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ABSTRACT

Tick-borne encephalitis (TBE) belongs among the dangerous vector-borne diseases. The number of TBE incidences has been perma-
nently increasing in various geographical regions, including the Czech Republic. The presence of ticks and related diseases is driven by 
host-pathogen systems. The systems are rather complex and susceptible to environmental conditions represented in the first place by land 
cover/land use categories. The presented study looks for a possible relation between the types of forest vegetation specified in the Landsat 
5 satellite data and relative TBE morbidity. First, supervised classification of forest areas into five vegetation classes predefined by a botanist 
was tested. Due to the spectral similarity of the classes, the resulting classification accuracy of Landsat scenes covering the entire area of the 
Czech Republic was quite low. Thus, an unsupervised approach was applied using nine spectral classes. Relative TBE morbidity data collected 
over 10 years for 206 administrative units covering the entire country presented field data that were correlated with the spectral classes. 
The TBE risk index (IRE) of a given spectral class was introduced at each satellite scene. To create a map of the TBE risk for the entire country, 
all IRE values were accumulated and divided into six risk categories. The disadvantages of the proposed method, especially regarding the 
accuracy of the final product with a nationwide cover age, are discussed. In addition, the correlation between the relative TBE morbidity and 
other environmental parameters, such as annual precipitation, average temperature, and number of hunted game were calculated, but they 
did not reveal any significant relationship.
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1. Introduction

1.1 Concepts of using remote sensing for encephalitis risk 
assessment

The surveillance of vectors and vector-borne diseas-
es is essential for their control. Vector surveillance can 
be defined as the monitoring of arthropod populations 
responsible for the transmission of pathogens. In addition 
to other things, vector surveillance can be used to detect 
the presence/absence of a vector population and, subse-
quently, be used for disease risk assessment.

The spread of many vectors and related diseases is 
driven by host-pathogen systems. The distribution of 
their locations is susceptible to environmental conditions, 
represented in the first place by land cover/land use cat-
egories (e.g. Cortinas et al. 2002; Eisen et al. 2006; Estra-
da-Peña 2001). Determination and mapping of the main 
land cover categories like vegetation, water, or urban 
areas can be done effectively by means of remote sensing 
(RS) from satellites or airplanes.

RS and geographic information systems (GIS) have 
been widely used in health applications for several dec-
ades. A  substantial proportion of the research papers 
published in this field deals with application to spatially 
delineate vector habitats and disease patterns (e.g. Corti-
nas et al. 2002; Rogers and Randolph 2003; Tatem et al. 

2004). The incidence of tick-borne encephalitis (TBE) 
and Lyme borreliosis currently continues to increase in 
many European countries while the reasons for this are 
not yet fully understood.

It has been recognized that efficient extracting the 
information from RS images and applying it in studies 
of disease control requires the inclusion of several pro-
fessional fields such as geography, RS, biology, ecology, 
computer science, etc., which in turn demands interdis-
ciplinary cooperation and research teams.

RS adds qualified information for the identification of 
vulnerable ecosystems at a relatively low cost, thus pro-
viding an important ancillary tool for studying certain 
endemics and supporting surveillance and control activi-
ties. In contrast to point feature of field observations, sat-
ellite data continuously cover the entire area of interest, 
allowing a more complete picture of the environmental 
conditions. Moreover, RS data can be processed in time 
series to gather information about changes and trends in 
environmental conditions. 

Among the various sensors used, there was a predomi-
nance of AVHRR (NOAA satellite) and TM (Landsat sat-
ellite), possibly because they have long historical series 
and they are easily accessible. By contrast, there is only 
a negligible number of case studies using very high-res-
olution images. Data from Landsat and NOAA satellites 
were used in vector habitats studies mostly to classify land 
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cover categories, namely vegetation categories using the 
Normalized Difference Vegetation Index (NDVI) (Her-
breteau et al. 2007).

The NDVI calculated from NOAA-AVHRR data 
was used to monitor the seasonal activity of larvae and 
nymphs of Ixodes ricinus together with the TBE virus in 
seven European countries (Randolph et al. 2000). Several 
studies (Brown et al. 2008; Lourenço et al. 2011) demon-
strated a relation between the spatio-temporal variability 
of NDVI and the occurrence of vector-borne diseases. 
Other RS parameters have been applied as well. Altobelli 
et al. (2008) developed a prediction model for the abun-
dance of infected ticks (Ixodes ricinus) in north-east Ita-
ly using the values of Land Surface Temperature (LST), 
Land Surface Water Index (LSWI), Normalized Differ-
ence Vegetation Index (NDVI) and Enhanced Vegetation 
Index (EVI). A model for the distribution of another tick, 
Hyalomma marginatum, over some parts of Europe was 
prepared by Estrada-Peña et al. (2014).

The number of projects has been focused on the devel-
opment of reliable methods for creating prediction maps 
of tick occurrence and related disease risk distribution 
using RS. An overview of the most important papers 
is given in several articles; for example, Estrada-Peña 
(2001). A review of a study on the use of GIS and RS for 
the Ixodes scapularis and the spread of Lyme disease in 
the central part of the United States has been published 
by Cortinas et al. (2002), while Cromley (2003) mentions 
another application of satellite imagery for monitoring 
tick-borne and other diseases in the United States.

The relationship between tick occurrence and vegeta-
tion types was confirmed during an experiment in the 
Siebengebirge nature reservation in western Germany, 
as described by Schwarz et al. (2009). For seven months, 
ticks were regularly collected in 5 areas together with 
measurements of air temperature and humidity 5 cm 
above the ground, the water content in the soil, climato-
logical data, soil types, and namely, vegetation types. The 
highest average number of ticks was found in vegetation 
with humid dense herbaceous and shrub undergrowth 
and a layer of leaves. Tick occurrence decreased where 
the undergrowth was less developed and was the lowest 
in xerophilous vegetation and underdeveloped herba-
ceous and shrub floors. Furthermore, the number of ticks 
increased with a growing temperature (up to 24 °C) and 
decreased when the air humidity increased. A very strong 
positive correlation was then found between the number 
of ticks and the water content in the soil.

An example of the application of satellite data for 
the creation of a prediction map is shown by a study in 
the Mendocino district of California, where the density 
of nymphs of Ixodes Pacificus was studied (Eisen et al. 
2006). Images from Landsat 5 TM acquired in different 
periods of the year (May, July, November, and Febru-
ary) were processed to get the NDVI and spectral fea-
tures derived from the Tasseled Cap transformation. 
Three vegetation classes were selected and defined in 

accordance with the level of tick appearance: dense for-
est with a high incidence of nymphs, permanent grass-
land and woodlands with a grassy understory with adult 
ticks, and agricultural land and water areas without the 
occurrence of Ixodes Pacificus. Supervised classifica-
tion of Landsat data gave the best results (82.64% over-
all accuracy of three risk categories) when carried out 
using NDVI and one spectral feature from February and 
July combined in one dataset. The classification results 
of seven forest types were assessed as insufficient. Pro-
cessed satellite data together with additional climate and 
topographic parameters were compared with the density 
of Ixodes Pacificus nymphs collected during a field sur-
vey in 62 areas of the Mendocino district. The resulting 
model gives the nymph density prediction with 72% 
accuracy. 

RS measurements and processing methods cannot 
identify the vectors themselves, but they can identify and 
characterize suitable vector habitats. However, they can 
be an important input in the development of disease risk 
maps and for monitoring changes over time. Maps show-
ing seasonal risks of vector-borne diseases will be criti-
cal in monitoring the impacts of global climate changes 
on vectors. Satellites are unique tools for observation of 
the environmental influence on the spread of vectors and 
should be a part of any vector surveillance program (Mar-
tin et al. 2007).

Recently, environmental variables that are interpo-
lated from meteorological stations or monthly estimates 
of remotely sensed features are included in correlation 
modelling. Estrada-Peña et al. (2014) produced a global 
dataset of variables derived from the monthly series of 
MODIS satellite data by Fourier transform. The dataset 
includes variables, such as day and night temperature or 
vegetation and water availability, which could potentially 
affect the physiological processes of the vectors.

1.2 Satellite data use for TBE risk determination  
in the Czech Republic

The most common type of tick in a wide geographi-
cal area of Europe, including the Czech Republic, is the 
Ixodes Ricinus. As everywhere, its specific occurrence 
depends on many different abiotic and biotic factors, such 
as temperature, humidity, vegetation density and poten-
tial host occurrence (Estrada-Peña 2001). The most seri-
ous diseases that this species of tick in Europe transfers 
are Lyme disease and tick-borne encephalitis.

Built on the heritage of traditional forms of tick 
research, testing of the possible use of satellite data 
started in the Czech Republic in 1990 with a pilot study 
demonstrating the use of RS data and methods to map 
the occurrence of Ixodes ricinus in the European context 
(Daniel, Kolar 1990). Image data from the Landsat 5 sat-
ellite of 1,600 km2 test area was used for the localization 
of six land cover categories confirming the key influence 
of forests on tick occurrence.
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The following research focused mainly on the selec-
tion and appropriate definition of vegetation types under 
consideration and on methods of correlation between 
TBE statistical data and classified satellite imagery.

Daniel, Kolar, Zeman (1995) evaluated using satellite 
data for predicting the risk of TBE morbidity caused by 
occurrence of Ixodes Ricinus on a 75 × 75 km2 area south 
of Prague. Landsat 5 satellite scenes from the main part 
of the vegetation growth period (June–September) were 
classified under forest mask to get nine different catego-
ries of forests. An unsupervised classification method 
was used to get these nine classes. Botanical descriptions 
and definitions were given to the classes after a field trip 
to respective areas recognized in the classified images. 
Data obtained in the field created a training dataset for 
supervised classification of the whole area of interest. 
For the same test area a 0.5 km grid was created based 
on statistics of TBE morbidity in the region during the 
last twenty years expressing the expected incidence of 
the disease in eight levels. The grid was subsequent-
ly merged with classified satellite data for correlation 
analysis relating every forest class to a certain level of 
risk of the infection. Homogenous coniferous forest 
has shown the smallest risk, while very heterogeneous 
young deciduous trees have been indicated as a forest 
vegetation type with the highest risk to become infected 
by the TBE virus.

Geographical expansion of the processing procedure 
over the entire area of Bohemia was the objective of a fol-
low-up project (Daniel, Kolar, Benes 1999). Its results 
demonstrate the advantage of RS for the prediction of 
sites with increased risk of tick-borne encephalitis infec-
tion over large areas. The study also includes a structural 
analysis of forest areas in addition to spectral classifica-
tion in an effort to use the heterogeneity index as another 
indicator of tick presence in forests.

The GIS tools were used to select suitable sites for the 
field collection of ticks in southern Bohemia (Švec et al. 
2009) followed by development of a disease risk predic-
tion model, based on altitude, vegetation cover, popula-
tion density, and recreational load. A significant correla-
tion was demonstrated between the natural parameters 
and density of ticks as well as between the overall risk and 
the total number of diseases. Mixed and deciduous forests 
were reported as the places with an increased risk of TBE 
infection (Honig et al. 2011). 

1.3 Concept of the research

The aim of the study described in this paper was to 
construct a map of a potential risk of TBE disease. In 
order to perform risk prediction of exposure to vec-
tor-borne diseases, both biotic data (e.g., tick and host 
abundance) and abiotic data (environmental constraints) 
are commonly employed. 

The distribution of encephalitis is always indicated 
by tick presence. This correlation is rather fundamental, 

but the direct causal relationship linking habitat condi-
tions to tick distribution or abundance still needs to be 
established. Additionally, tick presence numbers are gen-
eral and the differentiation between infected ticks and 
non-infected ticks requires additional costly laboratory 
examination. 

In our approach to develop a risk model for the geo-
graphical area of the entire country, we excluded a tick 
abundance input. Instead, long-term statistical data on 
encephalitis collected for smaller administrative units 
was used as an input about the disease distribution in the 
country.

The study was based on an assumption that the spa-
tial distribution of vector-borne diseases follows certain 
habitat compositions providing suitable living conditions 
for vectors and pathogens. Our research position was that 
vegetation types in forests reflected inherently complex 
relations of both local micro-environmental variability 
and larger-scale climatic parameters.

Therefore, the suitable habitat for tick appearance 
was represented by forest vegetation categories obtained 
from processed Landsat satellite data depending on their 
spatial correlation with the morbidity data. As a novelty, 
vegetation categories have been defined by their spectral 
features only, not by botanical expression. On top of this, 
we included in our study the overlaying distributions of 
other variables, such as land-cover/land-use data, eleva-
tion, air temperature, and the occurrence of selected ani-
mals being potential tick hosts.

A suitable tick habitat is a necessary condition but still 
not a sufficient one to make another case of illness into 
statistics of TBE morbidity. For this, suitable tick habi-
tats have to overlap with places in which human activities 
occur. Variables describing people’s behavior are not easy 
to define, and they are less exact.  

Our effort aimed at creating a  statistical regression 
model estimating the relationship between one response 
variable (the TBE morbidity in our application) and a set 
of descriptive covariates. Rather large standard errors of 
estimated correlation just underline the complexity of 
the natural relations and objects under study. It provides 
uncertainty about the real significance of the examined 
variables for the risk prediction. In accordance with Dor-
mann et al. (2013), a model may label some variables as 
not significant, even if they are truly influential for the 
disease incidence. Knowledge of the tick-habitat interac-
tions needs to be further developed, particularly the scale 
of action of the environmental factors that are the most 
influential.

The application of the sample data for a modelling 
environment in different geographical or environmental 
landscapes can produce serious errors, because samples 
are likely to change. This is emphasized when satellite 
data from various dates and regions are to contribute to 
one resulting model. Bedia et al. (2013) give an exam-
ple of statistical prediction models giving the impression 
of a well-fitted model which gives strongly insufficient 
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results in new geographical regions or changed climatic 
conditions. 

Research in this project aimed to derive the spatial dis-
tribution of disease from satellite imagery and other sets 
of ground parameters. The final result has been presented 
in the thematic map of risk levels with regard to TBE over 
the entire country.

The map creation for a geographically large area in 
this study required testing of a newly developed process 
when combining results from several models in differ-
ent geographical areas into one result for the entire 
country.

2. Data sets used in the study

2.1 Tick-borne encephalitis morbidity data

Nationwide dense sampling of ticks and laboratory 
testing of these ticks would be the most reliable but, 
in practice, barely achievable way to gain data about 
the true occurrence and geographical distribution of 
TBE. In respect to this, the only suitable and available 
source of data about the rate of illness and its spatial 
distribution is the register of TBE cases administered 
by the National Institute of Public Health. The provid-
ed data were related to the area of the municipalities 
with extended power (MEP). Thus, 206 MEP covering 
the entire area of the Czech Republic became the basic 
area units of the investigation. Specifically, the data rep-
resents an annual average of TBE morbidity in the last 
decade related to 100,000 inhabitants in the unit. Only 
those TBE records were included in further analysis 
where an infected person was an MEP resident and the 
probable site of infection was located inside the MEP 
administration boundaries. This approach eliminated 
cases when the location where the infection happened 
was different from the home administration unit of the 
infected person. The entire scope of TBE values in all 
206 MEP was divided into six risk categories in such 
a way that approximately the same number of MEP was 
inside each category (Table 1).

2.2 Satellite images and field data

Based on the assumption of an equal distribution of 
the infected individuals through the tick population, 
the risk of being infected is expressed by the morbidi-
ty. The spatial resolution of the morbidity is given by the 
respective MEP area, which is rather large and variable. 
Satellite imagery offers a meaningful alternative to obtain 
a nationwide thematic map of TBE risk with a substan-
tially better level of detail. 

After evaluating the spectral and spatial resolution, as 
well as the coverage and availability of imagery for the 
required time frames, data from the Landsat 5 satellite 

Tab. 1 Distribution of the relative tick-borne encephalitis (TBE) 
morbidity in municipalities with extended power (MEP).

Relative TBE 
morbidity 
category

Relative 
morbidity 

per 100,000 
inhabitants

Number of 
MEP in the 
category

Average MEP 
area (km2)

A <1.7 42 275

B 1.7–3.3 41 363

C 3.3–6.0 41 347

D   6.0–11.0 39 400

E 11.0–58.0 43 527

were chosen as the most suitable. It also allowed follow-
ing the results of previous projects (Daniel, Kolar, Benes 
1999; Daniel, Kolar, Zeman 1995) and improving the ear-
lier applied methodology.

Only Landsat 5 scenes containing less than 10% cloud 
coverage were selected. The time period of the acquisition 
was restricted to between the years 2006 and 2010, and on 
dates in late summer (August, September).

The entire area of the Czech Republic was covered with 
nine Landsat scenes with about 30% and 10% overlap in 
the longitudinal and latitudinal directions, respectively. 
The selected satellite scenes (Table 2) were downloaded 
from the online USGS archive. The Standard Terrain Cor-
rection was applied to the data. The geometric quality of 
all the scenes was checked against the ZABAGED top-
ographic database (ČÚZK 2015) using 12 check points 
evenly distributed in each scene. Moreover, the corre-
spondence in geolocation was checked in the overlapping 
parts of the scenes. In both cases, RMSE smaller than one 
pixel were achieved. Atmospheric correction was not car-
ried out because the classification results were primarily 
intended for evaluation inside one scene. 

Seven three- to five-day field campaigns aiming at the 
collection of training and control polygons for the super-
vised classification were carried out from spring 2012 to 
autumn 2014 in selected forest areas distributed over the 
whole country. A botanist participating in the first field 
measurement described particularities of five defined for-
est classes (Section 3.1). Based on his input, a guideline 
for their discrimination in the field was created and used 
during the campaigns. In total, 676 training samples and 
321 control points, including the photo documentation, 
were gathered in 128 different forest locations. All data 
were stored in a database.

2.3 Meteorological and environmental statistics and 
supporting data

Though the main focus of the study was on risk assess-
ment of TBE based on forest vegetation categories, pos-
sible correlation between morbidity and other factors 
influencing the tick’s life cycle were also studied. These 
factors comprised three groups of measures available for 
the entire area of the Czech Republic: 
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A)	Climatic parameters in a 0.5 km grid format provided 
by the Czech Hydrometeorological Institute:
–	 Annual average precipitation in the last decade;
– 	 Average number of days with temperatures over 

10 °C in the last decade (the temperature over 10 °C 
is typical for tick activity);

– 	 Annual average temperatures in the last decade.
B)	Numbers of hunted game (fallow, roe and red deer, 

mouflon, wild boar, duck, hare) in MPE areas provid-
ed by the Forestry and Game Management Research 
Institute.

In addition, two other data sets were collected in order to 
support our investigation and its results:
C)	The European land cover database CORINE (EEA 

land cover 2006). Classes 311 (broad-leaved forest), 
312 (coniferous forest), 313 (mixed forest), and 324 
(transitional woodland-shrub) covering the majori-
ty of forest and shrub vegetation formed the mask of 
forestry areas utilized for the satellite data classifica-
tion. The level of correlation between eight selected 
CORINE classes and values of TBE morbidity in every 
MEP unit was created to assess their possible mutual 
relationships (Table 8).

D)	A vector layer with MEP borders was one of the most 
important inputs for the calculation of all statistics 
connected to the raster data (Landsat classification, 
CORINE, climate characteristics). It was also used for 
creating all final map products.

3. Satellite data processing

3.1 Supervised classification of satellite data

Based on the results of a  previous project (Daniel, 
Kolar and Benes 1999), five forest vegetation categories 
were defined for the supervised maximum likelihood 
classification:

Class 1 – Coniferous forest
Class 2 – Mixed forest
Class 3 – �Heterogeneous young deciduous forest and 

grassland
Class 4 – Homogeneous deciduous forest
Class 5 – Sparse deciduous forest
Single scenes as well as multitemporal datasets com-

piled from scenes acquired at different stages of the veg-
etation cycle were classified. The classification process 
consisted of the following steps:
1) 	creating a forest mask based on the CORINE database 

as mentioned in the Section 2.3,
2) 	detection of clouds and shadows and subtraction of 

respective pixels from the forest mask in each scene,
3) 	principal component transformation applied on sin-

gle scenes and multitemporal composites; only com-
ponents containing more than 0.5% information were 
used for the classification,

4) 	uploading training polygons and control points col-
lected during the field campaigns,

Tab. 2 Landsat scenes selected for the study and supervised classification accuracy (CA) for every scene. 

Scene Date

CA
training 
dataset

[%]

CA
check points

[%]
Scene Date

CA
training 
dataset

[%]

CA
check points

[%]

189-025

2007/06/11 92.48 78.18

191-026

2009/06/14 62.19 38.64

2010/09/23 79.98 60.81 2009/08/01 52.32 28.00

all 79.09 64.58 2010/09/21 63.70 41.82

189-026

2007/08/14 41.22 35.85 All 79.37 37.50

2007/06/11 58.75 41.98

192-025

2007/04/29 60.90 38.69

2009/09/20 53.07 31.58 2009/08/24 63.70 58.94

all 80.91 53.09 2010/10/30 60.33 48.29

190-025

2007/05/01 80.80 54.88 all 75.87 57.36

2007/08/01 87.01 73.13

192-026

2006/06/13 86.23 63.49

all 93.29 73.42 2010/07/10 85.20 76.81

190-026

2007/05/01 50.36 31.92 2009/09/09 88.75 69.57

2007/08/01 62.32 55.39 all 70.98 21.39

2009/09/27 74.85 57.69

193-025

2006/07/22 74.8 37.4

all 79.37 59.52 2006/09/24 68.1 41.0

191-025

2009/08/01 63.45 45.80 all 77.2 37.4

2010/09/21 67.19 37.90

all 71.50 46.28
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5) 	maximum likelihood classification of pixels under 
the created forest mask; the classifier parameters were 
tuned for each scene in order to achieve the highest 
accuracy.
The statistical evaluation of the classification results is 

summarized in Table 2. The classification accuracy var-
ies from one scene to another. While the total accuracy 
differs up to 20%, the producer/user accuracy of sepa-
rate classes changes up to 55%. The coniferous forest class 
achieved the highest accuracy. Misclassification was typi-
cal for heterogeneous young deciduous forests and sparse 
deciduous forests. Sparse deciduous forest was classified 
with the lowest accuracy, 20% to 35%.

Classification results of such low accuracy did not 
provide a  reliable input for searching for a  relation-
ship between the spatial distribution of classified forest 
classes and morbidity categories. The results of classifi-
cation differed considerably in the overlapping areas of 
the scenes. Changes in atmospheric conditions between 
acquisition dates and geographical differences across the 
scenes were two of the reasons causing these discrepan-
cies. Nevertheless, the main reason for the low classifica-
tion accuracy comes from the spectral variability inside 
the vegetation categories. Although the class definitions 
were created by a  professional botanist, their verbal 
descriptions could not always be objectively applied when 
assigning every forest type to one of the defined classes 
in the field. Moreover, even when the selected vegeta-
tion classes were recognizable and separable in the ter-
rain, their spectral features in the datasets acquired by 
the Thematic Mapper sensor did not differ sufficiently 
between one to another to obtain better discrimination. 
In this case, even an increase of training samples would 
not lead to much better results. Thus, supervised clas-
sification did not bring expected and further applica-
ble results and an unsupervised approach was applied.

3.2 Unsupervised classification

The objective of the research was to develop a pro-
cess that would allow obtaining the spatial distribution 
of different levels of risk of TBE. Therefore, it has not 
been necessary to perform classification of the satellite 
data into predefined botanical vegetation classes; howev-
er, such a legend would certainly facilitate reading of the 
final map.

The unsupervised approach to the classification of 
satellite data was also supported by the finding of low 
portability of spectral features describing defined classes 
in one scene to another location. Classification into the 
classes defined previously could not sufficiently reflect the 
heterogeneity of the forests themselves and their differ-
ences between regions throughout the country. Moreover, 
natural conditions provided by a botanically defined veg-
etation class may change in space and time, resulting in 
different occurrences of ticks in a given class in different 
geographical areas.

To exploit fully the information assets of multispectral 
satellite data, the approach was to determine recognizable 
classes based on their spectral differences, only without 
an effort to give them a botanical name. The spectral fea-
tures used for supervised classification were the measured 
relative values in the respective spectral bands (DN) and 
the normalized vegetation index NDVI, also computed 
from relative radiometric values:

NDVI = (DNNIR – DNR)/(DNNIR + DNR),
where DNNIR and DNR indicate the value in the near 
infrared and red bands, respectively.

The unsupervised classification procedure takes the 
same first three steps used for the supervised classifica-
tion (Section 3.1). The unsupervised classification meth-
od by Isodata (Jensen 1998) was applied as the fourth 
step. The preselected number of requested classes was set 
to nine. The same number of classes was also used for the 
classification of forest cover in the previous work (Daniel, 
Kolar and Benes 1999). The decision about this number 
of different forest categories has also been considered to 
be large enough for the expression of a rather wide inter-
val of morbidity values.

Classification took place for nine satellite scenes. Thus, 
altogether, 81 different spectral classes were identified. 
Each resulting class contains woodland objects with sim-
ilar spectral properties inside the given scene. Although 
the number of spectral classes was the same for all the 
scenes, their botanical compositions are not necessarily 
the same. This is because the spectral features determin-
ing the given class (e.g. class 4) may be different from the 
spectral features determining the class labeled with the 
same number in another scene. This approach respects 
the diversity of the conditions under which the satellite 
scenes were taken and the natural diversity of the forest 
vegetation at various scenes.

The classification results are presented in Table 3. The 
total number of classified values in each scene is given 
together with its distribution into nine key spectral class-
es KLi (i = 1, …, 9). Similar statistics could be computed 
for every MEP.

4. Evaluation of the relationship between TBE 
morbidity and other parameters

4.1 Correlation analysis between relative TBE morbidity  
and environmental parameters

For the purpose of correlation analysis, climate 
parameters were averaged for each MPE area. The num-
bers of game hunted were normalized to the area of the 
forest and agricultural land within an MPE. The relation 
between relative TBE morbidity and climate and hunted 
game data was evaluated using Spearman’s correlation 
coefficient r.

The climate parameters did not reveal an expect-
ed relation to TBE morbidity (e.g. r = −0.19 for annual 
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Tab. 4 The average number of hunted game per MPE and the 
relative morbidity risk categories.

Hunted 
game

Relative morbidity risk categories

A B C D E

Wild boar 19.9 27.8 34.7 41.1 33.1

Fallow deer 2.6 5.4 3.2 3.5 2.8

Red deer 5.1 2.7 2.3 2.8 2.1

Duck 33.0 56.6 50.6 37.2 121.8

Mouflon 1.4 2.2 1.6 2.7 1.5

Roe deer 29.1 36.7 34.0 27.6 28.3

Hare 101.9 225.8 133.6 84.92 57.7

precipitation, r = −0.15 for the number of days with 
a temperature above 10 °C). The main reason for such 
weak relationships is their high variance. Their usually 
strong heterogeneity within an MEP area was general-
ized into one value for the purpose of correlation. The 
distribution of these generalized parameters did not cor-
respond to the normal distribution and their histograms 
differed from the histogram of the relative morbidity. 

For hunted game, the highest correlation coeffi-
cient value (r = 0.39) was achieved in the case of wild 
boar. The absence of a relationship between the studied 
counts of hunted game normalized to the vegetated area 
within an MPE and the morbidity risk categories is evi-
dent in Table 4.

A correlation analysis between the CORINE land cov-
er classes and the relative morbidity was also carried out. 
Table 5 summarizes the percentage of selected CORINE 
classes in an MPE area per morbidity risk category. 
Coniferous forest (312) is the only class showing a slight 
proportion of its area with a morbidity risk.

4.2 Relationship of the heterogeneity in a classified image  
to morbidity

The degree of heterogeneity was expressed for every 
pixel of the classified image. The number of different 
classes in the surrounding eight pixels was selected as 
a measure of heterogeneity. Depending on the number of 
adjacent pixels belonging to a different class, the central 

Tab. 5 Average percentage of CORINE land cover classes  
in MPE and the morbidity risk categories. The sum of the areas  
of the selected classes corresponds at least to 94% of an  
MPE area.

CORINE land cover
Morbidity risk categories

A B C D E

Discontinuous urban 
fabric (112)

6.8% 5.5% 6.5% 5.3% 3.7%

Non-irrigated arable land 
(211)

27.1% 48.9% 40.9% 40.5% 36.7%

Pastures (231) 11.4% 5.9% 8.1% 7.3% 9.7%

Agriculture with natural 
vegetation (243)

12.0% 7.7% 9.0% 8.3% 10.1%

Broad-leaved forest (311) 6.1% 4.2% 4.4% 3.2% 1.8%

Coniferous forest (312) 18.7% 14.1% 15.3% 21.3% 27.2%

Mixed forest (313) 8.6% 6.9% 8.6% 9.6% 6.8%

Transitional woodland-
shrub (324)

3.4% 1.9% 2.4% 1.2% 1.2%

pixel was put into one of the categories of heterogeneity 
identified, H0 to H8, where H0 contains pixels with only 
the same class in their neighbourhood while category H8 
includes pixels around which all eight surrounding pixels 
are from different classes.

Table 6 shows the number of pixels in six heterogene-
ity categories, H0 to H5 for different categories of rela-
tive morbidity. Categories H6 to H8 are no longer listed 
because they contain insignificantly small numbers of 
pixels. The highest number of pixels belongs to category 
H1, with a rapid decrease for other categories. The trend 
is almost identical for all different morbidity categories. 
Thus, heterogeneity as defined did not show a potential of 
being an indicator of relative morbidity.

4.3 Relationship of spectral classes to morbidity

To assess the possible correlation between certain 
spectral classes and morbidity in MEP areas, the results 
of the satellite data classification for every MEP were 
used. Then, a  relationship between an area of spectral 
class occurrence and category of relative morbidity was 
created for each MEP.

Tab. 3 The number of pixels assigned to classes KL1 through KL9 resulting from the unsupervised classification of the nine satellite scenes.

Scene
Total number 
of classified 

pixels

Number of pixels assigned to spectral classes

KL1 KL2 KL3 KL4 KL5 KL6 KL7 KL8 KL9

189-25 3 351 577 1 028 610 1 018 292 268 927 644 144 23 536 144 108 174 356 39 907 9 697

189-26 3 869 039 648 114 813 359 156 636 986 777 244 770 34 910 768 890 145 759 69 824

190-25 5 252 992 1 721 685 1 385 177 410 233 957 784 201 788 395 399 76 865 78 706 25 355

190-26 4 518 316 1 192 604 969 033 980 795 203 442 629 035 318 168 155 155 7 584 62 500

191-25 7 606 077 2 555 087 2 034 022 559 522 1 514 383 145 788 315 570 389 665 65 477 26 563

191-26 6 064 862 1 891 916 2 035 849 460 719 979 540 76 353 235 593 292 018 73 051 19 823

192-25 9 728 116 611 875 2 077 203 2 275 441 1 884 782 579 206 1 160 729 567 985 387 976 182 919

192-26 3 984 172 1 380 039 1 029 141 416 724 618 329 183 481 63 752 194 336 72 249 26 121

193-25 3 941 376 1 160 796 1 122 622 370 294 598 363 59 928 253 929 222 475 86 992 65 977
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Fig. 1 Distribution of nine spectral classes within the morbidity classes 
A–E, Landsat scene 189-26.

Th e example of the relationship for Landsat scene 
189-26 is presented in Table 7, giving a number of pixels 
Pij in each spectral class i (i = 1, …, 9) belonging to cer-
tain categories of relative morbidity j (j = A, B, C, D, E). 
Pij is a measure of the risk of potential disease associated 
with the given spectral class. Th e same relationship is 
presented in Figure 1. 

To express the overall level of risk associated with 
a given class in the relevant scene more exactly, weights 
Wj were assigned to relative morbidity categories. Th e 
weights refl ect the absolute values of relative morbidity 
in each category and are given in Table 8.

Th e index of the risk of the TBE – IRE was introduced 
for better expression of the relative risk connected with 
the specifi c spectral class inside the satellite scene in 
which the spectral class was classifi ed. Using the param-
eters introduced above, the IRE for a given spectral class 
is defi ned by: 

IREi = (Σ Pij Wj) / 1011, j = A, B, C, D, E
Th e IRE expresses the level of risk of disease associat-

ed with each of the nine classifi ed classes for each satel-
lite scene. For nine scenes there are 81 diff erent values of

Tab. 8 Risk associated with the relative morbidity categories 
expressed as weight coeffi  cient Wj.

Categories of relative 
morbidity

Wj

A 1

B 2

C 4

D 8

E 16

relative risk indices (Table 9), which refl ect the objec-
tive diversity of forests throughout the country and the 
diff erence between the external conditions under which 
the satellite data were taken. Th e IRE values determine 
which class indicates the areas of most risk; which one 
means less risky sites, and which class represents places 
where the risk of disease is almost zero. Th e relative order 
of risk is valid for the given single scene. Comparing the 
risk among scenes cannot be done without corrections 
for diff erent air and ground conditions at the time of the 
data acquisition.

When the diff erent conditions among satellite scenes 
are not taken into account, the IRE values can be present-
ed over merged scene areas. Th e cost of this simplifi ca-
tion is higher when diff erences in the scenes acquisition 
or in vegetation types within their territories are larger. 
Accepting this limitation, however, allows presenting uni-
fi ed incidence risk categories throughout the area of the 
entire country.

Using this concept, all 81 risk index values were 
categorized into six intervals of subjective selection 
(Table 10). Under this distribution there are two values in 
Category I of the highest risk, seven in Category II, four in

Tab 6 Number of pixels in six heterogeneity categories, H0 to H5, for each category of relative morbidity. The correlation coeffi  cient shows 
the strength of the relationship between local heterogeneity and relative morbidity. 

Categories of relative 
morbidity

Number of pixels in heterogeneity categories

H0 H1 H2 H3 H4 H5

A 1 008 387 1 821 665 1 043 281 410 020 111 381 17 737

B 773 413 1 858 880 1 333 247 603 112 171 635 28 466

C 815 575 1 941 289 1 427 530 631 860 180 703 29 435

D 1 133 586 2 569 743 1 917 263 877 519 256 404 42 574

E 1 484 439 3 710 632 2 669 129 1 264 191 383 868 63 523

Correlation coeffi  cient 0.22 0.33 0.33 0.34 0.34 0.32

Tab. 7 Distribution of spectral classes K1–K9 within the morbidity classes A–E, Landsat scene 189-26.

Scene 189-26

Categories of relative 
morbidity

Number of pixels in spectral class

KL1 KL2 KL3 KL4 KL5 KL6 KL7 KL8 KL9

A 135105 144551 14752 238651 38738 6814 207544 27515 10786

B 293293 315161 83781 340694 84414 16023 246133 41197 23251

C 179004 279861 41521 284833 88184 8555 233133 55435 22078

D 23701 52194 12111 99596 26187 2675 72627 18763 11700

E 17011 21592 4471 23003 7247 843 9453 2849 2009
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 Tab. 10 IRE values transformed into six risk categories.

Risk categories IRE

I – the highest risk >360

II – high risk 180–360

III – medium risk 90–180

IV – moderate risk 45–90

V – low risk 22–45

VI – no risk 0–22

Category III, five in Category IV, five in Category V, and 
the remaining 58 values in Category VI, meaning almost 
no risk.

Spatial distribution of the risk categories according to 
this model on the area of the Czech Republic is shown 
as a  thematic map in Figure 2. An example of a more 
detailed view produced on the national topographical 
map background is presented in Figure 3.

5. Conclusion

Two processing approaches were tested in order to 
determine the different vegetation classes existing in 
Czech forests. Supervised classification was applied for 
five classes defined on a biological basis. The respective 
training and control datasets were obtained during field 
surveys in all main forest regions of the country. Howev-
er, the final classification result did not achieve a useful 
degree of accuracy in practice. The reason was that even 
when significantly different from the biological stand-
point, the spectral distinction of selected forest classes 
was too slight in the Landsat spectral bands. Other rea-
sons include the variability inside each class in the field 
and the diversity of forest vegetation throughout the 
entire country, as well as the different conditions under 
which each satellite scene was taken. 

As giving a botanical name and description to iden-
tified different forest types was not the final goal of the 
research work, the unsupervised classification approach 
was applied. In this approach, forest vegetation varia-
tions were discriminated only in respect to their spectral 

variety recorded in the given Landsat dataset. This pro-
cessing concept respects both the diversity of forest and 
environment and climate conditions in different places 
and on different dates of the satellite data acquisition. 
Treated in this way, the satellite data can be used to assign 
spectrally various forest areas to degrees of relative risk 
of TBE. Through the classification of forest vegetation, 
the one known value of relative morbidity for the whole 
MEP territory has been decomposed into the hundreds or 
thousands of smaller areas across the surface of the MEP.

The practical outcome of the project was a thematic 
map of risk expressed in the relative six-level scale with 
the spatial resolution of the Landsat Tematic Mapper. The 
level of spatial detail allows producing maps of the risk 
distribution at the local or regional level in medium and 
large scales. No similar information is accessible from the 
currently provided statistical data. The credibility of the 
resulting relative levels of risk and their localization in 
the landscape is better when computed for a smaller area 
inside one satellite scene.

When one output for an area larger than one satellite 
scene is requested, a cost is paid for merging different 
conditions in several scenes and one generalized scale of 
risk categories. The local conditions can be determined 
only by direct comparison in the field. Ideally, the number 
of ticks picked up on the spot would be compared, which 
is not possible in practice. Therefore, the resulting map 
content provides a basic overview of the distribution of 
risk areas in forests over a larger area with reduced accu-
racy on local level. The index of disease risk (IRE) has 
been newly introduced for expressing this relationship.

Conclusions about the relationship between spectral 
classes classified in satellite data and the index of dis-
ease risk are also influenced by inaccuracies in morbidi-
ty assignment to the class. The statistical data of relative 
morbidity give a single value for an entire MEP territory 
of several hundred square kilometers. By contrast, the 
Landsat data give spectral features of area of dozens of 
square meters. Very high-resolution satellites even have 
pixel size of a few square meters.

Further progress in the use of remote sensing meth-
ods to determine risk areas for TBE can be expected in 

Tab. 9 Index of the TBE risk associated with the nine spectral classes KL1–KL9 in each scene.

Scene
Relative risk in spectral classes

KL1 KL2 KL3 KL4 KL5 KL6 KL7 KL8 KL9

189-25 101.8 117.3 4.6 37.9 0.0 2.0 3.9 0.2 0.0

189-26 0.5 1.4 0.1 2.9 0.2 0.0 0.9 0.1 0.0

190-25 13.6 10.6 0.8 5.5 0.3 1.2 0.1 0.1 0.0

190-26 237.5 85.9 31.0 4.4 10.5 7.1 2.0 0.0 0.4

191-25 229.0 150.4 14.7 67.2 1.0 4.8 5.7 0.2 0.0

191-26 192.3 257.4 12.5 70.9 0.4 3.8 6.4 0.4 0.0

192-25 33.9 355.1 442.5 232.1 31.8 70.1 16.2 6.6 1.7

192-26 384.0 248.0 53.7 99.6 8.8 1.0 10.2 1.3 0.2

193-25 10.1 34.8 1.7 4.9 0.0 0.2 0.2 0.0 0.0
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two fields. One involves deeper knowledge about specific 
vegetation types and other natural parameters influencing 
the tick occurrence. The other deals with the development 
of advanced remote sensing measurement equipment 
required to recognize the vegetation types of interest.

In addition to the printed format, the map of TBE 
morbidity risk has been published in electronic form on 
the web site www.access. Based on the Grifinor platform, 
the interactive map allows browsing the map at a selected 
level of detail, even on mobile devices.
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RESUMÉ

Stanovení míry rizika nákazy klíšťové encefalitidy pomocí metod DPZ

Klíšťová encefalitida (KE) je jedním z vážných virových one-
mocnění přenášených klíšťaty druhu Ixodes ricinus. V posledních 
letech je dokumentován nárůst tohoto onemocnění jak v České 
republice, tak v celé Evropě. Výskyt klíštěte je vázán na přírodní 
podmínky vhodné pro jeho existenci, které lze charakterizovat 
zejména typem vegetace, dále pak přítomností vhodného hostitele 
nebo nadmořskou výškou. Cílem prezentovaného výzkumu bylo 
najít vztah mezi prostorovým rozložením vegetačních tříd lesní-
ho porostu a relativní nemocností KE na úrovni obce s rozšířenou 
působností (ORP). Pro určení výskytu relevantních druhů lesní-
ho porostu byla použita data pořízená zobrazujícím radiometrem 
Thematic Mapper družice LANDSAT-5. Nejprve byla testována 
řízená klasifikace pro rozpoznání pěti botanikem popsaných tříd 
lesního porostu. Po porovnání výsledků s pozemními daty získaný-
mi během terénního šetření se tato metoda ukázala jako nevhod-
ná vzhledem ke spektrální příbuznosti tříd, jejich odlišnosti na 
rozloze celého státu a také vzhledem k rozdílným podmínkám, za 
jakých byly pořízeny jednotlivé družicové scény. Proto byl sestaven 

metodický postup založený na neřízené klasifikaci, kdy bylo v kaž-
dé scéně nalezeno devět tříd pouze na základě jejich spektrálního 
projevu v družicových datech. Výsledkem byl model respektující 
rozmanitost jak lesního porostu, tak i vnějších podmínek při poři-
zování družicových dat na různých místech v rozdílnou dobu. Na 
základě vztahu mezi četností výskytu spektrálních tříd a hodnota-
mi relativní nemocnosti v ORP byl empiricky odvozen index míry 
rizika onemocnění (IRE), který je exaktním vyjádřením rizikovos-
ti dané spektrální třídy na území příslušné družicové scény. Jako 
praktický výstup byla vytvořena tematická mapa zobrazující hod-
noty IRE pro celé území České republiky s prostorovým rozlišením 
odpovídajícím datům Landsat, tj. 30 m. Pomocí platformy Grifinor 
byla mapa zpřístupněna v prostředí Internetu. 
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