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ABSTRACT

This paper compares suitability of multispectral data with different spatial and spectral resolutions for classifications of vegetation above 
the tree line in the Krkonoše Mts. National Park. Two legends were proposed: the detailed one with twelve classes, and simplified legend 
with eight classes. Aerial orthorectified images (orthoimages) with very high spatial resolution (12.5 cm) and four spectral bands have been 
examined using the object based classification. Satellite data WorldView-2 (WV-2) with high spatial resolution (2 metres) and eight spectral 
bands have been examined using object based classification and per-pixel classification. Per-pixel classification has been applied also to the 
freely available Landsat 8 data (spatial resolution 30 metres, seven spectral bands). Of the algorithms for per-pixel classification, the following 
classifiers were compared: maximum likelihood classification (MLC), support vector machine (SVM), and neural net (NN). The object based 
classification utilized the example-based approach and SVM algorithm (all available in ENVI 5.2). Both legends (simplified and detailed ones) 
show best results in the case of orthoimages (overall accuracy 83.56% and 71.96% respectively, Kappa coefficient 0.8 and 0.65 respectively). 
The WV-2 classification brought best results using the object based approach and simplified legend (68.4%); in the case of per-pixel clas-
sification it was the SVM method (RBF) and detailed legend (60.82%). Landsat data were best classified using the MLC (78.31%). Our research 
confirmed that Landsat data are sufficient to get a general overview of basic land cover classes above the tree line in the Krkonoše Mts. 
National Park. Based on the comparison of the data with different spectral and spatial resolution we can however conclude that very high 
spatial resolution is the decisive feature that is essential to reach high overall classification accuracy in the detailed level.
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1. Introduction

The Krkonoše Mountains is a mountain range with 
a fragmented alpine zone that occupies a narrow span 
of elevations and has developed into two separated are-
as. The highest parts of the Krkonoše Mts. National 
Park (KRNAP) rise above the tree line and are cov-
ered by relict tundra. These areas are included in the 
international tundra monitoring program (INTER-
ACT: International Network for Terrestrial Research 
and Monitoring in the Arctic) (Soukupová et al. 1995; 
Jeník and Štursa 2003).

For vegetation mapping and related analyses in large, 
isolated areas that often receive legal protection, such as 
tundra, remote sensing methods are commonly used. 
Data with various spatial and spectral resolutions are 
analysed using different methods of per-pixel and object 
based classification. 

Regarding the vegetation classification above the tree 
line, Král (2009) classified the orthoimages with infrared 
band with spatial resolution 0.9 metres using the maxi-
mum likelihood algorithm in Jeseníky Mountains. Král 
(2009) especially focused on transitional zones between 
subalpine forests and alpine tundra. In this way, he 
defined seven land cover classes: anthropogenic areas, 
pastures and barren land, Pinus mugo scrub, deciduous 

trees, spruce cultures, dry spruce stands, and rocks. The 
overall accuracy equalled 78%.

Orthoimages were also examined by Müllerová (2005) 
who studied the tundra vegetation in the Krkonoše Mts. 
National Park. Having used multispectral aerial data 
and the maximum likelihood method, she defined seven 
classes: Pinus mugo scrub, Nardus stricta stands, subal-
pine tall grasslands and tall-herb vegetation, vegetation 
along roads, roads, water areas, and wetlands. The overall 
accuracy equalled 79%. The use of unsupervised classifi-
cation (ISODATA method) brought overall accuracy of 
63% and six classes were identified.

Zagajewski et al. (2005) conducted mapping in the 
eastern part of the Tatra National Park, Poland. They 
focused on the mountain vegetation of subalpine, alpine, 
and sub-nival zones utilizing hyperspectral data and max-
imum likelihood and neural net methods. Hyperspectral 
aerial images were acquired by DAIS 7915 and by ROSIS 
sensors. Based on unsupervised classification and visual 
interpretation of the images, seven classes for supervised 
classification were defined: Pinus mugo scrub, forests, 
meadows, rocks, lakes, shadows, and roads. Overall accu-
racy reached 71–85%. Hyperspectral data were used also 
by Marcinkowska et al. (2014). They classified vegetation 
communities in the Krkonoše Mts. National Park using 
APEX data and Support Vector Machines classifier.
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Object based classification was used by Laliberte et al. 
(2007) in order to distinguish between green and aging 
vegetation in New Mexico. The study area was located 
about 1,200 metres a. s. l. They combined the methods 
of decision tree and nearest neighbour. The classification 
accuracy equalled 92%. Object based classifications of 
orthoimages was also used by Lantz et al. (2010) in order 
to examine changes in vegetation characteristics (cover 
and patch size) across a latitudinal gradient in the Mac-
kenzie Delta Uplands. Four classes were identified: shrub 
tundra, dwarf shrub tundra, water, and bare ground, with 
overall accuracy 78.1% (Kappa coefficient 0.66).

All of the above-mentioned studies used data with very 
high spatial resolution. Data collected by Landsat sensors 
(one pixel equals to 30 × 30 metres) are commonly used 
to produce land cover classifications in large areas (see 
Dixon, Candade 2008) or to examine forest cover (Wolter 
et al. 1995, etc.). Landsat data, however, are only rarely 
used for examination of grassland vegetation, except in 
the case of vast regions in the northern tundra (Johansen 
et al. 2012; Pattison et al. 2015).

Several authors compared a number of pixel classi-
fication algorithms (Zagajewski 2005) or per-pixel and 
object based classification – see Yu et al. (2006), Cleve et 
al. (2008), or Myint et al. (2011). So far, no study has been 
carried out that would compare the potential of differ-
ent multispectral data and different types of classification 
algorithms, including comparison of object based and 
per-pixel approach for classification of alpine vegetation. 
Thus, our study aims at evaluation and comparison of 
selected multispectral data with various spatial and spec-
tral resolutions for land cover classification above the tree 
line (focus is put on different vegetation classes), using 
different classifiers including object based image analysis 
(OBIA) and per-pixel approach. Orthoimages can serve 
as an example of very high resolution data in this study. 
Data collected by WorldView-2 satellite show high spatial 
and spectral resolutions; the freely available data collected 
by Landsat 8 (moderate resolution) are also examined.

As different vegetation types cover only small patches 
of land, it is expected that spatial resolution of the data 
may be crucial for the classification. On the other hand, 
different vegetation types are clearly confined and usually 
do not overlap. Thus, we presume that the object based 
approach applied to high resolution data should bring 
more accurate results than the per-pixel approach.

2. Study Area 

Arctic-alpine tundra occurs in the highest parts of the 
Krkonoše Mountains above the tree line (from 1,300 m 
a. s. l. up). It covers a limited area of 47 km2 (32 km2 on 
the Czech territory, 15 km2 on the Polish territory), i. e. 
just 7.4% of the total Krkonoše area. The Scandinavian 
Ice Sheet repeatedly expanded as far as to the northern 
foothills of the Krkonoše Mountains and during the 

Holocene, tundra was a permanent phenomenon here 
(Treml et al. 2008; Margold et al. 2011). As a result of this 
palaeogeographical history, the Krkonoše Mountains 
represent a “biodiversity crossroads” where Nordic and 
alpine flora and fauna coexist (Jeník and Štursa 2003).

The area covered by natural arctic-alpine tundra was 
expanding due to deforestation and grazing from Early 
Middle Ages (9th–11th century, Speranza et al. 2000; 
Novák et al. 2010) until the beginning of the 19th centu-
ry when mountain agriculture (grazing and grass mow-
ing) peaked (Lokvenc 1995). Direct human impacts then 
gradually diminished until the 1940s. Almost no direct 
human intervention in the tundra zone has occurred 
since then as these areas became strictly protected as 
nature reserves. The alpine vegetation is being occasion-
ally disturbed mainly by periodical avalanches and debris 
flows. Closed alpine grasslands, subalpine tall grasslands, 
Pinus mugo scrub, alpine and subalpine scrub current-
ly form the prevailing vegetation types; in the highest 
altitudes also mosses, lichens, and alpine heathlands are 
common (Chytrý et al. 2001). 

Two spatially separated parts make up the study area: 
Western Tundra and Eastern Tundra (Figure 1). The 
western part is situated near Labská bouda and covers 
about 1,284 hectares. The Eastern part is located around 
Luční bouda covering 2,284 hectares. 

Both parts of tundra on the Czech territory were 
examined in full using the Landsat data. Classifications of 
the other data sources have been executed only in select-
ed parts of the study area (565 hectares in the western 
part, 839 hectares in the eastern part) – Figure 1. Clas-
sifications using the detailed legend were applied only in 
the western area.

3. Data and Methods

3.1 Data

Three sensors of different spectral and spatial resolution 
represent multispectral data in this study. First, there are 
orthoimages acquired by aerial sensor on June 18, 2012. 
Second and third are two satellite sensors: WordView-2 and 
freely available Landsat 8. The WordView-2 images were 
acquired on July 22, 2014 (western part) and on August 
10, 2014 (eastern part). The Landsat 8 cloud-free image 
acquired on July 27, 2013 (ID: LC81910252013208LGN00) 
was chosen from the Landsat archive.

Table 1 shows basic information on the data. No 
atmospheric corrections were made as classifications were 
carried out separately for all images; consequently, such 
adjustments were not necessary (Song et al 2001). Spa-
tial accuracy was secured by geometric corrections and 
orthorectification (orthoimages, WV-2) using digital sur-
face model created from aerial laser data (cloud of points, 
5 points/m2) and L1T product in the case of Landsat
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Tab. 1 Data parameters.

Data
Spatial resolution 

(metres)
Number of bands used 

for classifications
Radiometric resolution Date

Orthoimages  0.125 4 (blue, green, red, NIR)  8 bit June 18th, 2012

WV-2  2
8 (coastal, blue, green, 

yellow, red, red edge, NIR, 
NIR2)

11 bit
July 22th, 2014;  

August 10th, 2014

Landsat 8 30
7 (coastal, blue, green, red, 

NIR, SWIR1, SWIR2)
12 bit July 27th, 2013

data (the latter utilizes corrections of digital surface mod-
el and surface points GLS2000).

Fifty nine polygons corresponding to vegetation class-
es as defined in the legend were identified in the field. 
Data were collected in the period June 23 – June 25, 2014. 
Polygons were located by GPS (Trimble Geoexplorer 
3000 Geo XT, accuracy 10 centimetres) and classified on 
the botanical basis according to the legend (see Chapter 
3.2). Polygons corresponding to classes Pinus mugo scrub, 
Picea abies stands, water and block fields, and anthropo-
genic areas were added later using manual vectorization 
based on visual interpretation of orthoimages.

3.2 Classification Legend

Definition of the legend constitutes the crucial part of 
the research. Classifications were made using two types 

of legends: the detailed legend (12 classes, respectively 
13 for OBIA – Figure 3) for orthoimages and WV-2 data, 
and simplified one (8 classes, respectively 9 classed for 
OBIA – Figure 3) for all three types of data.

The detailed legend was created in cooperation with 
national park botanists and includes the most important 
classes of grassland vegetation as well as other vegetation 
classes, and also classes without any vegetation cover 
(Figure 2). 

The detailed legend was used for orthoimages and 
WV-2 in the Western Tundra only. As many vegetation 
classes cover small patches of land less than 900 m2 (equal 
to 1 pixel of Landsat 8), it became necessary to create 
a simplified legend suitable also for Landsat data classi-
fication. This simplified legend includes eight classes and 
was used for classification of all data types for the sake of 
comparison.

Fig. 1 Study area. Source: Authors
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Fig. 2 Pictures of vegetation classes as defined in the legend. 
Source: Authors
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Detailed legend
1. Block fields and anthropogenic areas
2. Picea abies stands
3. Pinus mugo scrub
4. Subalpine Vaccinium vegetation
5. Closed alpine grasslands
5a. Nardus stricta stands
5b. Species-rich vegetation with high cover of forbs
6. Subalpine tall grasslands
6a. Calamagrostis villosa stands
6b. Molinia caeruela stands
6c. Deschampsia cespitosa stands
7. Subalpine tall-herb vegetation
8. Alpine heathlands
9. Wetlands and peat bogs
10. Water areas (only for OBIA)

Simplified legend
1. Block fields and anthropogenic areas
2. Picea abies stands
3a. Pinus mugo scrub dense (more than 80% of total cover)
3b. Pinus mugo scrub sparse (30–80% of total cover)
4. Closed alpine grasslands dominated by Nardus stricta 
5.   Grasses (except Nardus stricta) and subalpine Vaccini-

um vegetation
6. Alpine heathlands
7. Wetlands and peat bogs
8. Water areas (only for OBIA)

3.3 Training and Validation Data

The dataset collected in the field and completed with 
polygons added on the basis of orthoimages visual inter-
pretation (see Chapter 3.1) was divided into training and 
validation parts.

Training dataset for per-pixel and object based clas-
sification of WV-2 and orthoimages using detailed clas-
sification legend contains 33 training polygons divided 
into 13 classes. The total area of training dataset is about 
6,700 m2. 

Thirty seven polygons (area of 11,800 m2) were used 
for validation. The training dataset for simplified leg-
end was created by visual interpretation of orthoimag-
es (WV-2 data, orthoimages). The total area of training 
data covered 17,396 m2 (western part) and 31,800 m2 
(eastern part), respectively. For validation, combined 
validation and training datasets for the detailed legend 
(see above) re-classified into the simplified legend were 
utilized.

Training dataset for the simplified legend, based on 
visual interpretation of orthoimages, was also creat-
ed in the case of Landsat 8 data. The rather big size of 
Landsat pixels, however, necessitated the use of larger 
areas. Altogether 1,133 pixels were trained (total area 
1,019,700 m2). The validation was again based on the 
dataset collected in the field (see Chapter 3.1). This 
dataset, however, had to be radically altered using visual 

interpretation of orthoimages and Landsat 8 images. 
The polygons identified in the field were always smaller 
than one Landsat 8 pixel. Thus, in cases when also the 
surrounding area was identified as the same class of the 
simplified legend, the respective pixels were taken into 
consideration in the accuracy assessment. On the con-
trary, pixels that clearly included a different land cover 
were deleted. Following the above mentioned adjust-
ments, the Landsat validation dataset included 332 pix-
els covering the area of 298,000 m2.

3.4 Mask 

Clouds, shadows, and snow had to be masked from 
the imagery. The mask for WV-2 images was created by 
unsupervised classification ISODATA. Altogether 40 
classes were identified and further aggregated into four 
groups: shadows and water areas in Western Tundra, plus 
clouds and snow in Eastern Tundra. The mask consisting 
of mentioned four classes had been applied to the image-
ry before the classification process started.

The mask applied to orthoimages (snow, shadows 
of vegetation and terrain) was created by object based 
classification using ENVI software and the rule-based 
approach. For the rules and attributes see Table 2. All four 
spectral bands and two parameters (Scale Level 40, Merge 
Level 80) were employed to carry out the segmentation.

For Landsat data, the mask of clouds and their shad-
ows (located at NW part of the study area) was created 
using ISODATA classification.

Tab. 2 Rules and attributes used for orthoimages mask creation

Class Attribute Rule

shadows Spectral Mean 1 < NIR < 65

snow Spectral Mean NIR > 255

3.5 Classification 

The classification methods correspond to data types. 
Big differences among spatial resolutions of different 
data types justify the use of per-pixel and object based 
classification. Blaschke (2010) argues that the per-pixel 
approach brings better results when data with low spatial 
resolution are used; on the contrary, if data with high spa-
tial resolution were available, object based classification is 
more appropriate. In our research, only object based clas-
sification is used for orthoimages, and only per-pixel clas-
sification for Landsat data. The WorldView-2 data were 
analysed using both object based and per-pixel approach 
enabling the comparison of results brought by these two 
methods. For schematic workflow see Figure 3.

3.6 Classification per-pixel

Three different per-pixel supervised classification algo-
rithms were employed in this study: maximum likelihood 
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classification (MLC), support vector machine (SVM), and 
neural net algorithms (NN). 

Maximum likelihood classification
There are two conditions for successful application of 

this widely used algorithm. First, the image data should 
show normal distribution (Fernandez-Prieto 2006). Sec-
ond, the training samples’ statistical parameters (e.g., 
mean vector and covariance matrix) should truly rep-
resent the corresponding land cover class (Duarte et al. 
2005). When ENVI software is used for maximum like-
lihood algorithm, parameters cannot be changed in any 
way with the exception of probability threshold parame-
ter. The latter, however, was not used.

Machine learning algorithms
The machine learning classification algorithms, such 

as support vector machines (SVM) or artificial neural 
networks (or neural networks; NN), are also pixel-based 
classifiers (Petropoulos et al. 2012; Camps-Valls et al. 
2004). Both methods belong among supervised non-par-
ametric methods, which means that no particular data 
distribution is required (e.g. normal distribution). This 
makes a difference compared to other conventional clas-
sifiers, such as maximum likelihood classifier (Jones and 
Vaughan 2010). This fact is a  big advantage of NN 
and SVM as the majority of remotely sensed data show 
an unknown statistical distribution.

Support vector machines algorithm
The support vector machines algorithm is based on the 

statistical learning theory and aims to find the best hyper-
plane in a multidimensional feature space that optimally 

separates classes. The term “best hyperplane” is used to 
refer to a decision boundary obtained in a training step 
and minimizing misclassifications. Training samples used 
for construction of hyperplane are called support vectors. 
These lie on the margin of classes to be classified and 
are extracted automatically by the algorithm (Jones and 
Vaughan 2010; Petropoulos et al. 2012; Mountrakis et al. 
2011; Camps-Valls et al. 2004). Three Kernel types were 
tested using ENVI software in the case of SVM classifica-
tion: radial basic functions (RBF), linear, and polynomial. 
In the case of RBF, Gamma was set to 0.125 for WV-2 and 
0.143 for Landsat 8. Kernel Polynomial 2 was chosen in 
the case of polynomial function.

Neural networks algorithm
The artificial neural networks algorithm is designed 

to simulate human learning process by establishing 
linkages between input and output data via one or more 
hidden layers. The basic unit of each layer is called neu-
ron (node) (Benediktsson et al. 1990). The classic mod-
el of a feed-forward multilayer neural network, known 
as multilayer perception (MLP) has fully-connected 
neurons between all layers (input, output, and hidden), 
which means that each neuron of a given layer feeds all 
the neurons in the next layer (Camps-Valls et al. 2004). 
This model is used in our processing tool, ENVI 5.2 
software.

The neural network algorithm, applied to WV-2 
data, was used in two modes. First, the default setting of 
ENVI software was applied. Second, the setting shown 
in Table 3 was used. Default setting was also applied to 
Landsat 8 data as the hidden layers and changes of some 
other parameters did not bring better results.

Simplified legend Detailed legend

Number of classes

Area of interest

Image data

Classification

9* 13*

Western TundraWestern Tundra and Eastern Tundra

OrthoimagesWorldView-2Landsat 8

OBIA

WorldView-2Orthoimages

OBIAMLC MLCSVM SVMNN NN

8 12

* Water areas

Training data

Validation data

33 polygons from the field

37 polygons from the field

Visual interpretation of orthoimages

Re-classified field
data (33+37polygons)

Re-classified field data 
adapted for Landsat pixel

Fig. 3 Workflow.
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Table 3 Parameters of neural network algorithm

Training Threshold Contribution 0.9

Training Rate 0.9

Training Momentum 0.1

Training RMS Exit Criteria 0.05

Iteration 5000

3.7 Object based image classification

The object based image analysis (OBIA) does not 
examine pixels, but works with homogeneous clusters of 
pixels called segments. Segments are areas generated by 
one or more criteria of homogeneity. Thus, compared to 
single pixels, segments include additional spectral infor-
mation (e.g. mean values per band, minimum and max-
imum values, mean ratios, variance etc.) (Blashke 2010). 
The example-based approach in ENVI software was 
employed for object based classification using the support 
vector machine algorithm.

Segmentation
The ENVI software includes only two segmentation 

algorithms: edge and intensity. The edge algorithm, 
where images are divided on the bases of Sobel’s method 
of edge detection, was chosen in this study. Segmenta-
tion (orthoimages and WV-2) was carried out using all  
four/eight spectral bands. The parameters applied are 
shown in Table 4.

The ENVI software processes the segmentation each 
time it is started; consequently, the software does not 
allow to use any previously segmented image for further 
classifications.

Tab. 4 Segmentation parameters

Parameter Orthoimages WV-2

scale level 45 50

merge level 80 85

texture kernel size (pixels) 5 × 5 3 × 3

Example based classification
The example based classification sorts segments into 

pre-defined classes using training areas (segments), 
selected attributes, and classification algorithm. The fol-
lowing spectral and texture attributes were chosen: spec-
tral mean, spectral max, spectral min, spectral standard 
deviation, texture mean, and texture variance. The above 
mentioned attributes were calculated for all spectral 
bands. The SVM classification algorithm with Kernel type 
radial basic function was used.

3.8 Accuracy Assessment

The ENVI software was used for accuracy assess-
ment in all cases using validation polygons as defined 
for different data types (Chapter 3.3 and Figure 3). First, 

Confusion Matrix was created on the basis of ground true 
ROIs. The total accuracy was assessed as was the produc-
er’s and user’s accuracy for different classes. Kappa coeffi-
cient for each classification was calculated, too.

4. Results

Table 5 shows the results of classifications (object 
based and per-pixel) for the detailed legend (applied in 
the western part of the tundra for orthoimages and WV-2 
data). Table 6 shows the results for the simplified legend 
(applied in both parts of the tundra for all types of data). 
Figures 4–7 show the best classification map outputs for 
different types of data. 

Tab. 5 Results of different classification methods (detailed legend) 
in Western Tundra.

Method Data Accuracy (%)
Kappa 

coeficient

OBIA-SVM (RBF) orthoimages 71.96 0.65

 WV-2 66.50 0.60

SVM (RBF) WV-2 60.82 0.54

SVM (polynomial) WV-2 60.45 0.54

SVM (linear) WV-2 60.30 0.54

NN WV-2 60.13 0.54

MLC WV-2 58.07 0.53

NN (default) WV-2 54.59 0.49

4.1 Classification results: orthoimages

Orthoimages were classified by the object based 
approach only. This was applied to the detailed legend 
(western part) as well as to the simplified legend (west-
ern and eastern parts). The best classification results were 
obtained in the Eastern Tundra for simplified legend; the 
overall accuracy reached 83.56% (Kappa coefficient = 
0.8). When different classes of the legend are compared, 
the classes “block field and anthropogenic areas”, “water 
areas”, and “wetlands and peatbogs” show the best results. 
The user’s and producer’s accuracy exceeded 90% in all 
cases. 

On the contrary, the class “closed alpine grasslands 
dominated by Nardus stricta” shows the worst results of 
all. Though the producer’s accuracy equalled 99.7%, the 
user’s  accuracy reached only 27%. The most common 
overlaps were with “Pinus mugo scrub sparse” and also 
with “wetlands and peatbogs”.

In the case of detailed legend (Western Tundra), the 
overall accuracy equals 71.96% and Kappa coefficient 0.65. 
The best results were again achieved for the classes “water 
areas”, “block fields and anthropogenic areas”, and also for 
“Pinus mugo scrub”. Producer’s and user’s accuracy var-
ied in the range 87–100%. The classes “wetlands and peat 
bogs” and “subalpine Vaccinium vegetation” also show 
very good results with producer’s  and user’s  accuracy
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Tab. 6 Results of different classification methods (simplified 
legend) in both parts of Tundra.

Method Data Area
Accuracy 

(%)
Kappa 

coefficient

OBIA-SVM 
(RBF)

orthoimages East 83.56 0.8

 orthoimages West 73.1 0.67

 WV-2 East 66.37 0.6

 WV-2 West 68.4 0.62

MLC WV-2 East 57.04 0.48

 WV-2 West 59.96 0.51

 Landsat
West/
East

78.31 0.75

SVM 
(polynomial)

WV-2 East 42.49 0.39

 WV-2 West 56.11 0.46

 Landsat
West/
East

68.37 0.63

SVM (RBF) WV-2 East 42.82 0.35

 WV-2 West 56 0.46

 Landsat
West/
East

68.67 0.64

SVM (linear) WV-2 East 41.19 0.32

 WV-2 West 55.28 0.45

 Landsat
West/
East

68.37 0.64

NN (default) WV-2 East 41.71 0.33

NN (default) WV-2 West 57.42 0.47

NN WV-2 East 36.64 0.27

NN WV-2 West 58.36 0.48

NN (log) Landsat
West/
East

63.55 0.58

ranging between 70% and 80%. On the contrary, the class-
es “alpine heathlands”, “Calamagrostis villosa stands”, and 
“Deschampsia cespitosa stands” show poor accuracy (less 
than 10%). In the case of alpine heathlands, the selected 
sample did not include enough training areas.

4.2 Classification results: WV-2 data

Per-pixel and object based approaches were used in 
the case of WV-2 data. Both classifications were applied 
to detailed legend (Western Tundra) as well as to simpli-
fied legend (Western and Eastern Tundra).

Best results were obtained in the case of object based 
classification applied to simplified legend in the western 
part (overall accuracy = 68.4%, Kappa coefficient = 0.62). 
Classes “Picea abies stands” and “block fields and anthro-
pogenic areas” were classified with the highest accura-
cy. Producer’s  and user’s  accuracy varied in the range 
90–100%. Very good results were also obtained in the 
case of “grasses (except Nardus stricta) and subalpine Vac-
cinium vegetation” with producer’s and user’s accuracy 

equalling ca. 80%. “Pinus mugo scrub dense” was often 
confused with “Pinus mugo scrub sparse”. The class 
“closed alpine grasslands dominated by Nardus stricta” 
shows the worst results (producer’s accuracy = 73.73%, 
user’s accuracy = 35.51%).

The overall accuracy of object based classification in 
the western part (detailed legend) was almost identical 
to that in the eastern part (simplified legend) – around 
66%, Kappa coefficient = 0.6). Producer’s and user’s accu-
racy reached almost 100% in the case of “block fields and 
anthropogenic areas” class. Also the classes “Pinus mugo 
scrub” and “Picea abies stands” showed very good results 
(producer’s and user’s accuracy 80–99%). As in the case 
of orthoimages, the classes “alpine heathlands”, “Calama-
grostis villosa stands”, and “Deschampsia cespitosa stands” 
were classified with poor accuracy (producer’s  and 
user’s accuracy below 5%).

Per-pixel classifications of WV-2 brought worse results 
than the object based one. Overall accuracy ranged 
between 50 and 60%. As regards the detailed legend 
(Western Tundra), the SVM (RBF) classification brought 
the best results (60.82%, Cappa coefficient = 0.54). The 
MLC method worked best for the simplified legend 
(59.96%, Cappa coefficient = 0.51).

Classes “Pinus mugo scrub” (producer’s  accuracy 
= 85.35%, user’s accuracy = 76.49%) and “block fields 
and anthropogenic areas” show best results within the 
detailed legend classified by per-pixel approach (SVM 
RBF method). Also “subalpine Vaccinium vegetation” was 
classified well (producer’s accuracy = 70.26%, user’s accu-
racy = 70.14%)

The results of earlier field research suggested that 
classes “Calamagrostis villosa stands” and “Molinia 
caeruela stands” would be confused with each other most 
often. This assumption was partly confirmed by per-pixel 
approach; however, also classes “Nardus stricta stands” 
and “Deschampsia cespitosa stands” often overlapped. 
Surprisingly, it was “Deschampsia cespitosa stands” that 
showed the best results of all grassland vegetation – pro-
ducer’s accuracy equalled 70.26%, user’s accuracy 40.21% 
(SVM RBF method).

Regarding the assessment of simplified legend in 
Western and Eastern Tundra, “Pinus mugo scrub” (dense 
and sparse) again showed the bests results. The produc-
er’s accuracy exceeded 90% in both cases; user’s accuracy 
ranged around 60%. However, “Pinus mugo scrub dense” 
was often confused with “Pinus mugo scrub sparse”. For 
future WV-2 classification, it may be appropriate to merge 
these two classes. 

In the Western Tundra, “block fields and anthropo-
genic areas” and “closed alpine grasslands dominated by 
Nardus stricta” showed very good results. Classes “Alpine 
heathlands” and “block fields and anthropogenic areas” 
performed best in the East.
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4.3 Classification results: per-pixel approach applied to 
Landsat data

Landsat data were classified only by per-pixel algo-
rithms that were applied to simplified legend, simultane-
ously in both parts of the tundra. MLC algorithm brought 
the best results (overall accuracy 78.31%); other algo-
rithms brought worse results by more than 10%.

The classes “Pinus mugo srub dense”, “Alpine heath-
lands”, “Picea abies stands”, and “block fields and anthro-
pogenic areas” were classified without major problems 
– producer’s and user’ accuracy exceeded 80% and often 
were close to 100%. In the case of “Pinus mugo scrub 
sparse”, producer’s accuracy equals 100%, but user’s accu-
racy was rather low (45.9%). It means that “Pinus mugo 
scrub sparse” was overclassified, largely to the detriment 
of “grasses (except Nardus stricta) and subalpine Vac-
cinium vegetation”. On the contrary, the class “closed 
alpine grasslands dominated by Nardus stricta” showed 
a  sort of a  reverse effect: the producer’s  accuracy was 
rather low (44.44%) as the latter was often confused with 
“grasses (except Nardus stricta) and subalpine Vaccinium 
vegetation”.

It can be concluded that most problems were posed by 
grassland vegetation and by classes where grassland veg-
etation occurs extensively. Other land cover types were 
classified well also by Landsat data.

4.4 Classification results: map outputs

Classification map outputs can be found in Colour 
Appendix. Figure 4 shows the best classification results 
for detailed legend; Figures 5 and 6 show that for simpli-
fied legend and object based classification of orthoimages 
and WordView-2 data in Western and Eastern Tundra. 
The best results for Landsat 8 data are shown in Figure 7. 

When classification outputs are compared, varying 
spatial resolution of different data types is instantly recog-
nizable. Based on different spatial resolution final mosaics 
of classified categories differs (areal extent, spatial distri-
bution, shape). While Landsat 8 data are useful rather for 
general overview, orthoimages provide accurate maps 
of land cover within the study area for all classes of the 
detailed legend.

5. Discussion and Conclusions

The major aim of this study was to assess and compare 
the potential of selected multispectral data with various 
spatial and spectral resolutions for land cover classifica-
tion above the tree line. Different types of classifiers were 
used including per-pixel and object based approach.

Though vegetation types are usually well defined and 
do not overlap too much in the tundra of Krkonoše, a vast 
array of species exists there. These species often alternate 
with each other within a  limited area. Consequently, 

spatial resolution plays a more important role than spec-
tral resolution in the case of object based classification. It 
was the object based classification of orthoimages (spatial 
resolution 12.5 cm, four spectral bands) that brought the 
best results for both legends – overall accuracy equalled 
72–84%. Thus, it has been confirmed that application 
of object based classification is more appropriate than 
per-pixel approach when data with very high spatial reso-
lution are examined. Orthoimages and object based clas-
sification can be recommended to National Park author-
ities as appropriate tools for landscape monitoring in 
this area of high nature value. Another advantage is that 
orthoimages are updated every second year by the state 
and consequently available for free to the National Park 
management. On the contrary, object based classification 
requires a specialized software, the classification itself is 
rather difficult, and processing time quite long.

The object based classification of WorldView-2 data 
was less accurate than in the case of orthoimages (68.4% 
at best) though WV-2 data provide better spectral res-
olution. The per-pixel approach applied to WV-2 data 
(detailed legend) was even less accurate; the highest accu-
racy (60.82%) brought the SVM (RBF) algorithm.

Classification of Landsat data applied to simplified 
legend (MLC method) brought surprisingly good results 
– overall accuracy equalled 78%. Construction of the 
legends may be the reason why per-pixel classifications 
applied to simplified legend were more accurate in the 
case of Landsat data rather than for WV-2 data. A spe-
cial simplified legend optimized for Landsat data was 
created. The use of training or validation polygons for 
detailed legend proved to be impossible as in most cases 
these polygons were smaller than the pixel size (30 × 30 
metres); thus, clear pixels for detailed legend could not 
be defined.

Such a simplified, specially adjusted legend, however, 
was not fully appropriate for WorldView-2 data. Classes 
“Pinus mugo scrub dense” and “Pinus mugo scrub sparse” 
posed biggest problems in the case of simplified legend 
and were often confused with each other. Though such 
a precise definition of Pinus mugo (dense vs. sparse) is 
essential for Landsat data, it is apparently not appropriate 
for high resolution data as WV-2. Moreover, some train-
ing and validation polygons were covered by clouds dur-
ing research time; consequently, part of WV-2 data could 
not be used.

This study also compared the suitability of per-pixel 
and object based classification for different data types. 
Per-pixel classification proved to be fully appropriate in 
the case of Landsat data. On the contrary, per-pixel clas-
sification of high resolution orthoimages brought unsatis-
factory results. Object based classification of Landsat data 
(spatial resolution 30 metres) does not make much sense 
either on such a small territory where vegetation classes 
alternate often. Both types of classification were applied 
to WorldView-2 data; object based classification brought 
better results by some 10% than the per-pixel one.
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Different algorithms for per-pixel classification were 
compared, too. The examination of WV-2 data showed 
that the MLC classifier worked best for simplified legend. 
In the case of detailed legend, however, the more sophisti-
cated algorithm, SVM (RBF), brought better results.

Earlier field research suggested that classifications 
would be more accurate in the Eastern Tundra as differ-
ent vegetation types as specified in the legends seemed to 
be clearly defined there. As an example, “Molinia caeruela 
stands” and “Calamagrostis villosa stands” covered com-
pact areas surrounded by “Nardus stricta stands”. This 
presumption was confirmed by orthoimages classification 
(overall accuracy 83.56%). Classification of WV-2 data, 
however, brought different results – in part probably due 
to clouds and shadows on the image. 

Classification results may be influenced by varying 
weather conditions, and also by the season. Vegetation 
classes tend to be rather compact during spring and 
autumn, while in summer (July, August) the grassland 
vegetation advances and different types blend. The blos-
som may also influence spectral bands in some cases. The 
above mentioned differences may have played a certain 
role when orthoimages and WV-2 data were compared. 
Unfortunately, it is practically impossible to acquire all 
required multispectral data of different spectral and spa-
tial resolution within one year and one season. That is 
why it was necessary to examine data acquired in differ-
ent years. Research results may be partly influenced by 
this fact.

Regarding classification accuracy of different classes, 
all types of data brought good results for non-vegetation 
classes (block fields and anthropogenic areas, water are-
as). Also the category subalpine Vaccinium vegetation 
shows high accuracy for detailed legend (orthoimages 
and WV-2 data). As expected, subalpine tall grasslands 
subcategories with similar spectral signatures (Calama-
grostis villosa stands and Deschampsia cespitosa stands, 
Molinia caeruela stands) show less satisfactory results. 
The worse-than-expected results in the case of alpine 
heathlands were probably influenced by the low presence 
of training polygons. On the contrary, Landsat 8 data cov-
ered the whole tundra and therefore also more training 
polygons – consequently, alpine heathlands were classi-
fied with high accuracy (MLC: user’s accuracy 95.65%, 
producer’s accuracy 81.48%).

Pinus mugo scrub usually shows good classification 
results, too. In the case of simplified legend, Pinus mugo 
scrub was further subdivided into dense and spare subcat-
egories; such a subdivision, however, proved to be inap-
propriate for WV-2 data and orthoimages. As Landsat 
data consist of rather big pixels, it is difficult to find real-
ly uniform categories. Pinus mugo scrub sparse is often 
mixed with grassland vegetation within one pixel. Pinus 
mugo scrub dense does not have this problem and brings 
better results when classified as a separate class. When it 
comes to very high resolution data, however, Pinus mugo 
scrub practically does not mix with other categories. 

Some categories of simplified legend may be too broadly 
defined for high resolution data. This was proved to a cer-
tain extent in the case of closed alpine grasslands domi-
nated by Nardus stricta and grasses (except Nardus stricta) 
and subalpine Vaccinium vegetation classes.

The results comparing detailed and simplified legends 
show that in the case of multispectral data with different 
spatial resolution it is difficult – if not impossible – to find 
such a compromise that would be appropriate for data 
of different resolution. One single legend cannot serve 
a basis for comparison of different data; the level of detail 
should always be related to data resolution.

It can be concluded that in the case of simplified legend 
– the overall accuracy of Landsat data (MLC algorithm, 
78.31%) and object based classification of orthoimages 
(83.56%) – our results are similar to those mentioned in 
earlier scientific sources. As an example, Müllerová (2004) 
classified multispectral data in Krkonoše in 1986, 1989, 
and 1997; supervised classification identified nine class-
es of local vegetation with accuracy 81.1%. Král (2009) 
classified alpine vegetation on the Czech territory, too. 
In the latter case, the accuracy of orthoimages equalled 
78% (MLC method). However, the rather high spectral 
variation of different land cover classes and low spectral 
resolution of orthoimages resulted in mixed character of 
many classes. Wundram a Loffler (2008) classified alpine 
vegetation in Norway and achieved similar results. The 
maximum likelihood method applied to orthoimages 
(RGB bands) resulted in overall accuracy equalling 51%.

Algorithm MLC used for Landsat data classification 
brought the accuracy of 78.31% in our research. Knorn et 
al. (2009) utilized Landsat data for land cover classifica-
tion in the Carpathians; SVM method brought accuracy 
up to 98.9% for nine classes. Landsat data were also used 
by Johansen et al. (2012) for tundra mapping on Svalbard. 
The final product was a map (scale 1: 500,000) containing 
eighteen classes. The processing chain contained six stag-
es including unsupervised classification and merging the 
classes based on ancillary data. Verification of the final 
product is problematic in such remote areas; the over-
lap between Landsat data classification and traditional 
vegetation mapping in Gipsdalen Valley reached 55.36% 
(eight aggregated classes were tested).

Our research confirms that Landsat data are sufficient 
to get a general overview of basic land cover classes above 
the tree line in the Krkonoše Mts. National Park. Alter-
natively, the recently launched Sentinel-2 satellite could 
be used – images have comparable spatial resolution and 
better spectral resolution. Detailed classification, howev-
er, requires orthoimages with very high spatial resolution, 
plus sophisticated algorithms of object based classification 
should be used. WorldView-2 data brought the least sat-
isfactory results in our research. However, this may have 
been influenced by clouds, and also by problems with 
exact definition of the legend as discussed above. Based 
on the comparison of the data with different spectral and 
spatial resolution we can conclude that very high spatial 
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resolution is the decisive feature that is essential to reach 
high overall classification accuracy in the detailed level. 
Zagajewski (2005) and other scientists suggest that utili-
zation of hyperspectral data of very high spatial resolution 
(alternatively combined with LiDAR data – see Dalponte 
2012) could bring further improvements of classification 
accuracy.
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RESUMÉ

Klasifikace vegetace nad horní hranicí lesa v Krkonošském národním 
parku s využitím multispektrálních dat

Článek hodnotí možnosti multispektrálních dat s  rozdílným 
prostorovým a spektrálním rozlišením pro klasifikaci vegetace nad 
horní hranicí lesa v Krkonošském národním parku. Letecká ortofo-
ta s velmi vysokým prostorovým rozlišením 12,5 cm a čtyřmi spekt-
rálními pásmy byla klasifikována objektovou klasifikací. Družicová 

data WorldView-2 (WV-2) s vysokým prostorovým rozlišením 2 m 
a osmi spektrálními pásmy byla klasifikována jak objektově, tak 
pixelově. Pixelová klasifikace byla provedena i na volně dostupných 
datech Landsat 8 s prostorovým rozlišením 30 m a sedmi spektrál-
ními pásmy. Z algoritmů pro pixelovou klasifikaci byly porovnává-
ny klasifikátory maximum likelihood classification (MLC), support 
vector machine (SVM) a neural net (NN). Pro objektovou klasifi-
kaci byl využíván přístup example-based a algoritmus SVM (vše 
dostupné v ENVI 5.2). Schéma pracovního postupu je na obrázku 3.

Analýza byla provedena v krkonošské tundře. Modelová oblast 
je situována ve dvou prostorově oddělených částech – východní 
a západní části tundry (obrázek 1). Pomocí dat Landsat byla hod-
nocena celá oblast východní (rozloha 1284 ha) i západní (rozloha 
2284 ha) tundry v české části KRNAP. Pomocí ostatních datových 
zdrojů vzhledem k výpočetní náročnosti klasifikací pouze vybrané 
části území (565 ha na západě v and 839 ha na východě) reprezen-
tativní pro danou oblast. 

Klíčovou částí práce byla definice legendy, která byla vytvo-
řena ve spolupráci s botanikem Krkonošského národního parku. 
Základní podrobná legenda obsahuje celkem 12 tříd (viz níže 
a viz obrázek 2). Byla využita pro ortofota a WV-2, a to pouze 
v západní tundře. Vzhledem k tomu, že se dané třídy vyskytu-
jí velmi často na menších plochách, než je pixel Landsatu 8 (tj. 
900 m2), bylo nutné vytvořit i zjednodušenou legendu vhodnou 
pro klasifikaci dat Landsat. Zjednodušená legenda obsahuje 8 tříd 
a byla použita pro klasifikaci všech zmíněných typů dat za účelem 
jejich porovnání.

Podrobná legenda
1. kamenná moře a antropogenní plochy
2. smrkové porosty 
3. kosodřevina
4. subalpínská brusnicová vegetace
5. alpínské trávníky zapojené
5a. smilka tuhá
5b. druhově bohaté porosty s vysokým zastoupením dvouděložných
6. subalpínské vysokostébelné trávníky
6a. třtina chloupkatá
6b. bezkolenec modrý
6c. metlice trsnatá
7. subalpínské vysokobylinné trávníky
8. alpínská vřesoviště
9. mokřady a rašeliniště
10. vodní plochy (klasifikovány pouze z ortofot)

Zjednodušená legenda
1. kamenná moře a antropogenní plochy
2. smrkové porosty
3a. kosodřevina hustá (> 80% porostu)
3b. kosodřevina řídká (30% - 80% porostu)
4. alpínské trávníky zapojené s vysokým zastoupením smilky tuhé
5. trávy (vyjma smilky tuhé) a subalpínská brusnicová vegetace
6. alpínská vřesoviště
7. mokřady a rašeliniště
8. vodní plochy (klasifikovány pouze z ortofot)

Nejlepší výsledky byly v  případě podrobné i  zjednodušené 
legendy dosaženy pro ortofota (celková přesnost klasifikace 83,56, 
resp. 71,96 %, Kappa koeficient 0,8, resp. 0,65). Klasifikace WV-2 
dosáhla nejlepšího výsledku v případě objektového přístupu a zjed-
nodušené legendy (68,4 %), z pixelových klasifikací v případě meto-
dy SVM (RBF) a podrobné legendy (60,82 %). Data Landsat byla 
nejpřesněji klasifikována s využitím MLC (78,31 %). Nejlepší klasi-
fikační výstupy pro jednotlivé typy dat jsou na obrázcích 4–7.
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Potvrdil se náš předpoklad, že v  případě vegetace v  tundře 
dosáhneme pro data s  velmi vysokým prostorovým rozlišením 
objektovou klasifikací lepších výsledků než klasifikací pixelovou. 
Ortofota a objektovou klasifikaci lze na základě našich výsledků 
doporučit managementu národního parku pro monitoring této 
cenné části Krkonoš. Výhodou je i to, že ortofota jsou pravidelně 
každé dva roky pořizována ze státních zdrojů a národní parky je 
mají volně k dispozici. Nevýhodou je naopak nutnost vlastnit SW 
pro objektovou klasifikaci, poměrně náročný postup klasifikace 
a delší výpočetní čas.

Pokud se týká přesnosti klasifikace jednotlivých tříd, tak lze říci, 
že v žádném z typů dat nebyl problém s klasifikací nevegetačních 
tříd (kamenná moře a antropogenní plochy, vodní plochy). Dob-
ře byla také většinou vyklasifikována kategorie kosodřevina. Pro 
detailní legendu dosahovala dobré přesnosti také kategorie sub-
alpínská brusnicová vegetace (v případě ortofot i WV-2). Horší 
klasifikační výsledky jsme podle očekávání zaznamenali v přípa-
dě podkategorií třídy subalpínské vysokostébelné trávníky, jejichž 
spektrální signál je podobný (třtina chloupkatá, bezkolenec modrý, 
metlice trsnatá). 

Na základě výsledků klasifikace jednotlivých kategorií s využi-
tím podrobné a zjednodušené legendy lze učinit závěr, že v případě 
klasifikace multispektrálních dat s  řádově různým prostorovým 

rozlišením je problém najít takovou kompromisní legendu, která 
by vyhovovala všem prostorovým rozlišením. Srovnání potenciálu 
těchto dat na základě jedné legendy tedy není zcela možné a při 
sestavování legendy vždy musíme její podrobnost vztáhnout k roz-
lišení dat.

Z porovnání dat s rozdílným spektrálním a prostorovým rozli-
šením vyplynulo, že velmi vysoké prostorové rozlišení dat je zásad-
ním parametrem pro dosažení vysoké celkové přesnosti klasifikace 
v detailní úrovni.
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Fig. 4 Classification results for detailed legend in Western Tundra. Upper figure: orthoimages – object based classification SVM (RBF); 
lower figure: WordView-2 – per-pixel classification SVM (RBF). Source: Authors
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Fig. 7 Classification results for Landsat 8 – maximum likelihood classifier. Source: Authors
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