AUC Geographica 113
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ABSTRACT

This paper compares suitability of multispectral data with different spatial and spectral resolutions for classifications of vegetation above
the tree line in the Krkonose Mts. National Park. Two legends were proposed: the detailed one with twelve classes, and simplified legend
with eight classes. Aerial orthorectified images (orthoimages) with very high spatial resolution (12.5 cm) and four spectral bands have been
examined using the object based classification. Satellite data WorldView-2 (WV-2) with high spatial resolution (2 metres) and eight spectral
bands have been examined using object based classification and per-pixel classification. Per-pixel classification has been applied also to the
freely available Landsat 8 data (spatial resolution 30 metres, seven spectral bands). Of the algorithms for per-pixel classification, the following
classifiers were compared: maximum likelihood classification (MLC), support vector machine (SVM), and neural net (NN). The object based
classification utilized the example-based approach and SVM algorithm (all available in ENVI 5.2). Both legends (simplified and detailed ones)
show best results in the case of orthoimages (overall accuracy 83.56% and 71.96% respectively, Kappa coefficient 0.8 and 0.65 respectively).
The WV-2 classification brought best results using the object based approach and simplified legend (68.4%); in the case of per-pixel clas-
sification it was the SVM method (RBF) and detailed legend (60.82%). Landsat data were best classified using the MLC (78.31%). Our research
confirmed that Landsat data are sufficient to get a general overview of basic land cover classes above the tree line in the Krkonose Mts.
National Park. Based on the comparison of the data with different spectral and spatial resolution we can however conclude that very high

spatial resolution is the decisive feature that is essential to reach high overall classification accuracy in the detailed level.
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1. Introduction

The Krkono$e Mountains is a mountain range with
a fragmented alpine zone that occupies a narrow span
of elevations and has developed into two separated are-
as. The highest parts of the Krkonose Mts. National
Park (KRNAP) rise above the tree line and are cov-
ered by relict tundra. These areas are included in the
international tundra monitoring program (INTER-
ACT: International Network for Terrestrial Research
and Monitoring in the Arctic) (Soukupova et al. 1995;
Jenik and Stursa 2003).

For vegetation mapping and related analyses in large,
isolated areas that often receive legal protection, such as
tundra, remote sensing methods are commonly used.
Data with various spatial and spectral resolutions are
analysed using different methods of per-pixel and object
based classification.

Regarding the vegetation classification above the tree
line, Kral (2009) classified the orthoimages with infrared
band with spatial resolution 0.9 metres using the maxi-
mum likelihood algorithm in Jeseniky Mountains. Kral
(2009) especially focused on transitional zones between
subalpine forests and alpine tundra. In this way, he
defined seven land cover classes: anthropogenic areas,
pastures and barren land, Pinus mugo scrub, deciduous

trees, spruce cultures, dry spruce stands, and rocks. The
overall accuracy equalled 78%.

Orthoimages were also examined by Miillerova (2005)
who studied the tundra vegetation in the Krkonose Mts.
National Park. Having used multispectral aerial data
and the maximum likelihood method, she defined seven
classes: Pinus mugo scrub, Nardus stricta stands, subal-
pine tall grasslands and tall-herb vegetation, vegetation
along roads, roads, water areas, and wetlands. The overall
accuracy equalled 79%. The use of unsupervised classifi-
cation (ISODATA method) brought overall accuracy of
63% and six classes were identified.

Zagajewski et al. (2005) conducted mapping in the
eastern part of the Tatra National Park, Poland. They
focused on the mountain vegetation of subalpine, alpine,
and sub-nival zones utilizing hyperspectral data and max-
imum likelihood and neural net methods. Hyperspectral
aerial images were acquired by DAIS 7915 and by ROSIS
sensors. Based on unsupervised classification and visual
interpretation of the images, seven classes for supervised
classification were defined: Pinus mugo scrub, forests,
meadows, rocks, lakes, shadows, and roads. Overall accu-
racy reached 71-85%. Hyperspectral data were used also
by Marcinkowska et al. (2014). They classified vegetation
communities in the Krkonose Mts. National Park using
APEX data and Support Vector Machines classifier.
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Object based classification was used by Laliberte et al.
(2007) in order to distinguish between green and aging
vegetation in New Mexico. The study area was located
about 1,200 metres a. s. . They combined the methods
of decision tree and nearest neighbour. The classification
accuracy equalled 92%. Object based classifications of
orthoimages was also used by Lantz et al. (2010) in order
to examine changes in vegetation characteristics (cover
and patch size) across a latitudinal gradient in the Mac-
kenzie Delta Uplands. Four classes were identified: shrub
tundra, dwarf shrub tundra, water, and bare ground, with
overall accuracy 78.1% (Kappa coeflicient 0.66).

All of the above-mentioned studies used data with very
high spatial resolution. Data collected by Landsat sensors
(one pixel equals to 30 x 30 metres) are commonly used
to produce land cover classifications in large areas (see
Dixon, Candade 2008) or to examine forest cover (Wolter
et al. 1995, etc.). Landsat data, however, are only rarely
used for examination of grassland vegetation, except in
the case of vast regions in the northern tundra (Johansen
et al. 2012; Pattison et al. 2015).

Several authors compared a number of pixel classi-
fication algorithms (Zagajewski 2005) or per-pixel and
object based classification - see Yu et al. (2006), Cleve et
al. (2008), or Myint et al. (2011). So far, no study has been
carried out that would compare the potential of differ-
ent multispectral data and different types of classification
algorithms, including comparison of object based and
per-pixel approach for classification of alpine vegetation.
Thus, our study aims at evaluation and comparison of
selected multispectral data with various spatial and spec-
tral resolutions for land cover classification above the tree
line (focus is put on different vegetation classes), using
different classifiers including object based image analysis
(OBIA) and per-pixel approach. Orthoimages can serve
as an example of very high resolution data in this study.
Data collected by WorldView-2 satellite show high spatial
and spectral resolutions; the freely available data collected
by Landsat 8 (moderate resolution) are also examined.

As different vegetation types cover only small patches
of land, it is expected that spatial resolution of the data
may be crucial for the classification. On the other hand,
different vegetation types are clearly confined and usually
do not overlap. Thus, we presume that the object based
approach applied to high resolution data should bring
more accurate results than the per-pixel approach.

2, Study Area

Arctic-alpine tundra occurs in the highest parts of the
Krkonos$e Mountains above the tree line (from 1,300 m
a. s. 1. up). It covers a limited area of 47 km? (32 km? on
the Czech territory, 15 km? on the Polish territory), i. e.
just 7.4% of the total Krkonose area. The Scandinavian
Ice Sheet repeatedly expanded as far as to the northern
foothills of the Krkonose Mountains and during the

Holocene, tundra was a permanent phenomenon here
(Treml et al. 2008; Margold et al. 2011). As a result of this
palaeogeographical history, the Krkonose Mountains
represent a “biodiversity crossroads” where Nordic and
alpine flora and fauna coexist (Jenik and Stursa 2003).

The area covered by natural arctic-alpine tundra was
expanding due to deforestation and grazing from Early
Middle Ages (9th-11th century, Speranza et al. 2000;
Novak et al. 2010) until the beginning of the 19th centu-
ry when mountain agriculture (grazing and grass mow-
ing) peaked (Lokvenc 1995). Direct human impacts then
gradually diminished until the 1940s. Almost no direct
human intervention in the tundra zone has occurred
since then as these areas became strictly protected as
nature reserves. The alpine vegetation is being occasion-
ally disturbed mainly by periodical avalanches and debris
flows. Closed alpine grasslands, subalpine tall grasslands,
Pinus mugo scrub, alpine and subalpine scrub current-
ly form the prevailing vegetation types; in the highest
altitudes also mosses, lichens, and alpine heathlands are
common (Chytry et al. 2001).

Two spatially separated parts make up the study area:
Western Tundra and Eastern Tundra (Figure 1). The
western part is situated near Labskd bouda and covers
about 1,284 hectares. The Eastern part is located around
Lu¢ni bouda covering 2,284 hectares.

Both parts of tundra on the Czech territory were
examined in full using the Landsat data. Classifications of
the other data sources have been executed only in select-
ed parts of the study area (565 hectares in the western
part, 839 hectares in the eastern part) — Figure 1. Clas-
sifications using the detailed legend were applied only in
the western area.

3. Data and Methods

3.1Data

Three sensors of different spectral and spatial resolution
represent multispectral data in this study. First, there are
orthoimages acquired by aerial sensor on June 18, 2012.
Second and third are two satellite sensors: Word View-2 and
freely available Landsat 8. The WordView-2 images were
acquired on July 22, 2014 (western part) and on August
10, 2014 (eastern part). The Landsat 8 cloud-free image
acquired on July 27,2013 (ID: LC81910252013208LGN00)
was chosen from the Landsat archive.

Table 1 shows basic information on the data. No
atmospheric corrections were made as classifications were
carried out separately for all images; consequently, such
adjustments were not necessary (Song et al 2001). Spa-
tial accuracy was secured by geometric corrections and
orthorectification (orthoimages, WV-2) using digital sur-
face model created from aerial laser data (cloud of points,
5 points/m?) and L1T product in the case of Landsat
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Data Spatial resolution Number of.banc!s used Radiometric resolution Date
(metres) for classifications
Orthoimages 0.125 4 (blue, green, red, NIR) 8 bit June 18th, 2012
8 (coastal, blue, green,

. July 22th, 2014;

WV-2 2 yellow, red, red edge, NIR, 11 bit August 10th, 2014
NIR2)
7 (coastal, blue, green, red, X

Landsat 8 30 NIR, SWIRT, SWIR2) 12 bit July 27th, 2013

data (the latter utilizes corrections of digital surface mod-
el and surface points GLS2000).

Fifty nine polygons corresponding to vegetation class-
es as defined in the legend were identified in the field.
Data were collected in the period June 23 - June 25, 2014.
Polygons were located by GPS (Trimble Geoexplorer
3000 Geo XT, accuracy 10 centimetres) and classified on
the botanical basis according to the legend (see Chapter
3.2). Polygons corresponding to classes Pinus mugo scrub,
Picea abies stands, water and block fields, and anthropo-
genic areas were added later using manual vectorization
based on visual interpretation of orthoimages.

3.2 (lassification Legend

Definition of the legend constitutes the crucial part of
the research. Classifications were made using two types

of legends: the detailed legend (12 classes, respectively
13 for OBIA - Figure 3) for orthoimages and WV-2 data,
and simplified one (8 classes, respectively 9 classed for
OBIA - Figure 3) for all three types of data.

The detailed legend was created in cooperation with
national park botanists and includes the most important
classes of grassland vegetation as well as other vegetation
classes, and also classes without any vegetation cover
(Figure 2).

The detailed legend was used for orthoimages and
WV-2 in the Western Tundra only. As many vegetation
classes cover small patches of land less than 900 m? (equal
to 1 pixel of Landsat 8), it became necessary to create
a simplified legend suitable also for Landsat data classi-
fication. This simplified legend includes eight classes and
was used for classification of all data types for the sake of
comparison.
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Block fields and anthropogenic areas Picea abies stands Pinus mugo scrub

Species-rich vegetation with high cover
of forbs

Y

Subalpine Vaccinium vegetation Nardus stricta stands

Fig. 2 Pictures of vegetation classes as defined in the legend.
Source: Authors
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Detailed legend

1. Block fields and anthropogenic areas
2. Picea abies stands

3. Pinus mugo scrub

4. Subalpine Vaccinium vegetation

5. Closed alpine grasslands

5a. Nardus stricta stands

5b. Species-rich vegetation with high cover of forbs
6. Subalpine tall grasslands

6a. Calamagrostis villosa stands

6b. Molinia caeruela stands

6¢. Deschampsia cespitosa stands

7. Subalpine tall-herb vegetation

8. Alpine heathlands

9. Wetlands and peat bogs

10. Water areas (only for OBIA)

Simplified legend

1. Block fields and anthropogenic areas

2. Picea abies stands

3a. Pinus mugo scrub dense (more than 80% of total cover)

3b. Pinus mugo scrub sparse (30-80% of total cover)

4. Closed alpine grasslands dominated by Nardus stricta

5. Grasses (except Nardus stricta) and subalpine Vaccini-
um vegetation

6. Alpine heathlands

7. Wetlands and peat bogs

8. Water areas (only for OBIA)

3.3 Training and Validation Data

The dataset collected in the field and completed with
polygons added on the basis of orthoimages visual inter-
pretation (see Chapter 3.1) was divided into training and
validation parts.

Training dataset for per-pixel and object based clas-
sification of WV-2 and orthoimages using detailed clas-
sification legend contains 33 training polygons divided
into 13 classes. The total area of training dataset is about
6,700 m2.

Thirty seven polygons (area of 11,800 m?) were used
for validation. The training dataset for simplified leg-
end was created by visual interpretation of orthoimag-
es (WV-2 data, orthoimages). The total area of training
data covered 17,396 m? (western part) and 31,800 m?
(eastern part), respectively. For validation, combined
validation and training datasets for the detailed legend
(see above) re-classified into the simplified legend were
utilized.

Training dataset for the simplified legend, based on
visual interpretation of orthoimages, was also creat-
ed in the case of Landsat 8 data. The rather big size of
Landsat pixels, however, necessitated the use of larger
areas. Altogether 1,133 pixels were trained (total area
1,019,700 m?). The validation was again based on the
dataset collected in the field (see Chapter 3.1). This
dataset, however, had to be radically altered using visual

interpretation of orthoimages and Landsat 8 images.
The polygons identified in the field were always smaller
than one Landsat 8 pixel. Thus, in cases when also the
surrounding area was identified as the same class of the
simplified legend, the respective pixels were taken into
consideration in the accuracy assessment. On the con-
trary, pixels that clearly included a different land cover
were deleted. Following the above mentioned adjust-
ments, the Landsat validation dataset included 332 pix-
els covering the area of 298,000 m2.

3.4 Mask

Clouds, shadows, and snow had to be masked from
the imagery. The mask for WV-2 images was created by
unsupervised classification ISODATA. Altogether 40
classes were identified and further aggregated into four
groups: shadows and water areas in Western Tundra, plus
clouds and snow in Eastern Tundra. The mask consisting
of mentioned four classes had been applied to the image-
ry before the classification process started.

The mask applied to orthoimages (snow, shadows
of vegetation and terrain) was created by object based
classification using ENVT software and the rule-based
approach. For the rules and attributes see Table 2. All four
spectral bands and two parameters (Scale Level 40, Merge
Level 80) were employed to carry out the segmentation.

For Landsat data, the mask of clouds and their shad-
ows (located at NW part of the study area) was created
using ISODATA classification.

Tab. 2 Rules and attributes used for orthoimages mask creation

Class Attribute Rule
shadows Spectral Mean 1<NIR< 65
snow Spectral Mean NIR > 255

3.5 Classification

The classification methods correspond to data types.
Big differences among spatial resolutions of different
data types justify the use of per-pixel and object based
classification. Blaschke (2010) argues that the per-pixel
approach brings better results when data with low spatial
resolution are used; on the contrary, if data with high spa-
tial resolution were available, object based classification is
more appropriate. In our research, only object based clas-
sification is used for orthoimages, and only per-pixel clas-
sification for Landsat data. The WorldView-2 data were
analysed using both object based and per-pixel approach
enabling the comparison of results brought by these two
methods. For schematic workflow see Figure 3.

3.6 Classification per-pixel

Three different per-pixel supervised classification algo-
rithms were employed in this study: maximum likelihood
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Fig. 3 Workflow.

classification (MLC), support vector machine (SVM), and
neural net algorithms (NN).

Maximum likelihood classification

There are two conditions for successful application of
this widely used algorithm. First, the image data should
show normal distribution (Fernandez-Prieto 2006). Sec-
ond, the training samples’ statistical parameters (e.g.,
mean vector and covariance matrix) should truly rep-
resent the corresponding land cover class (Duarte et al.
2005). When ENVT software is used for maximum like-
lihood algorithm, parameters cannot be changed in any
way with the exception of probability threshold parame-
ter. The latter, however, was not used.

Machine learning algorithms

The machine learning classification algorithms, such
as support vector machines (SVM) or artificial neural
networks (or neural networks; NN), are also pixel-based
classifiers (Petropoulos et al. 2012; Camps-Valls et al.
2004). Both methods belong among supervised non-par-
ametric methods, which means that no particular data
distribution is required (e.g. normal distribution). This
makes a difference compared to other conventional clas-
sifiers, such as maximum likelihood classifier (Jones and
Vaughan 2010). This fact is a big advantage of NN
and SVM as the majority of remotely sensed data show
an unknown statistical distribution.

Support vector machines algorithm

The support vector machines algorithm is based on the
statistical learning theory and aims to find the best hyper-
plane in a multidimensional feature space that optimally

* Water areas

separates classes. The term “best hyperplane” is used to
refer to a decision boundary obtained in a training step
and minimizing misclassifications. Training samples used
for construction of hyperplane are called support vectors.
These lie on the margin of classes to be classified and
are extracted automatically by the algorithm (Jones and
Vaughan 2010; Petropoulos et al. 2012; Mountrakis et al.
2011; Camps-Valls et al. 2004). Three Kernel types were
tested using ENVI software in the case of SVM classifica-
tion: radial basic functions (RBF), linear, and polynomial.
In the case of RBF, Gamma was set to 0.125 for WV-2 and
0.143 for Landsat 8. Kernel Polynomial 2 was chosen in
the case of polynomial function.

Neural networks algorithm

The artificial neural networks algorithm is designed
to simulate human learning process by establishing
linkages between input and output data via one or more
hidden layers. The basic unit of each layer is called neu-
ron (node) (Benediktsson et al. 1990). The classic mod-
el of a feed-forward multilayer neural network, known
as multilayer perception (MLP) has fully-connected
neurons between all layers (input, output, and hidden),
which means that each neuron of a given layer feeds all
the neurons in the next layer (Camps-Valls et al. 2004).
This model is used in our processing tool, ENVI 5.2
software.

The neural network algorithm, applied to WV-2
data, was used in two modes. First, the default setting of
ENVT software was applied. Second, the setting shown
in Table 3 was used. Default setting was also applied to
Landsat 8 data as the hidden layers and changes of some
other parameters did not bring better results.
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Table 3 Parameters of neural network algorithm

Training Threshold Contribution 0.9
Training Rate 0.9
Training Momentum 0.1
Training RMS Exit Criteria 0.05
Iteration 5000

3.7 Object based image classification

The object based image analysis (OBIA) does not
examine pixels, but works with homogeneous clusters of
pixels called segments. Segments are areas generated by
one or more criteria of homogeneity. Thus, compared to
single pixels, segments include additional spectral infor-
mation (e.g. mean values per band, minimum and max-
imum values, mean ratios, variance etc.) (Blashke 2010).
The example-based approach in ENVI software was
employed for object based classification using the support
vector machine algorithm.

Segmentation

The ENVI software includes only two segmentation
algorithms: edge and intensity. The edge algorithm,
where images are divided on the bases of Sobel's method
of edge detection, was chosen in this study. Segmenta-
tion (orthoimages and WV-2) was carried out using all
four/eight spectral bands. The parameters applied are
shown in Table 4.

The ENVI software processes the segmentation each
time it is started; consequently, the software does not
allow to use any previously segmented image for further
classifications.

Tab. 4 Segmentation parameters

Parameter Orthoimages WV-2
scale level 45 50
merge level 80 85
texture kernel size (pixels) 5x%5 3x3

Example based classification

The example based classification sorts segments into
pre-defined classes using training areas (segments),
selected attributes, and classification algorithm. The fol-
lowing spectral and texture attributes were chosen: spec-
tral mean, spectral max, spectral min, spectral standard
deviation, texture mean, and texture variance. The above
mentioned attributes were calculated for all spectral
bands. The SVM classification algorithm with Kernel type
radial basic function was used.

3.8 Accuracy Assessment
The ENVI software was used for accuracy assess-

ment in all cases using validation polygons as defined
for different data types (Chapter 3.3 and Figure 3). First,

Confusion Matrix was created on the basis of ground true
ROIs. The total accuracy was assessed as was the produc-
er’s and user’s accuracy for different classes. Kappa coeffi-
cient for each classification was calculated, too.

4. Results

Table 5 shows the results of classifications (object
based and per-pixel) for the detailed legend (applied in
the western part of the tundra for orthoimages and WV-2
data). Table 6 shows the results for the simplified legend
(applied in both parts of the tundra for all types of data).
Figures 4-7 show the best classification map outputs for
different types of data.

Tab. 5 Results of different classification methods (detailed legend)
in Western Tundra.

Method Data Accuracy (%) coKeaﬁ'::Ii):n t

OBIA-SVM (RBF) orthoimages 71.96 0.65

WV-2 66.50 0.60
SVM (RBF) WV-2 60.82 0.54
SVM (polynomial) WV-2 60.45 0.54
SVM (linear) WV-2 60.30 0.54
NN WV-2 60.13 0.54
MLC WV-2 58.07 0.53
NN (default) WV-2 54.59 0.49

4.1 Classification results: orthoimages

Orthoimages were classified by the object based
approach only. This was applied to the detailed legend
(western part) as well as to the simplified legend (west-
ern and eastern parts). The best classification results were
obtained in the Eastern Tundra for simplified legend; the
overall accuracy reached 83.56% (Kappa coeflicient =
0.8). When different classes of the legend are compared,
the classes “block field and anthropogenic areas”, “water
areas’, and “wetlands and peatbogs” show the best results.
The user’s and producer’s accuracy exceeded 90% in all
cases.

On the contrary, the class “closed alpine grasslands
dominated by Nardus stricta” shows the worst results of
all. Though the producer’s accuracy equalled 99.7%, the
user’s accuracy reached only 27%. The most common
overlaps were with “Pinus mugo scrub sparse” and also
with “wetlands and peatbogs”

In the case of detailed legend (Western Tundra), the
overall accuracy equals 71.96% and Kappa coefficient 0.65.
The best results were again achieved for the classes “water
areas’, “block fields and anthropogenic areas”, and also for
“Pinus mugo scrub”. Producer’s and user’s accuracy var-
ied in the range 87-100%. The classes “wetlands and peat
bogs” and “subalpine Vaccinium vegetation” also show
very good results with producer’s and user’s accuracy
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Tab. 6 Results of different classification methods (simplified
legend) in both parts of Tundra.

Accuracy Kappa
Method Data Area (%) coefficient
OBIA-SVM .
(RBF) orthoimages | East 83.56 0.8
orthoimages | West 73.1 0.67
WV-2 East 66.37 0.6
WV-2 West 68.4 0.62
MLC WV-2 East 57.04 0.48
WV-2 West 59.96 0.51
Landsat West/ | ;531 0.75
East
SVM . WV-2 East 42.49 0.39
(polynomial)
WV-2 West 56.11 0.46
Landsat West/ | 6837 0.63
East
SVM (RBF) WV-2 East 42.82 0.35
WV-2 West 56 0.46
Landsat West/ | 6g.67 0.64
East
SVM (linear) WV-2 East 41.19 0.32
WV-2 West 55.28 0.45
Landsat West/ | 5537 0.64
East
NN (default) WV-2 East 41.71 0.33
NN (default) WV-2 West 57.42 0.47
NN WV-2 East 36.64 0.27
NN WV-2 West 58.36 0.48
West/
NN (I L . .
(log) andsat East 63.55 0.58

ranging between 70% and 80%. On the contrary, the class-
es “alpine heathlands”, “Calamagrostis villosa stands”, and
“Deschampsia cespitosa stands” show poor accuracy (less
than 10%). In the case of alpine heathlands, the selected
sample did not include enough training areas.

4.2 (lassification results: WV-2 data

Per-pixel and object based approaches were used in
the case of WV-2 data. Both classifications were applied
to detailed legend (Western Tundra) as well as to simpli-
fied legend (Western and Eastern Tundra).

Best results were obtained in the case of object based
classification applied to simplified legend in the western
part (overall accuracy = 68.4%, Kappa coefficient = 0.62).
Classes “Picea abies stands” and “block fields and anthro-
pogenic areas” were classified with the highest accura-
cy. Producer’s and user’s accuracy varied in the range
90-100%. Very good results were also obtained in the
case of “grasses (except Nardus stricta) and subalpine Vac-
cinium vegetation” with producer’s and user’s accuracy

equalling ca. 80%. “Pinus mugo scrub dense” was often
confused with “Pinus mugo scrub sparse”. The class
“closed alpine grasslands dominated by Nardus stricta”
shows the worst results (producer’s accuracy = 73.73%,
user’s accuracy = 35.51%).

The overall accuracy of object based classification in
the western part (detailed legend) was almost identical
to that in the eastern part (simplified legend) - around
66%, Kappa coeflicient = 0.6). Producer’s and user’s accu-
racy reached almost 100% in the case of “block fields and
anthropogenic areas” class. Also the classes “Pinus mugo
scrub” and “Picea abies stands” showed very good results
(producer’s and user’s accuracy 80-99%). As in the case
of orthoimages, the classes “alpine heathlands”, “Calama-
grostis villosa stands”, and “Deschampsia cespitosa stands”
were classified with poor accuracy (producer’s and
user’s accuracy below 5%).

Per-pixel classifications of WV-2 brought worse results
than the object based one. Overall accuracy ranged
between 50 and 60%. As regards the detailed legend
(Western Tundra), the SVM (RBF) classification brought
the best results (60.82%, Cappa coefficient = 0.54). The
MLC method worked best for the simplified legend
(59.96%, Cappa coeflicient = 0.51).

Classes “Pinus mugo scrub” (producer’s accuracy
= 85.35%, user’s accuracy = 76.49%) and “block fields
and anthropogenic areas” show best results within the
detailed legend classified by per-pixel approach (SVM
RBF method). Also “subalpine Vaccinium vegetation” was
classified well (producer’s accuracy = 70.26%, user’s accu-
racy = 70.14%)

The results of earlier field research suggested that
classes “Calamagrostis villosa stands” and “Molinia
caeruela stands” would be confused with each other most
often. This assumption was partly confirmed by per-pixel
approach; however, also classes “Nardus stricta stands”
and “Deschampsia cespitosa stands” often overlapped.
Surprisingly, it was “Deschampsia cespitosa stands” that
showed the best results of all grassland vegetation - pro-
ducer’s accuracy equalled 70.26%, user’s accuracy 40.21%
(SVM RBF method).

Regarding the assessment of simplified legend in
Western and Eastern Tundra, “Pinus mugo scrub” (dense
and sparse) again showed the bests results. The produc-
er’s accuracy exceeded 90% in both cases; user’s accuracy
ranged around 60%. However, “Pinus mugo scrub dense”
was often confused with “Pinus mugo scrub sparse”. For
future WV-2 classification, it may be appropriate to merge
these two classes.

In the Western Tundra, “block fields and anthropo-
genic areas” and “closed alpine grasslands dominated by
Nardus stricta” showed very good results. Classes “Alpine
heathlands” and “block fields and anthropogenic areas”
performed best in the East.
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4.3 (Classification results: per-pixel approach applied to
Landsat data

Landsat data were classified only by per-pixel algo-
rithms that were applied to simplified legend, simultane-
ously in both parts of the tundra. MLC algorithm brought
the best results (overall accuracy 78.31%); other algo-
rithms brought worse results by more than 10%.

The classes “Pinus mugo srub dense”, “Alpine heath-
lands”, “Picea abies stands”, and “block fields and anthro-
pogenic areas” were classified without major problems
- producer’s and user’ accuracy exceeded 80% and often
were close to 100%. In the case of “Pinus mugo scrub
sparse’, producer’s accuracy equals 100%, but user’s accu-
racy was rather low (45.9%). It means that “Pinus mugo
scrub sparse” was overclassified, largely to the detriment
of “grasses (except Nardus stricta) and subalpine Vac-
cinium vegetation” On the contrary, the class “closed
alpine grasslands dominated by Nardus stricta” showed
a sort of a reverse effect: the producer’s accuracy was
rather low (44.44%) as the latter was often confused with
“grasses (except Nardus stricta) and subalpine Vaccinium
vegetation”

It can be concluded that most problems were posed by
grassland vegetation and by classes where grassland veg-
etation occurs extensively. Other land cover types were
classified well also by Landsat data.

4.4 (lassification results: map outputs

Classification map outputs can be found in Colour
Appendix. Figure 4 shows the best classification results
for detailed legend; Figures 5 and 6 show that for simpli-
fied legend and object based classification of orthoimages
and WordView-2 data in Western and Eastern Tundra.
The best results for Landsat 8 data are shown in Figure 7.

When classification outputs are compared, varying
spatial resolution of different data types is instantly recog-
nizable. Based on different spatial resolution final mosaics
of classified categories differs (areal extent, spatial distri-
bution, shape). While Landsat 8 data are useful rather for
general overview, orthoimages provide accurate maps
of land cover within the study area for all classes of the
detailed legend.

5. Discussion and Conclusions

The major aim of this study was to assess and compare
the potential of selected multispectral data with various
spatial and spectral resolutions for land cover classifica-
tion above the tree line. Different types of classifiers were
used including per-pixel and object based approach.

Though vegetation types are usually well defined and
do not overlap too much in the tundra of Krkonose, a vast
array of species exists there. These species often alternate
with each other within a limited area. Consequently,

spatial resolution plays a more important role than spec-
tral resolution in the case of object based classification. It
was the object based classification of orthoimages (spatial
resolution 12.5 cm, four spectral bands) that brought the
best results for both legends - overall accuracy equalled
72-84%. Thus, it has been confirmed that application
of object based classification is more appropriate than
per-pixel approach when data with very high spatial reso-
lution are examined. Orthoimages and object based clas-
sification can be recommended to National Park author-
ities as appropriate tools for landscape monitoring in
this area of high nature value. Another advantage is that
orthoimages are updated every second year by the state
and consequently available for free to the National Park
management. On the contrary, object based classification
requires a specialized software, the classification itself is
rather difficult, and processing time quite long.

The object based classification of WorldView-2 data
was less accurate than in the case of orthoimages (68.4%
at best) though WV-2 data provide better spectral res-
olution. The per-pixel approach applied to WV-2 data
(detailed legend) was even less accurate; the highest accu-
racy (60.82%) brought the SVM (RBF) algorithm.

Classification of Landsat data applied to simplified
legend (MLC method) brought surprisingly good results
- overall accuracy equalled 78%. Construction of the
legends may be the reason why per-pixel classifications
applied to simplified legend were more accurate in the
case of Landsat data rather than for WV-2 data. A spe-
cial simplified legend optimized for Landsat data was
created. The use of training or validation polygons for
detailed legend proved to be impossible as in most cases
these polygons were smaller than the pixel size (30 x 30
metres); thus, clear pixels for detailed legend could not
be defined.

Such a simplified, specially adjusted legend, however,
was not fully appropriate for WorldView-2 data. Classes
“Pinus mugo scrub dense” and “Pinus mugo scrub sparse”
posed biggest problems in the case of simplified legend
and were often confused with each other. Though such
a precise definition of Pinus mugo (dense vs. sparse) is
essential for Landsat data, it is apparently not appropriate
for high resolution data as WV-2. Moreover, some train-
ing and validation polygons were covered by clouds dur-
ing research time; consequently, part of WV-2 data could
not be used.

This study also compared the suitability of per-pixel
and object based classification for different data types.
Per-pixel classification proved to be fully appropriate in
the case of Landsat data. On the contrary, per-pixel clas-
sification of high resolution orthoimages brought unsatis-
factory results. Object based classification of Landsat data
(spatial resolution 30 metres) does not make much sense
either on such a small territory where vegetation classes
alternate often. Both types of classification were applied
to WorldView-2 data; object based classification brought
better results by some 10% than the per-pixel one.
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Different algorithms for per-pixel classification were
compared, too. The examination of WV-2 data showed
that the MLC classifier worked best for simplified legend.
In the case of detailed legend, however, the more sophisti-
cated algorithm, SVM (RBF), brought better results.

Earlier field research suggested that classifications
would be more accurate in the Eastern Tundra as differ-
ent vegetation types as specified in the legends seemed to
be clearly defined there. As an example, “Molinia caeruela
stands” and “Calamagrostis villosa stands” covered com-
pact areas surrounded by “Nardus stricta stands”. This
presumption was confirmed by orthoimages classification
(overall accuracy 83.56%). Classification of WV-2 data,
however, brought different results — in part probably due
to clouds and shadows on the image.

Classification results may be influenced by varying
weather conditions, and also by the season. Vegetation
classes tend to be rather compact during spring and
autumn, while in summer (July, August) the grassland
vegetation advances and different types blend. The blos-
som may also influence spectral bands in some cases. The
above mentioned differences may have played a certain
role when orthoimages and WV-2 data were compared.
Unfortunately, it is practically impossible to acquire all
required multispectral data of different spectral and spa-
tial resolution within one year and one season. That is
why it was necessary to examine data acquired in differ-
ent years. Research results may be partly influenced by
this fact.

Regarding classification accuracy of different classes,
all types of data brought good results for non-vegetation
classes (block fields and anthropogenic areas, water are-
as). Also the category subalpine Vaccinium vegetation
shows high accuracy for detailed legend (orthoimages
and WV-2 data). As expected, subalpine tall grasslands
subcategories with similar spectral signatures (Calama-
grostis villosa stands and Deschampsia cespitosa stands,
Molinia caeruela stands) show less satisfactory results.
The worse-than-expected results in the case of alpine
heathlands were probably influenced by the low presence
of training polygons. On the contrary, Landsat 8 data cov-
ered the whole tundra and therefore also more training
polygons — consequently, alpine heathlands were classi-
fied with high accuracy (MLC: user’s accuracy 95.65%,
producer’s accuracy 81.48%).

Pinus mugo scrub usually shows good classification
results, too. In the case of simplified legend, Pinus mugo
scrub was further subdivided into dense and spare subcat-
egories; such a subdivision, however, proved to be inap-
propriate for WV-2 data and orthoimages. As Landsat
data consist of rather big pixels, it is difficult to find real-
ly uniform categories. Pinus mugo scrub sparse is often
mixed with grassland vegetation within one pixel. Pinus
mugo scrub dense does not have this problem and brings
better results when classified as a separate class. When it
comes to very high resolution data, however, Pinus mugo
scrub practically does not mix with other categories.

Some categories of simplified legend may be too broadly
defined for high resolution data. This was proved to a cer-
tain extent in the case of closed alpine grasslands domi-
nated by Nardus stricta and grasses (except Nardus stricta)
and subalpine Vaccinium vegetation classes.

The results comparing detailed and simplified legends
show that in the case of multispectral data with different
spatial resolution it is difficult - if not impossible - to find
such a compromise that would be appropriate for data
of different resolution. One single legend cannot serve
a basis for comparison of different data; the level of detail
should always be related to data resolution.

It can be concluded that in the case of simplified legend
— the overall accuracy of Landsat data (MLC algorithm,
78.31%) and object based classification of orthoimages
(83.56%) — our results are similar to those mentioned in
earlier scientific sources. As an example, Miillerova (2004)
classified multispectral data in Krkono$e in 1986, 1989,
and 1997; supervised classification identified nine class-
es of local vegetation with accuracy 81.1%. Kral (2009)
classified alpine vegetation on the Czech territory, too.
In the latter case, the accuracy of orthoimages equalled
78% (MLC method). However, the rather high spectral
variation of different land cover classes and low spectral
resolution of orthoimages resulted in mixed character of
many classes. Wundram a Loftler (2008) classified alpine
vegetation in Norway and achieved similar results. The
maximum likelihood method applied to orthoimages
(RGB bands) resulted in overall accuracy equalling 51%.

Algorithm MLC used for Landsat data classification
brought the accuracy of 78.31% in our research. Knorn et
al. (2009) utilized Landsat data for land cover classifica-
tion in the Carpathians; SVM method brought accuracy
up to 98.9% for nine classes. Landsat data were also used
by Johansen et al. (2012) for tundra mapping on Svalbard.
The final product was a map (scale 1: 500,000) containing
eighteen classes. The processing chain contained six stag-
es including unsupervised classification and merging the
classes based on ancillary data. Verification of the final
product is problematic in such remote areas; the over-
lap between Landsat data classification and traditional
vegetation mapping in Gipsdalen Valley reached 55.36%
(eight aggregated classes were tested).

Our research confirms that Landsat data are sufficient
to get a general overview of basic land cover classes above
the tree line in the Krkonose Mts. National Park. Alter-
natively, the recently launched Sentinel-2 satellite could
be used - images have comparable spatial resolution and
better spectral resolution. Detailed classification, howev-
er, requires orthoimages with very high spatial resolution,
plus sophisticated algorithms of object based classification
should be used. WorldView-2 data brought the least sat-
isfactory results in our research. However, this may have
been influenced by clouds, and also by problems with
exact definition of the legend as discussed above. Based
on the comparison of the data with different spectral and
spatial resolution we can conclude that very high spatial
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resolution is the decisive feature that is essential to reach
high overall classification accuracy in the detailed level.
Zagajewski (2005) and other scientists suggest that utili-
zation of hyperspectral data of very high spatial resolution
(alternatively combined with LiDAR data - see Dalponte
2012) could bring further improvements of classification
accuracy.
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RESUME

Klasifikace vegetace nad horni hranici lesa v Krkono3ském narodnim
parku s vyuzitim multispektralnich dat

Clének hodnoti moznosti multispektralnich dat s rozdilnym
prostorovym a spektralnim rozliSenim pro klasifikaci vegetace nad
horni hranici lesa v Krkono$ském narodnim parku. Letecka ortofo-
ta s velmi vysokym prostorovym rozlienim 12,5 cm a ¢tyfmi spekt-
ralnimi pasmy byla klasifikovéna objektovou klasifikaci. Druzicova

data WorldView-2 (WV-2) s vysokym prostorovym rozlienim 2 m
a osmi spektralnimi pasmy byla klasifikovana jak objektové, tak
pixelové. Pixelova klasifikace byla provedena i na volné dostupnych
datech Landsat 8 s prostorovym rozlienim 30 m a sedmi spektral-
nimi pasmy. Z algoritmi pro pixelovou klasifikaci byly porovnava-
ny klasifikatory maximum likelihood classification (MLC), support
vector machine (SVM) a neural net (NN). Pro objektovou klasifi-
kaci byl vyuzivan piistup example-based a algoritmus SVM (vse
dostupné v ENVI 5.2). Schéma pracovniho postupu je na obrazku 3.

Analyza byla provedena v krkono$ské tundfe. Modelova oblast
je situovana ve dvou prostorové oddélenych ¢astech — vychodni
a zdpadni ¢asti tundry (obrazek 1). Pomoci dat Landsat byla hod-
nocena cela oblast vychodni (rozloha 1284 ha) i zapadni (rozloha
2284 ha) tundry v ¢eské ¢asti KRNAP. Pomoci ostatnich datovych
zdrojii vzhledem k vypocetni naro¢nosti klasifikaci pouze vybrané
¢asti uzemi (565 ha na zdpadé v and 839 ha na vychodé) reprezen-
tativni pro danou oblast.

Kli¢ovou ¢asti prace byla definice legendy, kterd byla vytvo-
fena ve spolupraci s botanikem Krkono$ského narodniho parku.
Zékladni podrobnd legenda obsahuje celkem 12 tfid (viz nize
a viz obrazek 2). Byla vyuzita pro ortofota a WV-2, a to pouze
v zapadni tundfe. Vzhledem k tomu, Ze se dané tfidy vyskytu-
ji velmi ¢asto na mensich plochédch, nez je pixel Landsatu 8 (tj.
900 m?), bylo nutné vytvofit i zjednodusenou legendu vhodnou
pro klasifikaci dat Landsat. Zjednodus$ena legenda obsahuje 8 tfid
a byla pouzita pro klasifikaci v§ech zminénych typt dat za icelem
jejich porovndni.

Podrobna legenda

1. kamenna mote a antropogenni plochy

2. smrkové porosty

3. kosodfevina

4. subalpinska brusnicova vegetace

5. alpinské travniky zapojené

5a. smilka tuha

5b. druhové bohaté porosty s vysokym zastoupenim dvoudéloznych
6. subalpinské vysokostébelné travniky

6a. titina chloupkata

6b. bezkolenec modry

6¢. metlice trsnatd

7. subalpinské vysokobylinné travniky

8. alpinska viesovisté

9. moktady a raelinisté

10. vodni plochy (klasifikovany pouze z ortofot)

Zjednodus$end legenda

1. kamenna mote a antropogenni plochy

2. smrkové porosty

3a. kosodrevina husta (> 80% porostu)

3b. kosodrevina ridka (30% - 80% porostu)

4. alpinské travniky zapojené s vysokym zastoupenim smilky tuhé
5. travy (vyjma smilky tuhé) a subalpinska brusnicovd vegetace

6. alpinska viesovisté

7. mokfrady a radelinisté

8. vodni plochy (klasifikovany pouze z ortofot)

Nejlepsi vysledky byly v pripadé podrobné i zjednodusené
legendy dosazeny pro ortofota (celkova presnost klasifikace 83,56,
resp. 71,96 %, Kappa koeficient 0,8, resp. 0,65). Klasifikace WV-2
dosdhla nejlepsiho vysledku v ptipadé objektového pristupu a zjed-
nodusené legendy (68,4 %), z pixelovych klasifikaci v ptipadé meto-
dy SVM (RBF) a podrobné legendy (60,82 %). Data Landsat byla
nejpresnéji klasifikovana s vyuzitim MLC (78,31 %). Nejlepsi klasi-
fika¢ni vystupy pro jednotlivé typy dat jsou na obrazcich 4-7.
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Potvrdil se na$ predpoklad, ze v pripadé vegetace v tundre
dosdhneme pro data s velmi vysokym prostorovym rozliSenim
objektovou klasifikaci lepsich vysledka nez klasifikaci pixelovou.
Ortofota a objektovou klasifikaci lze na zédkladé nasich vysledk
doporucit managementu narodniho parku pro monitoring této
cenné ¢asti Krkonos$. Vyhodou je i to, Ze ortofota jsou pravidelné
kazdé dva roky potizovana ze statnich zdroji a ndrodni parky je
maji volné k dispozici. Nevyhodou je naopak nutnost vlastnit SW
pro objektovou klasifikaci, pomérné naro¢ny postup klasifikace
a delsi vypocetni ¢as.

Pokud se tyka presnosti klasifikace jednotlivych tfid, tak lze fici,
ze v zadném z typt dat nebyl problém s klasifikaci nevegeta¢nich
tfid (kamennd mofe a antropogenni plochy, vodni plochy). Dob-
fe byla také vétsinou vyklasifikovdna kategorie kosodfevina. Pro
detailni legendu dosahovala dobré presnosti také kategorie sub-
alpinskd brusnicovéd vegetace (v pfipadé ortofot i WV-2). Horsi
klasifika¢ni vysledky jsme podle ocekavani zaznamenali v piipa-
dé podkategorii tfidy subalpinské vysokostébelné travniky, jejichz
spektralni signal je podobny (tftina chloupkatd, bezkolenec modry,
metlice trsnatd).

Na zékladé vysledki klasifikace jednotlivych kategorii s vyuzi-
tim podrobné a zjednodusené legendy lze ucinit zavér, ze v pripadé
klasifikace multispektralnich dat s fddové riznym prostorovym

rozliSenim je problém najit takovou kompromisni legendu, ktera
by vyhovovala v§em prostorovym rozli$enim. Srovnani potencialu
téchto dat na zdkladé jedné legendy tedy neni zcela mozné a pii
sestavovani legendy vzdy musime jeji podrobnost vztahnout k roz-
liSeni dat.

Z porovnani dat s rozdilnym spektralnim a prostorovym rozli-
$enim vyplynulo, Ze velmi vysoké prostorové rozliSeni dat je zasad-
nim parametrem pro dosazeni vysoké celkové presnosti klasifikace
v detailni Grovni.
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Orthoimages - object based classification SVM (RBF)
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Fig. 4 Classification results for detailed legend in Western Tundra. Upper figure: orthoimages - object based classification SVM (RBF);

lower figure: WordView-2 - per-pixel classification SVM (RBF). Source: Authors
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Orthoimages

0
- Mountain.hut - Block fields and anthropogenic areas
7\ Stream/River - Picea abies stands
- Pinus mugo scrub dense
- Pinus mugo scrub sparse
WorldView-2

Closed alpine grasslands dominated by Nardus stricta
- Grasses (except Nardus stricta) and Closed alpine grasslands

- Alpine heathlands

- Wetlands and peat bogs

- Water areas

Fig. 5 Results of object based classification SVM (RBF) for simplified legend in Western Tundra. Upper figure orthoimages, lower figure
WordView-2. Source: Authors
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Fig. 6 Results of object based classification SVM (RBF) for simplified legend in Eastern Tundra. Upper figure orthoimages, lower figure
WordView-2. Source: Authors
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Fig. 7 Classification results for Landsat 8 - maximum likelihood classifier. Source: Authors






