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ABSTRACT

In this study, a comprehensive 30-year (1984–2016) water quality parameter database for Lake Koronia – one of the most important 
Ramsar wetlands of Greece – was compiled from Landsat imagery. The reliability of the data was evaluated by comparing water Quality 
Element (QE) values computed from Landsat data against in situ data. Water quality algorithms developed from previous studies, specifically 
for the determination of Water Temperature and pH, were applied to Landsat images. In addition, Water Depth, as along with the distribution 
of floating vegetation and cyanobacterial blooms, were mapped. The performed comprehensive analysis posed certain questions regarding 
the applicability of single empirical models across multi-temporal, multi-sensor datasets, towards the accurate prediction of key water quality 
indicators for shallow inland systems. Overall, this assessment demonstrates that despite some limitations, satellite imagery can provide an 
accurate means of obtaining comprehensive spatial and temporal coverage of key water quality characteristics.
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1. Introduction

Both natural and artificial lakes supply over 90% of 
Earth’s liquid surface freshwater, facilitating human activ-
ities and economic development, while serving as essen-
tial habitats for a large variety of biota. Lake ecological 
status affects their value as drinking water reservoirs for 
irrigation, fishery and recreation. For this reason, the alle-
viation of the degradation of surface and ground waters 
was one of the main objectives outlined in the Water 
Framework Directive (WFD, 2000/60/E.C.). WFD aims 
at protecting surface waters of Member-States and ensur-
ing that there shall be no further deterioration in water 
quality, structure and function of aquatic ecosystems. 
Concerning lake ecosystems, the WFD specifies Quality 
Elements (QE, Annex V) for the classification of ecolog-
ical status, which include biological and hydro-morpho-
logical elements, as well as ancillary chemical and physi-
co-chemical information.

In many cases, lake water quality data either do not 
exist or are very limited. Only a small percentage of lakes 
are regularly monitored by in situ measurements and, as 
a result, historical water quality data are sparse, sporad-
ically collected or non-consistent for most lakes. Never-
theless, a fundamental part of this “missing” information 
has been recorded in the historical archives of satellite 
imagery, enabling the extraction of some historical water 
quality information over lakes, which have never been 
retrieved before.

Coupled with advanced processing methods and 
improved sensor capabilities, an increasing development 

in remote sensing of lake quality parameters has been 
observed during the last decades (Dekker and Seyhan 
1988; Fuller and Minnerick 2007; Bresciani et al. 2011). 
Satellite remote sensing can be used to map and monitor 
QE, with the aim of reconstructing their historical varia-
tion and assessing their distribution and patterns. 

Inland natural waters are complex physical–chemi-
cal–biological systems, including living and non-living 
elements that may be present in aqueous solutions or in 
aqueous suspensions (Younos & Parece 2015). Lake water 
contains numerous dissolved mineral salts and organic 
substances, suspensions of solid organic and inorganic 
particles, including various live microorganisms, as well 
as gas bubbles and oil droplets. The water components 
participate directly in the interactions with solar radia-
tion in that they absorb or scatter photons. Also, they may 
participate in diverse geochemical and biological func-
tions, for example, in photosynthesis, which regulates the 
circulation of matter in these ecosystems and affects the 
concentrations of most of the optically active water com-
ponents. Four components of aquatic ecosystems are the 
major cause of light absorption in natural waters (Kirk 
2013): a) Water, b) Photosynthetic biota (phytoplankton 
and Macrophytes), c) Tripton, and d) Dissolved pigments. 
Remote sensing sensors measure the water leaving radi-
ance (Lu), which is the upwelling radiance emerging from 
the water surface, as well as the radiance derived from 
scattering processes in the atmosphere. The estimation of 
water quality derived from remote sensing measurements 
is based on water quality parameters that have an effect 
on water-leaving radiance. The absorption and scattering 
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properties of the medium are described by its inherent 
optical properties (IOPs).

As some of the lake QE can be determined using 
remote sensing with a reasonable accuracy, remote sens-
ing techniques may be integrated in the monitoring pro-
grams defined by the WFD (Giardino et al. 2007).

The aim of this study was to reconstruct/create a his-
torical lake water quality parameter profile, by adopting 
a remote sensing time-series approach. The purpose was 
to monitor lake QE, such as Water Temperature and pH, 
using multispectral Landsat images from 1984 to 2016. In 
addition, Water Depth, as well as the distribution of float-
ing vegetation and cyanobacterial blooms were mapped. 
The remote sensing data were Landsat-5/ΤΜ (Thematic 
Mapper), Landsat-7/ETM (Enhanced Thematic Mapper), 
Landsat-8/OLI (Operational Land Imager) and Land-
sat-8/TIRS (Thermal Infrared Sensor) images. The inves-
tigation took place over a Ramsar-protected ecosystem, 
i.e. Lake Koronia, Greece.

Along with mapping the temporal and spatial QE 
variability of lake Koronia for the past three decades, the 
results are expected to contribute to: (a) the definition of 
optimal image processing routines for QE estimation and 
external calibration procedures based on multispectral 
satellite images and in situ measurements, (b) the assess-
ment of the correlation of water quality parameters with 
Landsat bands (c) the establishment of procedures that 
shall allow the compatibility of past satellite information 
with water quality information derived from future Sen-
tinel-2 data.

2. Study area

Lake Koronia (40°41΄N, 23°09˝E) is the one of two 
lakes composing the Mygdonia Basin. It is situated 30 km 
north-east from Thessaloniki (Figure 1), Central Mac-
edonia, northern Greece. Koronia is an elliptic-shaped, 
shallow, polymictic lake, with a surface of 29 km2.

The wetland of Lake Koronia has a tremendous ecolog-
ical importance, which has been worldwide recognized. 
Namely, it is protected by the Directives 79/409/EEC and 
92/43/EC, the RAMSAR Convention and is categorized 
as a Natura 2000 site. It used to be one of the four larg-
est lakes in Greece, occupying an area of 46.2 km2, but 
in recent years, due to low precipitation and the water 
over-consumption, it has become an intermittent lake. 
Hence, Lake Koronia has highly variable hydrologic 
conditions. This leads to rapid changes in physical and 
chemical conditions in the lake water column. The reg-
ular dry out and re-filling of the lake creates an extreme 
state of flux which prevents the establishment of stable 
states observed in more typical lakes (Zalidis et al. 2014).

Overall, Lake Koronia faces a  number of serious 
environmental issues and water management prob-
lems, which cause changes to this unique and invaluable 
ecosystem. The degradation of Lake Koronia is caused, 

mainly, by inflow pollutants (municipal, industrial, agri-
cultural) and by the overpumping of water for irrigation. 
The surface water of the lake as well as the groundwater 
cannot sustain the unsystematic economic growth of the 
area resulting in water depletion, negative water balance, 
environmental degradation and very serious economic 
problems (Mylopoulos et al. 2007).

The water quality of Lake Koronia is monitored by 
the Management Authority of Lakes Koronia-Volvi 
(M.A.L.K.V.), which was established in 2002 under Law 
3044. 

3. Data and Methodology

3.1 Lake reference data

The spatial and temporal resolution of in situ data that 
have been collected over Lake Koronia during the past 
decades is limited. For the purposes of this study, in situ 
measurements were performed at three sampling stations 
in Lake Koronia on 30 November 2015. The location of 
the sampling points was selected taking into account the 
adequate spatial coverage of the lake. Two sampling sta-
tions were located in medium depth points (Station 1, 
Station 2) and one sampling station was located in the 
deepest point (DP) of Lake Koronia (Figure 1).

For the determination of the sampling station coordi-
nates, a handheld Garmin GPSMap76S receiver was used. 
Concerning the reduction of the location error, the coor-
dinates were determined three times per sampling point 
and the average value was considered.

The QE Water Temperature (°C), pH and Water Depth 
(m) were measured just below the lake surface. Oxi 3205, 
WTW, Dissolved Oxygen (D.O.) meter, including inte-
grated temperature sensor, was used to perform Temper-
ature measurements. For pH measurements a pH meter 
3110, WTW was used.

In addition to the field data that were collected on 30 
November, in situ data of the parameters Temperature 
and pH, were provided by the M.A.L.K.V. These parame-
ters were monitored monthly from two sampling stations 
(Akti Analipsis, Vasiloudi) (Figure 1) and as a  conse-
quence there was an adequate database of in situ esti-
mation that could be used for satellite data calibration/
validation. The data that were provided by the M.A.L.K.V. 
correspond to the period from 27/4/2009 to 2/11/2014. 
Due to the absence of in situ measurements of the QE 
Secchi Disk Depth and Chla, field data available from 
relevant publications were used (Michaloudi et al. 2009; 
Michaloudi et al. 2012; Moustaka-Gouni et al. 2012). 
Michaloudi et al. (2009) and Michaloudi et al. (2012) 
present values of physical and chemical parameters in 
water samples from the deepest point of Lake Koronia 
during the period from March 2003 to December 2004. 
Moustaka-Gouni et al. (2012) present phytoplankton data 
that were collected in years 2003–2007 and 2009–2011.
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Field data collected within one day of the satellite 
overpass yield the best calibration results, while the larger 
number of field measurements with a longer time win-
dow offsets some of the loss of correlation (Kloiber et 
al. 2002). All field data used in this study were collected 
within ± 1 day of a Landsat image acquisition date. The in 
situ data collection on 30 November 2015 was carried out 
during (within few hours from) the Landsat-8 overpass. 

3.2 Satellite data

The satellite data (Level 1T) of Landsat-5/TM, Land-
sat-7/ETM+, Landsat-8/OLI and Landsat-8/TIRS were 
used, as these provide the longest consistent temporal 
record of space-based surface observations. Typical-
ly, only two Landsat scenes were required to cover lake 
Koronia (path/row: 184/32,183/32). Appropriate satellite 
data were identified using EOLI-SA and USGS Global 
Visualization Viewer. EOLI-SA’s satellite data were pro-
vided by ESA (ID: 31068). A total of 715 multispectral 
satellite images were selected, spanning the period from 
1984 to 2016 and fulfilling the following criteria: (a) less 
than 70% overall cloud coverage and (b) low cloud cover-
age over the study area.

3.3 Image pre-processing

Digital Numbers (DNs) from image data were con-
verted to spectral radiance (Lλ) and top-of-atmosphere 
(TOA) reflectance (ρP) (Chander and Markham 2003; 
Zanter 2015). 

Attempts to obtain Surface Reflectance from the initial 
DN values were made using software developed specifi-
cally for this purpose, i.e. LEDAPS (Masek et al. 2013) for 
Landsat-5 and -7 images. However, a strong discordance 
of the processed images was observed when compared 
against in situ data and this observation resulted in the 
exclusion of the surface reflectance products for further 
calculations, in favor of TOA-reflectance values, which 
were derived solely by algorithmic processes developed 
by the authors, according to the officially designated 
mathematical models previously mentioned. 

3.3.1 Geometric correction
Two cloud-free Landsat/TM images (path: 183/184), 

were geometrically corrected using a) Ground Control 
Points/GCPs, which were available from Mouratidis et 
al. (2010) and b) a processed 3-arcsecond SRTM (Data 
Version 4.1) DEM, available from CGIAR-CSI (Jarvis et 
al. 2006). The GCPs were collected in 2008 (Mouratidis 
et al. 2010). With the intention of facilitating GCP iden-
tification, the selected Landsat/TM images were acquired 
in 2008 as well. The selected images had minimum or 
no cloud coverage. To obtain adequate accuracy during 
geometric correction, GCPs were evenly distributed in 
the image. The process was concluded, when accuracy 
better than 0.5 pixel (15 m) had been achieved. These two 
orthorectified Landsat/TM images were subsequently 
used, in order to georeference, via an automatic image-
to-image co-registration, some of the other downloaded 
Landsat images which were characterized by geolocation 
errors of several km.

Fig. 1 Map of Lake Koronia and the locations of the M.A.L.K.V. sampling stations (Blue), as well as the sampling points used in sampling 
procedures on November 30 (Grey), in Lake Koronia.

AUC_GEOG_2_2017_4Perivolioti.indd   178 30.11.17   14:55



AUC Geographica  179

3.3.2 Area of Interest
All Landsat images were cropped, setting as Area of 

Interest (AOI) a rectangle area surrounding Lake Koronia 
and considering its maximum extend, as depicted on top-
ographical maps of the ’70s and ’80s (Hellenic Military 
Geographical Service/HMGS, scale 1:50,000). The select-
ed AOI was chosen to be as small as possible, in order to 
facilitate further processing of the long time-series. Imag-
es, in which the boundary of the Lake was not clearly vis-
ible, were excluded from further processing.

3.3.3 Water-only image
Subsequently, water-only images were created, in order 

to delineate the water body and extract water features. In 
addition, water-only data were used for the creation of 
pixel level condition maps of Lake Κoronia. In order to 
extract a water-only image from each AOI Landsat image 
subset, from 1984 to 2016, a function was developed in 
MATLAB. Firstly, a broad separation of lake water from 
land areas was performed using Normalized Difference 
Water Index (NDWI) (McFeeters 1996):

	 GREEN – NIR
	 GREEN + NIR

where GREEN is the band that includes reflected green 
light and NIR is the reflected near-infrared radiation. 
Positive values pertain to water features and zero or neg-
ative values to vegetation and soil.

As the optical properties of Lake Koronia vary both 
temporally and spatially, the water extraction cannot be 
based on one standardized cut-off value/threshold (usual-
ly value 0 for NDWI). Consequently, the isolation of water 
pixels was accomplished by performing k-means unsuper-
vised classification, to all NDWI Landsat images. In order 
to avoid the inclusion of separate water areas on the same 
image, which may not belong to Lake Koronia, but are 
probably randomly distributed small-scale water occur-
rences on the images, a neighbor expansion method was 
implemented using MATLAB. By employing k-means clas-
sification, the cut-off value for each NDWI image was fluc-
tuating around zero (but not being necessarily exactly equal 
to zero) – thus taking into account the variation of the opti-
cal properties of Lake Koronia. Furthermore, the neighbor 
expansion method that resembles a typical Floodfill algo-
rithm (Godse and Godse 2008) was used to isolate the main 
body of Lake Koronia, before the next processing step.

3.4 Water quality parameters extraction from multispectral 
satellite data

The estimation of lake QE was based on the application 
of an empirical or statistical approach for remote sensing 
data analysis. Algorithms, statistically modelling relations 
between combinations of spectral bands and measured 
water QE, as well as procedures developed from previous 
studies, were applied to radiometrically calibrated pixels 
of Lake Koronia.

Parameters such as pH, Water Temperature, Lake 
Coverage, Water Depth were selected as primary repre-
sentative characteristics of the status of Lake Koronia. The 
selection of the parameters was based on their contribu-
tion as key-variables to lake water quality.

Temperature was estimated from all Landsat imag-
es, using the respective thermal bands and applying the 
calibration methods described in NASA (1999), Chander 
and Markham (2003) and Zanter (2015). Linear regres-
sion analysis was performed for the complete, unified 
time series of the temperatures of Lake Koronia.

In order to measure the pH of Lake Koronia the fol-
lowing formula was used (Khattab and Merkel 2014): 

pH = 9.738 – 0.084 ∙ SWIR

where SWIR corresponds to the DN value of the short-
wave infrared band.

Furthermore, the distribution of aquatic vegetation 
and Cyanobacterial blooms was mapped. Pixels were 
classified into four groups: (a) floating vegetation, (b) 
submerged vegetation, (c) lake water and (d) Cyanobacte-
rial bloom zones. For the separation of the “mask pixels” 
into four classes, a three-step process was followed. First-
ly, water pixels and vegetation pixels were distinguished 
using Floating Algae Index (FAI), modified for Landsat 
images (Oyama et al. 2015): 

	  	
Rrc,B3 + (Rrc,B5 – Rrc,B3) ∙

 (λΒ4
 – λΒ3)

	 FAI = Rrc,B4 – 
	

  
  

			  (λΒ5–λΒ3)

where λBi is the center wavelength for the i-th band of 
Landsat-5.

FAI pixels were sorted according to class value size 
using k-means classification. The pixels in the class with 
higher FAI values were classified as vegetation. 

Afterwards, vegetation pixels, which were distin-
guished using FAI, were separated into submerged and 
floating vegetation, using the blue/green band ratio (Cho 
2007). Since the presence of vegetation in water alters the 
relationship between depth and reflectance in blue and 
green bands, it was experimentally shown that a  ratio 
between bands Blue and Green provided the highest 
degree of correlation with vegetation cover in shallow 
waters. Vegetation pixels were separated into two classes, 
using k-means classification. Lower Blue/Green reflec-
tance ratio pixel values were classified as SAV, while high-
er values where categorized as floating vegetation.

Finally, aquatic Macrophytes and cyanobacterial 
blooms were detected using the Normalized Difference 
Water Index (NDWI)4,5 (Oyama et al. 2015). 

		  (ρNIR – ρSWIR)	 NDWI4,5 
		  (ρNIR – ρSWIR)

where (ρNIR, ρSWIR) is the reflectance of near-infrared and 
short-wave infrared bands 

An NDWI4,5 threshold of 0.63 is shown to syccessfully 
detect aquatic Macrophytes when their concentration in 
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the lake is larger than 10% (Oyama et al. 2015). Conse-
quently, the floating vegetation pixels were separated in 
two classes using k-means classification with respect to 
NDWI4,5 values. The class with values larger than 0.63 cor-
responds to Cyanobacterial blooms, whereas the class with 
lower values corresponds to aquatic Macrophytes.

An analytic band-ratio depth model was determined 
by following the model described in Stumpf et al. (2003). 
Electromagnetic radiation intensity is attenuated expo-
nentially as a function of optical depth along the emission 
path, as well as the wavelength of the radiation. Different 
wavelengths are attenuated at different levels, as a result of 
variable water absorption. As a consequence, it is expect-
ed that the ratio of the logarithms of reflectance in two 
different bands shall vary linearly with depth over water. 
This provides a method for the calculation of the lakebed 
terrain.

The logarithmic ratio used to study the bathymetric 
characteristics of Lake Koronia was blue/red. The ratio 
values were calculated for the pixels of the water area of 
Lake Koronia (22/5/1986) and a digital elevation model 
(Figure 2) of the lake bottom, created from 1:50,000 scaled 
maps of the HMGS from the ’70s, was used to extract 
bathymetric data for the same pixels. A linear model was 
fitted in value pairs of reflectance logarithm ratios and 
depths, and the model parameters were recorded. The 
model was applied on the same satellite image to map the 
reliability of the model with respect to the original depths. 
The errors were found to lie within reasonable ranges, in 
comparison, for example, to Tang and Pradhan (2015).

The QE variations over the sampling stations in pairs 
of time-series from in situ data and data derived from 
Landsat satellites were calculated. The satellite-derived 
values were calculated as 3 × 3 averages over the stations’ 
matching pixels.

4. Results and Discussion

4.1 Satellite data validation using in situ measurements

The values of the hydromorphological and physi-
co-chemical parameters, measured on 30 November, 
2015 at three sampling stations are given in Table 1. No 
significant deviations were observed between the values 
at the three sampling stations for most of the parameters. 
This could be attributed to the relatively intense weather 
conditions at the time of the sampling, which were char-
acterized by relatively strong winds and water currents, 
causing significant relocations of large water masses, thus 
smoothing out the parameter variations over the lake area.

These values appear to have large deviations from 
the corresponding parameter values calculated from the 
Landsat-8 satellite image of the same day (Table 2). This 
was, in part, expected, due to the very prominent cloud 
artifact coverage of the image during the day of overpass. 
Furthermore, it should be noted that this disagreement 
between the values may be coincidental, owing to a multi-
tude of sources of error in both the in situ and the satellite 
data and processing procedures, and that a larger number 
of both in situ and satellite measurements have to be avail-
able to avoid circumstantial inaccuracies. Comparison of 
a larger data series should enable the delineation of a more 
definitive, reliable and conclusive picture of the relation 
between pH values acquired through these different meth-
odologies. Apart from that, it was impossible to calculate 
temperature data because the TIRS instrument of the 
Landsat-8 satellite was not functional during that time 
period, since on November 1, 2015, the Thermal Infra-
red Sensor (TIRS) experienced an anomalous condition 
related to the instrument’s ability to accurately measure 
the location of the Scene Select Mechanism (SSM).

Fig. 2 Digital elevation model of the Lake Koronia bottom.
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Figure 3 depicts the temperature and pH variations 
over the sampling station Akti Analipsis in pairs of 
time-series from in situ data, provided by Management 
Authority of Lakes Koronia-Volvi, and data derived from 
suitable radiometric calibration of the suitable bands of 
the corresponding Landsat satellites. In the case of Land-
sat-5/TM data, the pH values appear to deviate no more 
than 1 pH unit. The same limitations with above also 
apply for this parameter, which means that when the lake 
water level was relatively low, the station pixels typical-
ly refer to dry land, rendering the parameter calculation 
equations invalid.

In the case of Landsat-7 SLC OFF, the data appears to 
be scrambled and misleading. This is because, frequent-
ly, every few consecutive satellite images, the scan lines 
of invalid data cover the sampling station pixels, result-
ing in invalid measurements. The deviations could, also, 
be attributed to shortcomings of the derived parameter 
model equation. In the case of Landsat-8, the temporal 
overlap between the in situ and the satellite image derived 
data is even smaller in duration, primarily because the 
Landsat-8 mission is very recent in comparison to the 
data available from the sampling stations. The inconsist-
ency of the data could be, too, attributed to the fact the 

Fig. 3 pH (1) and Water Temperature (2) variations over the two sampling stations (Vasiloudi, Akti Analipsis) in pairs of time-series  
(2009–2014) from in situ data and data derived from suitable radiometric calibration of the thermal bands of the Landsat satellites.

Tab. 1 Physical and chemical composition of in situ water samples (Station 1, Station 2, Deep Point) from Lake Koronia on 30 November 
2015.

Sampling Station

Parameters Units Station 1 Station 2 DP

pH 8.54 8.54 8.52

Temperature °C 11.1 11.1 11.3

Water Depth m 2.3 2.1 2.2

Tab. 2 Comparison between in situ and satellite-derived data for pH.

Sampling Station

Parameters

Station 1 Station 2 DP

In situ
Satellite 

measurements
In situ

Satellite 
measurements

In situ
Satellite 

measurements

pH 8.54 5.4 8.54 5.8 8.52 5.81
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water level of the lake was lower, often forcing the calcu-
lation to take place over very shallow waters.

It is also possible that, because the original equations 
were developed using Landsat-5 data, discrepancies arise 
from slight differences in the corresponding sensors of 
Landsat-7 and Landsat-8 satellites. 

The only significant match between in situ and satel-
lite-derived temperature values occurred for the sampling 
station of Akti Analipsis, when using thermal band radi-
ation data from Landsat-5/TM thermal and Landsat-7/
ETM+VCID-2 bands. The irregular (negative) values in 
the figures for the cases of Landsat-7 are attributed to 
the cases where the sampling station pixels are at a loca-
tion with invalid satellite data, due to the Landsat-7 SLC 
malfunction.

The mismatch between the time-series values of Land-
sat-8 and the in situ data could be because of stray light. 
Since the launch of Landsat-8 in 2013, thermal energy 
from outside the normal field of view (stray light) has 
affected the data collected in TIRS Bands 10 and 11. This 
stray light increases the reported temperature by up to 
four degrees Kelvin (K) in Band 10 and up to eight K 
in Band 11. This can vary throughout each scene and 
depends upon radiance outside the instrument field of 
view, which users cannot correct in the Landsat Level 1 
data product. Band 11 is significantly more contaminated 
by stray light than Band 10. It is recommended that users 
refrain from using Band 11 data in quantitative analysis 
including use of Band 11 in split-window surface temper-
ature retrieval algorithms.

4.2 pH

Figure 4 depicts the time-series of satellite-derived 
average pH values of Lake Koronia. It is easy to distin-
guish an overall drop in pH in the case of Landsat-5 data 
over the period of approximately mid-1988 until the early 
1990. Similar periods can be seen in Landsat-8 data. The 
Landsat-8 data appear to be out of place, with relatively 
unrealistic pH values. This observation once again val-
idates the suspicion that the pH equation favours data 
from the Landsat-5 satellite. Although Landsat-7 SLC-ON  
derived data also appear realistic in relation to well-
known in situ data over the area, data derived from Land-
sat-7 SLC-OFF images appear to produce distorted pH 
values. This can be attributed to both the Scan Line Cor-
rector malfunction (as the designated point pixels may 
contain invalid data in many cases) and the presumed 
higher “affinity” of the equation model to Landsat-5 data. 

Elevated pH values arise when the photosynthetic 
activity is very high (Scheffer 2004). Three major process-
es that affect the pH are photosynthesis, respiration, and 
nitrogen assimilation. The effects of photosynthesis and 
respiration on the pH depend largely on the carbonate–
bicarbonate–carbon dioxide equilibrium (Lampert and 
Sommer 2007).

Fig. 4 The average pH values of Lake Koronia derived from Landsat 
images (1984–2016).

4.3 Temperature

Water surface temperature is the result of the energy 
balance at the water surface and heat transport mecha-
nisms within the water body. Therefore, knowledge of it 
is required to characterize processes at the water surface. 
Figure 5 presents the average temperature time-series 
of Lake Koronia from satellite image derived data over 
a period of about 30 years. The seasonal pattern is clearly 
visible on the charts, with peak temperatures occurring 
during the summer seasons and minimums in winter 
seasons.

The temperature of the lake’s water presented wide 
fluctuations over the course of the years, with values in 
the expected range, from a few degrees under 0 °C up 
to 25 °C, or even 30 °C. Meterological and climatic fac-
tors, including air temperature, cloud cover, and solar 
radiation, in addition to geomorphometric factors, such 
as lake surface area and depth, influence surface water 
temperatures in Lake Koronia. A statistically significant 
increase trend is observed in the temperature of Lake 
Koronia in the time interval between 1984 and 2016. 
The increase corresponds to a  coefficient of 0.000422  
(+/− 0.00022) per day (p = 0.00015), which is equivalent 
to an increase of about 1.54 (+/− 0.8) °C per 10-years. This 
can be attributed to the effects of the reduction, up to 90%, 
of Lake Koronia water volume (Mylopoulos et al. 2007).

A comparison of the Temperature values with data 
from Bobori (2001) shows a relatively fair accuracy, well 
within the limits of one standard deviation. In specific, 
the temperature from 5 stations in a period of two full 
years (of irregular observations), namely 1989 and 1990, 
from Bobori (2001) results in an average Temperature 
value of 16.90 ± 8.2 °C, whereas the corresponding overall 
average of the lake in the same time period in the current 
study results in a value of 14.78 ± 8.1 °C.
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Furthermore, an investigation of Temperature data 
from Michaloudi et al. (2012) also reveals a fair accord-
ance. An indicative example from Michaloudi et al. 
(2012) shows an average Temperature value of 24.1 °C in 
August and September 2003. The Temperature data of the 
present study resulted in an average Temperature value of 
21.84 ± 2.35 °C during the same period.

4.4 Lake Coverage

Figure 6 depicts the time-series of the lake pixels as 
classified into water, SAV, Macrophytes and Cyanobacte-
rial blooms. The data are presented in percentage of pixels 
of each class with respect to the total of the lake pixels. 
In general, a strong temporal variation in the 4 catego-
ries is apparent from all charts. There are extended time 

Fig. 5 The average temperature values of Lake Koronia derived from Landsat images (1984–2016).

Fig. 6 The percentages of various coverage types (water, Submerged Aquatic Vegetation, Macrophytes, Cyanobacterial Blooms) of Lake 
Koronia surface derived from Landsat-5/TM images (1984–2011).
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periods, during which the lake was increasingly covered 
with either Macrophytes, or Cyanobacterial blooms. An 
interesting observation is that pixel Macrophytes and 
Cyanobacteria never appear to covary. This contravari-
ance between the two coverage types can be explained 
as the two organism species are antagonistic in nature. 
In the later years, the lake appears to have relatively clear 
water, with a notable exception between approximately 
August, 2014 to May, 2015, when there was an increase 
in Macrophytes coverage and Submerged Aquatic Vege-
tation. Similar observations can be made from the charts 
for earlier time periods.

4.5 Water Depth

The data plotted are logarithmic ratios (X-axis) against 
depth values over pixels (Y-axis) (Figure 7). The data 
pairs used for the fit are about 50,000, which is a very 
large amount of data for this kind of statistical calcula-
tions. Although this can strongly bias the data, it appears 
on the plot that there is an even balancing-out of relative 
outliers. The expected trend is effectively captured and 
the resulting equation can be seen on the plot. 

Figure 8 depicts the error map of the extracted bathy-
metric model referred to in the previous two figures. The 
values of the lake pixels are calculated as the differences 
between the pixel ‘actual’ depth (from the DEM) and the 
depth calculated using the equation extracted from the 
log-ratio fitted model. It is encouraging to observe the 
fair accuracy of the model, as well as the very important 
pattern of higher errors close to the shores. The latter 
observation was expected and provides a validation of 
the model and is attributed to the much smaller differ-
ence in electromagnetic radiation attenuation between 
the two different wavelength bands of blue and red when 
the ‘travelled’ water column thickness is smaller. When 
light travels a larger distance in water, the much higher 
absorbance of the red band wavelengths in comparison to 
blue absorbance, due to much faster exponential attenua-
tion of red radiation, creates much more acute differences 
in the distribution of ratio values, resulting in a higher 

sensitivity for the model. In simple words, the model can 
capture a depth difference of 0.5 m between two points 
much more accurately in deeper waters than in shallower. 
Furthermore, in shallow waters, the recorded reflectance 
values are also significantly altered by the optical proper-
ties of the bottom of the lake.

Fig. 8 The residuals (m) of the lake depth model of 22/5/1986 
compared against the bathymetry derived from the used DEM.

Fig. 9 Lake Koronia Depth (m) (30/7/1988).

Figure 9 depicts the application of the derived bathy-
metric model over the lake at a later date, but still relative-
ly close to the date of the satellite image used to estimate 
the model. In time, it is expected that the bottom of the 
lake undergoes significant changes in its morphology, 
due to mass (and biomass) deposition and other reasons. 
This fact alone is enough to render the bathymetric model 

Fig. 7 Water Depth model of Lake Koronia (22/5/1986).
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valid for a  limited time period spanning the temporal 
proximity of the date of retrieval of the data used for the 
model fitting. The result appears to provide a bathymet-
ric map of the lake with a fairly satisfactory accuracy, as 
seen in comparison to the lake bottom DEM used for the 
extraction of the model.

5. Conclusions

5.1 General Remarks

Prior to presenting the conclusions of this study, it ought 
to be noted that the mathematical foundations underly-
ing the mechanics of the models adopted do not bear the 
same integrity in all cases of parameters, and a similar 
observation can be made for the physical foundations to 
an even higher degree. It is nevertheless important to be 
cautiously optimistic in view of the vast availability and 
potential of satellite data. Apart from the physics behind 
the studied parameters, moderation should also guide the 
statistical interpretations, in the sense that there is not 
always a clear and definitive meaning behind an apparent 
correlation. Therefore, the results of this study are in no 
way conclusive, and extensive cross-validation is neces-
sary prior to adopting a model for wider application.
In this context, the conclusions of this paper are subse-
quently discussed along two axes, i.e. (a) with respect to 
the feasibility of extracting reliable water quality param-
eter values from satellite imagery and (b) regarding the 
evolution of Lake Koronia, based on the creation and 
analysis of QE time-series from satellite data.

5.2 Model Assessment and Parameter Calculation Feasibility

The notion of feasibility as used henceforth refers to 
the physical possibility of exploiting the satellite imagery 
data to obtain a deterministic relation between the optical 
properties of water and a specific parameter. It is clear 
that this cannot always be the case. Whenever this is not 
the case, a relation may still be obtainable but is never-
theless not expected to carry a deterministic meaning, 
rather it may be valid for purely statistical reasons. Such 
relations are not expected to be reliable in the long term, 
in contrast to deterministic ones for feasible parameters. 
Empirical models specific for the calculation of feasible 
quality parameters have long term use, while empirical 
models related with not feasible parameters should be 
calibrated/validated using in situ measurements when the 
optical properties of the lake change.

Water temperature can be considered as a  feasible 
parameter, as it is directly related to thermal radiation.

A deviation of the pH of water from its neutral val-
ue in a natural system is always brought about by the 
existence of one or more substances, acidic or basic in 
chemical nature. Each substance may have a  specific 
light absorption spectrum, different to that of another 

one. Should the spectra have a high degree of overlap, 
the results on optical properties and reflectance of the 
various wavelengths are expected to be cumulative, cre-
ating a specific optical signature determinable by reflec-
tance. However, this is not always the case. Therefore, 
the cumulative optical signature will necessarily depend 
on the concentrations of the strongest of acids or bases 
that are dissolved in the water and, simultaneously, have 
dominant EMR absorbance spectra (strong absorption 
or reflection at various wavelengths). EMR absorbance 
spectra of such substances may have very diverse pres-
entations. As a result, a significant problem is that the 
water in natural systems is only slightly acidic or alkaline, 
which means that small changes in pH may be associat-
ed with large changes in optical properties. This renders 
pH determination a rather precarious methodology. In 
a simple example, two acid substances with very different 
absorption spectra might, in suitable concentrations, alter 
pH in the exact same way in a water solution. Any model 
“trained” to identify the pH based on EMR reflectance of 
water in the setting of one substance will fail when the 
pH change is due to the other substance, due to much 
different reflectance values. Therefore, pH is hereby con-
sidered not feasible as a satellite-image derivable parame-
ter. It must be mentioned, however, that there are cases of 
natural water bodies that are affected by, more-or-less, the 
same substances over relatively medium-sized time peri-
ods of up to a few decades. Therefore, relatively small pH 
variations can actually be effectively captured by a model 
exploiting the reflectance properties of water, as long as 
the dissolved substance profile does not change signifi-
cantly in composition.

The Lake Coverage from various types of aquatic 
vegetation and organisms is based on justified scientific 
evidence. The physical basis is connected to the natural 
pigmentation from molecules residing within the vari-
ous different organisms, such as chlorophyll in aquatic 
vegetation or phycobiliproteins, such as phycocyanin 
and phycoerythrin in cyanobacteria. The light absorb-
ance spectra of these pigments are well documented and 
reflectance in the suitable wavelengths, as well as various 
band combinations, correlate well with the concentration 
of vegetation or cyanobacteria. Thus, the lake Coverage is 
hereby considered a feasible determination.

The model fitting of Water Depth on reflectance data is 
based on the different properties of the absorption spec-
trum of clear water in different wavelengths. An impor-
tant problem arising in this calculation is the maximum 
depth that can be captured from a model, and the pre-
requisite that the water be clear. These two facts need to 
be suitably verified to an adequate degree in order for the 
model to be able to provide bathymetric data of usable 
accuracy. Since the mechanics of the model are very viv-
idly explained and consolidated in (Stumpf et al. 2003), 
the approximation of bathymetric from satellite-image 
derived data is hereby considered a feasible process with 
trustworthy results. It must be stated in this point as well 
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that a bathymetric model of whichever, relatively shal-
low overall, water body is only valid as long as the water 
remains relatively clear and the surface of the bottom 
is not heavily affected and deformed. Furthermore, it is 
clear from the fact that the final model is a single line-
ar equation that acute simplification of reality occurs in 
the end product (the equation of the log-ratio model). As 
a result, the model should only be considered a prelim-
inary compaction of bathymetric information, valid for 
a few years or even decades in the case of clear water and 
relatively undeformable lakebed.

As concluded by scrutinizing the content of the cor-
responding articles in literature, the primary concern of 
this study is to capture possible trends and correlations 
between a parameter and variations in one or more bands 
or mathematical band combinations from satellite images 
of the Landsat satellite missions. It appears that the TOA 
reflectance (or surface reflectance) is not the only favored 
measurement for the modeling, as a significant number of 
papers make extensive use of DN values from raw satellite 
images.

Although a number of models, such as those applied 
for the estimation of pH, appear to provide realistic 
results, it must be noted that there is an irregular intrin-
sic scaling between DN values from different bands. This 
can be ascertained by closely following the radiometric 
calibration procedure, during which DN values are con-
verted to radiances using a pre-designated linear trans-
formation, with different coefficients for each band, as 
given in the satellite image accompanying metadata files. 
Because DN values of a band are rescaled and compact-
ed in integer values, the DN pixel value distribution over 
a specific band does not accurately reflect the actual vari-
ation of the optical properties for the various land covers, 
as does the distribution of true TOA- or surface reflec-
tance values. Because the transformation between DN 
and radiance values is linear, this turns out to be a minor 
problem when fitting linear models of parameters on DN 
values. However, the final statistical coefficients cannot 
be physically interpreted. It is, of course, clear, that the 
scaling difference between DN values and radiance values 
becomes a problem when fitting a nonlinear model on 
DN values, rather than radiances.

DN values do not directly correspond to a physical 
quantity and being favorable when probing for a realistic 
correlation between pixel values from a specific band of 
a satellite image and the values of a specific parameter 
appears rather counterintuitive to the author. The statis-
tical basis is even further distorted, when the correlation 
model involves more than one band from DN pixel val-
ues, because DN pixel values follow different scaling for 
different bands. In spite of all that, however, a number of 
research articles use DN values, probably because they 
are easier to access, without having to follow a number 
of cumbersome preprocessing steps. The corresponding 
models appear to capture the relation between the DN 
values and certain parameters with satisfactory accuracy. 

It is important to state that the equations of these mod-
els do not have clear natural interpretations; rather they 
reflect the variation of patterns exhibited by the data 
used. On the other hand, models based on reflectance 
values, such as the aquatic vegetation classification, are 
more realistic and exhibit a straightforward dependence 
on certain natural properties of the parameters involved. 
It can be stated, for example, that the TOA- (or surface) 
reflectance of a specific piece of land cover (within a pix-
el) with respect to EMR of a  specific wavelength (e.g. 
TIRS, or VCID bands) is directly associated with some 
natural properties (correspondingly, the average temper-
ature) of the same piece of land.

The successful retrieval of water quality information 
from Landsat data depends on the quality of in situ meas-
urements that will be used for data calibration/validation. 
The in situ samples collected should be as fully represent-
ative as possible of the whole site to be characterized 
and all precautions should be taken to ensure, as far as 
possible, that the samples do not undergo any changes 
in the interval between sampling and analysis. Before 
any sampling project is devised, it is very important to 
define the lake structure and to establish the objectives 
since these are the major factors in determining the posi-
tion of sampling sites, frequency of sampling, duration of 
sampling, sampling procedures, subsequent treatment of 
samples, and analytical requirements. Extensive field data 
are required in order to enable an accurate comparison 
of satellite data with actual ground data. One of the very 
first problems is the spatial divergence between the in situ 
measurements and the satellite remotely sensed data. In 
order to solve this problem it was suggested to realize lim-
nological transects, where possible, instead of point sta-
tions. Another problem is the temporal congruity among 
all the in situ measurements. Sampling in situ is a long 
process and a time gap of several hours may exist between 
sampling stations. On the contrary, the remotely sensed 
data collection is instantaneous. A partial solution for the 
problem was pointed and consisted in organizing more 
boat-stations, displaced at different locations, and again 
sampling transects. The recording of some additional, 
complementary to the in situ, data, such as weather con-
ditions and wind speed may be useful for the interpreta-
tion of the results derived from satellite data.

5.3 The evolution of Lake Koronia

The extreme hydrologic variability of Lake Koronia 
makes it difficult to predict future trends in the QE values 
and complicates the development of management strate-
gies that may lead to a healthy and sustainable ecosystem.

The values of the various QE determined in this 
study by analyzing satellite image data of (Landsat-5/
TM, -7/ETM+, -8/OLI) are relatively close to reality for 
the feasible parameters in general, and clearly appear to 
follow the patterns of their actual variations in time. In 
the case of non-feasible parameters, short-term periods 
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of accordance between satellite-derived and in situ data 
have been sporadically observed, although general var-
iation trends are missed in the long term. All parameter 
models perform more accurately on average, rather than 
in a point-wise (pixel) approach, mostly because of the 
inconsistencies in image clarity over specific fixed pixels, 
which invalidate intermediate images of a timeline and, 
therefore, values of a time-series. 

In the present study, the decrease of the measurement 
accuracy was caused by:
– 	 Atmospheric effects
– 	 Sensor accuracy: <5% 
– 	 Sensor failure (e.g. TIRS)
– 	 Models evaluated in other lakes
– 	 Unclear relationship between parameter and optical 

properties of the water
– 	 Use of DNs in estimating QE
– 	 Low water level of lake Koronia

Genuine outlier values do occur, however, and may be 
important indicators of changes in water quality.

As lake ecosystems have integral evolutionary char-
acteristics, parameters (QE) are also interdependent and 
not fully independent of each other. For a deeper under-
standing, a more extensive statistical correlation analysis 
between different time-series would be of utmost impor-
tance, in order to monitor the co-evolution and identify 
highly-specific relevant trends in co-variation. In order 
to provide a more functional satellite-data facility for the 
monitoring of, including but not limited to, Lake Koro-
nia, a  larger volume of in situ measurement data with 
high consistency would be necessary in order to formu-
late new models and algorithms based on data extracted 
from satellite images. In that case M.A.L.K.V will be able 
to have multiple QE measurements with only a few in situ 
measurements.
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