 6, or 8. This process cannot be seen as one whole, it is necessary to keep a step 
by step record of it. The proof of the statement (*) requires checking 15 simple sums. 

It is a mathematically correct proof which can be independently discovered by 
pupils from grade 4.

In the algebraic language, the parity of the number is most often given by the 
following characterisation: the number is even iff it can be written in the form of 
2k, where k is a natural number; the number is odd iff it can be written as 2k + 1, 
where k is a natural number. 

The algebraic proof of the statement (*) lies in the manipulation with the ex-
pression (2k + 1) + (2m + 1) into the form of 2 × (k + m + 1), that is, into the identity

	 (2k + 1) + (2m + 1) = 2 × (k + m + 1),	 (**)

where k, m are natural numbers and thus k + m is also a natural number. 
The identity (**) is a concept and the proof is a correct one. We know that the 

proof is not understandable for many pupils of grade 9 but we also know of cases 
when the proof was discovered by a pupil from grade 6.

In the geometric language of shaped psephophory, the parity of a number is given 
by fig. 2a and 2b and the proof of the statement (*) by fig. 3. The proof is correct 
and pupils from grade 4 are able to discover and understand it. 

4	 I.e. if and only if.
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62 The didactic analysis of the above three proofs of the statement (*) looks into the 
difficulty of grasping the concepts of even and odd and into the thinking processes 
present in the proofs. 

The arithmetic grasping of the concept of even and odd is based on a two-step process:  
(1) a pupil realises that for a number to be even or odd, the last digit is the key one, 
(2) he/she finds out if this number belongs to the set {0, 2, 4, 6, 8}, or to the set  
{1, 3, 5, 7, 9}. This characterisation of evenness/oddness does not have to be evident 
for a pupil from grade 2.

Story 1
Five pupils from grade 2 were to find an odd number whose last digit was 4. One 

boy started to laugh and the others immediately reacted that it was not possible. 
After a while, Adela said that it would have to be very big. 

The story shows that the knowledge “the parity of the number is given by its last 
digit” is not evident for all pupils in grade 2. 

The arithmetic proof is a lengthy one. It is redundant for some pupils because the 
situation is clear to them. However, some pupils feel the need to verify all 15 sums. 

Story 2 
Adela from story 1 created Table 1. She was looking at it with delight for some 

time and then she said “yes, now it is clear”. The next day, she brought two more 
tables to the teacher. The first one was for the proof of the statement that the sum 
of two even numbers is an even number and the second for the proof of the state-
ment that the sum of an odd and even number is an odd number. What led Adela 
to create the table? She felt that the series of individual calculations did not bring 
an insight into the proof and found the right way to acquire it. A long process of 
the creation of the table led to the table as a concept in her mind. Thus the table 
became the main bearer of the proof of the statement (*) for her. This proof, as 
well as the following algebraic one are axiomatic proofs from the point of view of 
Housman and Porter’s classification (2003). The marked difference between them is 
described within Kvasz’ theory (2008) here by the language used.

Table 1 Addition of odd numbers

+ 1 3 5 7 9

1 2 4 6 8 10

3 4 6 8 10 12

5 6 8 10 12 14

7 8 10 12 14 16

9 10 12 14 16 18
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63The algebraic grasping of the concept of even and odd is based on understanding 
the notation of 2k and 2k + 1, where k is a natural number. This characterisation of 
parity is not understandable for many pupils; often, they simply remember it as is 
illustrated by the following story.

Story 3
In grade 7, Bara discovered the algebraic proof (**). When asked by the teacher, 

she showed the discovery to the class. In the subsequent discussion in the class, the 
following statements could be heard (among others): 

Cyril: What is odd then? It is 2k + 1, or 2m + 1? 
Dana: But I found out that even (she points to the record 2 ∙ 3.5 − 1 = 7 − 1 = 6).
Ema:  But last time, an odd number was 2k − 1.
Philip: And can I write it as 1 + 2k, too?

The algebraic proof is brief and for a pupil who understands the identity (**) as 
a concept, it is clear. If the pupil does not understand the meaning of records 2k and 
2k + 1, he/she cannot understand the proof either. These are all four pupils from 
story 3 and many others from grade 7. However, even the pupils who have a good 
understanding of odd and even numbers in the language of letters are often not able 
to grasp the proof as a whole. It is illustrated by a story of one of our colleagues AŠ. 

Story 4
AŠ speaks about her experience from grade 7: I know that it is difficult, therefore 

I took great care that all knew how to record an even number and how to record 
an odd number. Then I let Gita, who is the best mathematician from the class, to 
make the sum (**). The girl did it marvellously. I asked the class if they understood. 
All nodded that they did. So I asked them to come and show in a similar way that 
the sum of three odd numbers is odd. Only two pupils put their hands up and shyly 
one more. I know about them that they can do it but beside them, none. It is simply 
too difficult for seven graders.

Why is the algebraic proof so difficult? There are two causes. The first and key 
one lies in the fact that the teaching of algebra concentrates mostly on the manip-
ulation with algebraic expressions, that is, the manipulation with the letters. Little 
attention is paid to the clarification of the meaning of this language. 

Story 5
In grade 8, Hanka is solving a task at the blackboard: 

How long does it take a cyclist who goes at the speed of v = 16 km/h to cover the 
distance s = 10 km? 

After a while, the girl says: “I have forgotten the formula.” The teacher writes  
v = s/t on the board. The girl says: “I know it and I also know that s = v × t, but 
I have forgotten the third one.” The teacher is lost for a moment what to do and 
then she asks the class: “Could anyone help Hanka but without actually saying the 
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64 formula?” Ivan says: “Hanka, write the equation 4 = 3/x and solve it.” Without any 
problem, Hanka finds 4x = 3 and x = ¾. Ivan continues: “Now you write a = b/x and 
solve it.” Again Hanka finds x = b/a. Ivan: “Excellent. Now, write v = s/x and when 
you solve it, use letter t instead of x.“ Hanka writes the equation, compares it to 
what she has been doing earlier, laughs and without solving anything she says “Yes, 
I have remembered,” and writes t = s/v.

In the context of equations, the girl had no problems with the algebraic ma-
nipulation but she had no clue that the same manipulation could also be made in 
a different context. The story shows an inappropriate approach to the introduction 
of letters to pupils. The manipulation with letters has no support in semantic ideas. 
In the case of proof (**), it is possible to find such a support just in the psephophory 
geometric proof as Figure 4 depicts.
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	 (2k + 1) 	 + 	 (2m + 1) 	 = 	 2×(k + m + 1)

Figure 4 Geometric proof

The above didactic solution of the problem how to mediate the understanding for 
the identity (**) for pupils is similar to the didactic solution of the problem how to 
teach pupils to solve word problems. For word problems, dramatization helps, that is, 
mathematical phenomena are grasped in a semantic way, they are supported by a pu-
pil’s real life experience. We have used visualisation for the identity (**), that is, we 
supported algebraic objects by a pupil’s geometric experience. In both cases, we can 
speak about the semantic way of grasping the situation if we suppose that geometric 
objects we work with are for pupils evident in the same way as life experience at word 
problems. The pupil who does not have this evident knowledge of geometric shapes 
such as rectangle and shapes on a square grid cannot use the way via visualisation of 
the relation (**) successfully. He/she is in the same situation as a pupil who is solving 
a word problem about dairy cows but does not know the word dairy cow. 

We have finished our considerations about the first task. The second task often 
appears in secondary textbooks.

3.2 Task 2: Find the sum of the first n odd numbers:  
sn = 1 + 3 + 5 + … + 2n − 1. 

The arithmetic solution is based on the experiment, observation and generali-
sation. The pupil finds out that s1 = 1, s2 = 4, s3 = 9, s4 = 16, … and notices that the 
given numbers are squares and that in all the cases, the result is sn = n2. Thus

	 sn = 1 + 3 + 5 + … + 2n − 1 = n2.	 (***) 
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65The pupil considers this generalisation of four observed cases to be the solution. 
He/she might check it by two or three more calculations. Even though this solution 
is not proper, the result is correct and the pupils believe it. This proof is a typical 
example of inductive reasoning which is characterised by Housman and Porter (2003) 
as: “A student with an inductive proof scheme considers one or more examples to 
be convincing evidence of the truth of the general case.” (p. 40) 

The algebraic solution is based on the manipulation of expressions. If the pupil 
adds the first and last elements, i.e., 1 + (2n − 1), the second and the last but one 
elements, i.e., 3 + (2n − 3), etc., he/she finds out that each from the sums is 2n 
and that if n is an even number, there are n/2 of these sums. Thus for n even, it is  
sn = 2n × n/2 = n2. Then the pupil finds out that for n odd, the result is the same.

In both cases, arithmetic and algebraic ones, the pupil gets to the result of  
sn = n2. However, the mathematics teacher is sometimes not satisfied with this result 
and asks for the proof. Few pupils understand what the teacher is looking for. Such 
a pupil shows the proof by mathematical induction5, which the teacher is satisfied 
with but most pupils, in fact, do not know what it is about. 

The geometric solution is based on the visualisation of the expression. An im-
portant role is played by the shape which the Greeks called gnomon and which was 
commonly used by Euclid. We will explain it. If we cut out a square from another 
square so that both squares have a common vertex, then the remaining shape was 
called gnomon by the Greeks. If the side of a bigger square is by k (pebbles) bigger 
than the side of the smaller square, we say that this gnomon is of width k, in brief 
k-gnomon. Figure 5a shows 1-gnomon and Figure 5b 2-gnomon. We can see that each 
1-gnomon is an odd number and each odd number is 1-gnomon. Thus, the sum of 
several odd numbers is made of several gnomons. 
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Figure 5a 1-gnomon           Figure 5b 2-gnomon

Figure 6 shows the solution to the task by shaped psephophory. The figure is 
made like this: first, one pebble is placed, with 3 pebbles around it in the shape 
of 1-gnomon, there are 5 pebbles in the shape of 1-gnomon around this square of 
4 pebbles, etc. It is clear that by gradual adding of 1-gnomon, the resulting square 
“grows” but remains the square. 

5	 Mathematical induction is a method of mathematical proof typically used to establish that a giv-
en statement is true for all natural numbers (positive integers). If V(n) is a statement which is 
true for all natural n, then we can prove that V(n) holds for all natural numbers by proving the 
statement V(1) and the implication V(k) ⇒V(k+1) for all natural k.
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Figure 6 Solution by adding of 1-gnomon

Even against this geometric solution we can protest by saying that the statement 
has not been proved. The proof would be made by mathematical induction again, 
this time in the context of shaped psephophory.

The proof will be described in a hypothetical dialogue between two pupils. 

Story 6
Jana, which discovered the relationship sn = n2 in class in an arithmetic way, 

boasted about her success to her brother. The brother showed her how to derive the 
relationship from fig. 6. Jana liked it and asked the teacher to be allowed to show 
it in class. The class liked the figure, too, but Karel protested: “But what if the next 
gnomon does not fit the preceding square for big numbers? What if it is a bit shorter 
or longer?” The teacher suggested that the pupils thought about this objection. 
Jana: “Let us presume that until number k it will work. So the sum of the first k odd 
numbers is a square of side k. What 1-gnomon follows? The last gnomon had (2k − 1) 
pebbles and that is why the following has (2k + 1) pebbles. And that is just what we 
need to get a square of side k + 1 from the square of side k.” 

Jana’s proof is based on mathematical induction. As it is an illustrative one, pupils 
will understand it better than the algebraic one. 

4 Conclusions

The study analyses in a didactic way two tasks in which geometry markedly 
helps understanding an arithmetic situation. A deeper consideration of the cog-
nitive structure of this didactic problem shows that geometry helps to transform 
arithmetic or algebraic thinking of a procedural nature to the conceptual level. In 
task 1, the proof was divided into many partial steps in the arithmetic language 
and too sophisticated in the algebraic language to be grasped by most of the pu-
pils. In the geometric language, the proof was short and clear. Task 2 concentrated 
on finding the formula sn = n2. The arithmetic language leads a perceptive pupil to 
the solution via isolated and generic models (Hejný, 2012). However, it does not 
provide persuasive argumentation. Again, the algebraic language requires sophis-
ticated considerations. The geometric language shows in a single picture both the 
process of the growth of the resulting square and the argumentation described in 
story 6. In this story, we can also see the geometric contribution on a meta-cog-
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67nitive level: the proof by mathematical induction, which is in its arithmetic or 
algebraic realisations non-understandable to most of the pupils, is much easier to 
grasp in a geometric context. 

We should add that the visual support of arithmetic and algebra can be widened 
by dramatization for kinaesthetic support. For example, task 3 can be solved by pu-
pils from grade 4 by walking on a staircase with numbered steps (i.e., on a number 
line). 

Similar didactic analyses as the above for tasks 1 and 2 can be made for many 
different tasks such as:
Task 3. Solve the equation |1 − |x + 1|| = 2.
Task 4. Find the sum sn = 1 + q + q2 + … + qn, where n is a natural number and q > 0 
is a real number. 
Task 5. Find the sum of an infinite series sn = 1 + q + q2 + … + qn, where 0 < q < 1.
Task 6. Prove that sina + sinß = sina cosß + cosa sinß, for 0 < a, ß and a + ß < p/2. 

Our experience as well as the experience of many cooperating teachers show 
that visualisation is a crucial scaffold for securing understanding of concepts, re-
lationships, situations and processes in mathematics for some pupils. The problem 
of the use of geometry for the understanding of phenomena in arithmetic, algebra, 
but also combinatorics, probability or logic is elaborated in many publications. 
From one of them, which has become a classic, we choose one fitting verse to 
conclude with: 

Geometry is to open up my mind
so I may see what has always been behind.
Henderson (2001, p. ii)
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