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ABSTRACT

This paper compares two methods of signal analysis – the Fourier trans-
form as the most commonly used method in speech processing and 
the wavelet transform as a rather new approach to signal analysis. The 
potential of the wavelet transform in speech processing has not been fully 
explored yet. We have attempted to confront both methods on the exam-
ple of the harmonicity measure (HNR). The Praat environment, which 
utilizes the Fourier transform, was used to provide reference values of 
HNR. For the MATLAB environment we proposed a method of HNR 
estimation which makes use of the wavelet transform. It was expected that 
the proposed approach would yield similar results as the established HNR 
estimation in Praat. This hypothesis has not been confirmed, as shown by 
the results from the HNR measurement in MATLAB which do not reflect 
the aperiodicity of the speech signal caused by F0 perturbations.
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1. Introduction

Human speech is a type of mechanical wave, which is transmitted through an elastic 
medium. It changes with time, hence in its raw form it can be regarded as a time-domain 
based signal. The simplest way to depict the speech signal is through an oscillogram 
(waveform) where the amplitude of a signal is displayed as a function of time (see Fig-
ure 1). Such a representation shows how the signal changes in time. For the purposes of 
an acoustic analysis this representation is, however, not sufficient as it does not provide us 
with the information about the frequency content of the signal. To acquire a different rep-
resentation of a signal mathematical transformations are used. In this article we are going 
to discuss the Fourier and the wavelet transforms. The Fourier transform is the most 
commonly used transformation in speech processing, whereas the wavelet transform is 
quite popular in image processing and remains largely unexplored in speech research.

The basic principle that lies behind the Fourier and wavelet transforms was postulated 
in the 19th century and today is referred to as the Fourier Theorem. It states that a com-
plex wave can be described as a sum of fundamental components. These components 
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together form a representation which provides a different view of the signal. In the Fou-
rier transform the complex signal is decomposed into sine and cosine waves. The result 
of such analysis is a frequency spectrum where the amplitude is displayed as a function of 
frequency. In the spectrum we achieve a perfect frequency resolution without any infor-
mation about the time dimension, whereas in the oscillogram the signal is displayed with 
perfect time resolution but no information about the frequency components. The speech 
signal changes in time continuously, and therefore a static frequency spectrum captured 
for one specific moment does not include sufficient information for signal analysis. An 
alternative visualization which reflects the changes of spectrum in time introduces the 
spectrogram (see Figure 1). It contains both information about frequency and time but 
the resolution in the frequency and the time domain is compromised. This is due to the 
uncertainty principle which states that there is a limit to the precision with which energy 
and time can be measured simultaneously (Zimmermann, 2002: 121–126).

Compared to the Fourier transform the wavelet transform is a rather new method of 
signal analysis. They both work with the same principle of signal decomposition but in 
the wavelet transform the signal is decomposed as modified versions of a mother wavelet. 

Figure 1. Visualisation of the word “škole”. At the top oscillogram (waveform). In the middle wide-band 
spectrogram traditionally used in phonetic research. At the bottom scalogram – the lighter the color the 
higher the correlation between the wavelet and the signal. 
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Wavelets are functions with limited energy and limited time duration, and can therefore 
be regarded as short oscillations. There are many wavelet families (e.g. Haar, Daubechies, 
Morlet, Meyer or Mexican hat wavelet) containing mother wavelets with different shapes 
and properties. The selection of the wavelet depends on the purpose of the analysis and 
on the properties of the signal. Selesnick (2007) informs that there are two basic types of 
wavelet transform: one type is designed for reversible transformation, the other for signal 
analysis. Reversible transformation allows the original signal to be easily reconstructed. 
In image processing this feature is used for image compression and cleaning. The com-
puted wavelet transform of an image is modified and subsequently the transformation 
is reversed and a new modified image is produced. The result of wavelet transform also 
depends on the properties of the signal. Zimmermann (2002: 139) reports that the shape 
of a wavelet should preferably resemble the input signal. In the wavelet transform the 
signal is analysed using a mother wavelet with different scales to estimate the correlation 
between the wavelet and the signal in time. The result of this analysis is a scalogram, a 
plot depicting the degree of correlation between the wavelet and the signal in time for 
various scales of the wavelet (see Figure 1). This visualization is similar to the spectro-
gram but instead of the changes of spectrum in time we follow the correlation between 
the wavelet and the signal. By choosing a different approach to the decomposition of the 
signal the wavelet transform avoids the problem of time-frequency resolution that we 
encounter in the Fourier transform. It therefore appears that signal analysis using the 
wavelet transform might be quite convenient for speech signal processing, especially for 
analysis of non-stationary phenomena. A more detailed account of both the Fourier and 
the wavelet transforms with its technical aspects can be found in Zimmermann (2002) 
or in Mallat (1998).

The Fourier analysis is widely used and it is by far the most popular transformation in 
speech processing regardless of its disadvantages which include the already mentioned 
time-frequency resolution, as well as the windowing effect and spectral leakage. The 
effect of using window functions to compute spectral estimates is described by Cox et 
al. (1989). The authors explain that for signal analysis we use a segment of data defined 
by a window function. The application of the window function results in the spread-
ing of spectral energy called spectral leakage. The influence of spectral leakage can be 
minimized by usage of a tapered window function. However, it has impact on the spec-
tral resolution (compare also Zimmermann, 2002: 71–83). Compared to the mentioned 
issues the wavelet transform looks promising with regard to speech analysis. In this arti-
cle our aim is to explore the potential of the wavelet transform for phonetic research. We 
attempt to apply the Fourier and the wavelet transforms for speech analysis, specifically 
for the measuring of harmonicity. 

Harmonicity (harmonics-to-noise ratio or HNR) is a measure expressing the over-
all acoustic periodicity of a voice signal (Murphy, 2006). It quantifies the ratio between 
the harmonic and the noise components in the speech signal in terms of dB. The noise 
components may be a result of the additional noise produced at the glottis during pho-
nation (Awan and Frenkel, 1994) and/or of temporal and amplitude perturbations of the 
fundamental frequency (Murphy, 2006; Qi and Hillman, 1997). The algorithms for HNR 
estimation were proposed in the 1980’s. HNR was originally developed as an objective 
measure to capture the perceptual properties of voice, its main purpose being to iden-
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tify voice pathology. Later, other applications of HNR have also been explored: Ferrand 
(2002) suggests that HNR is a sensitive indicator of voice aging. Heranová and Skarnitzl 
(2011) examined HNR as an indicator of speech sound boundaries. The measuring of 
harmonicity has been repeatedly revised and new methods have been developed. In the 
current research we distinguish time- and frequency-domain based methods of HNR 
measurement. The time-domain based methods compute HNR from the acoustic wave-
form whereas the frequency-domain based methods use for HNR estimation spectral 
or cepstral representations of the signal (Qi and Hillman, 1997). The first time-domain 
based approach to HNR estimation was proposed by Yumoto et al. (1982). The first step 
in this approach is to gain one period of an average wave, which defines the energy of 
the harmonic component. Such a wave is calculated as the mean of more successive peri-
ods. The noise component is represented by the energy of variance between the average 
wave and the individual periods of the signal. The weakness of the time-domain based 
methods is the need to delimit the individual periods (Murphy, 2006). A solution to such 
a signal pre-processing is introduced in the form of the frequency-domain based meth-
ods, which compute HNR from the spectrum, calculating the ratio between the energy 
of harmonic and noise components in the signal. The energy of harmonic components 
is constituted by the energy at harmonic locations, and the energy of noise components 
consists of “between harmonic” estimates. The drawback of these methods is the prob-
lematic estimation of noise at harmonic locations (Murphy, 2006). A popular method of 
HNR measurement is introduced in the software for speech analysis – Praat (Boersma 
and Weenink, 2011). It is based on the autocorrelation of the signal, a method used for 
the detection of periodicity, in other words for F0 estimation. It calculates the correlation 
between a small chunk of the signal and the signal itself over a range of possible period 
durations (Johnson, 2003: 30). The period duration, which produces the maximum of the 
correlation function, represents the best F0 candidate. The relative height of this maxi-
mum represents the degree of periodicity of the signal and is used for the estimation of 
the relative power of the periodic component. Furthermore, because the autocorrelation 
of the signal equals the sum of the autocorrelations of its parts, the relative power of the 
noise component is calculated as a complement to the power of the periodic component 
(Boersma, 1993).

The aim of this paper is therefore to compare two methods for research of harmo-
nicity which use a different approach to signal analysis. The first method is employed 
in Praat (Boersma and Weenink, 2011) and builds on the Fourier transform and the 
autocorrelation method to compute HNR. The second method for HNR estimation uses 
the wavelet transform in the MATLAB environment (Mathworks, 2012). The HNR esti-
mation using wavelet transform was successfully implemented, e.g. in the research of 
Zhao et al. (2003) who investigated the properties of pathological voices. Our research 
concentrates on other than pathological purposes of HNR and is therefore carried out 
on the material aquired from healthy speakers. This suggests that we can expect very fine 
differences in the HNR values. This paper presents an attempt to propose an algorithm 
for HNR estimation which would yield similar results as the well-established method in 
Praat.
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2. Method

For the experiment we used recordings of 10 native Czech speakers, 5 male and 
5 female speakers aged 20–23, created in a sound-proof booth. The speech sound bound-
aries were set manually. As Ladefoged (1996: 22) reports, most of the frequencies that are 
of interest for speech analysis are below 8000 Hz. The most important acoustic cues for 
vowel analysis are the first five formants that are usually located below 5000 Hz. There-
fore we can afford to resample the signal with a lower sampling frequency. As a result the 
informational content of the signal is decreased without omitting the components that 
are energetically significant for the analysis. On this account we resampled the material 
from 32 kHz to 9984 Hz. The wavelet decomposition, as implemented in the GUI resynt3 
developed at the Institute of Phonetics, required the use of a sampling frequency equal-
ling a multiple of 64. The sampling frequency 9984 Hz was chosen as the best candidate 
closing to the value of 10,000 Hz. For the analysis we used only vowels with duration 
greater than 80 ms, which were extracted from the original recordings using a rectangular 
window. The vowel duration criterion was motivated by the autocorrelation-based HNR 
measurement in Praat. Boersma (1993) informs that for HNR estimation the autocorrela-
tion function requires a window at least 6 periods long. The standard setting of minimum 
F0 to 75 Hz then necessitates an analysis window with the length of 80 ms. In total, 
791 samples of short and long vowels and diphthongs – specifically [ɪ iː e eː a aː o oː u uː 
a͡u o͡u] – were extracted and used for HNR measurement.

The aim of this experiment was to confront the Fourier and the wavelet analysis on 
the example of HNR. As reference values were used the results of the well-established 
AC-based method for HNR estimation in Praat. The harmonicity values were measured 
using cross-correlation method with standard settings. Every sound object was trans-
formed into a harmonicity object, which represents the degree of acoustic periodicity. 
From the harmonicity object the mean values of HNR were retrieved.

Figure 2. Example of waveform (top) and its energy distribution (bottom) for the vowel [u]. The 
distribution of energy was estimated in GUI resynt3 in the MATLAB environment. The frequencies 
from 0–4992 Hz are divided into 64 frequency bands with a width of 78 Hz. The distribution of energy 
within the bands is indicated by the height of the grey columns.



74

To get wavelet-based HNR estimates we employed the method of the wavelet packet 
decomposition that was implemented in the GUI resynt3 in the MATLAB environment. 
The wavelet packet decomposition is an extension of the discrete wavelet transform that 
allows a reversible transformation of the signal, i.e. signal decomposition and lossless 
reconstruction. We used decomposition of the 6th level where the signal is analysed into 
26 evenly wide frequency bands. The decomposition of the material sampled at 9984 Hz 
provided us with 64 frequency bands with a width of 78 Hz (see Figure 2). The decom-
position was done using discrete Meyer wavelet as the basis function.

Based on the energy distribution within the frequency bands we appointed 3 different 
frequency intervals (0–1248 Hz, 0–1326 Hz and 0–1404 Hz) where the most energy was 
distributed to represent the energy of the periodic component. The different frequency 
intervals were selected to check whether there is any significant dependency on a specific 
frequency range to represent the periodic energy of the signal. After the decomposition 
of the signal we reconstructed for each sound its periodic component using the GUI 
resynt3. The reconstruction was done for 3 sets of data based on 3 different frequency 
intervals representing the periodic component of the signal. The computation of HNR 
was based on the common assumption that the signal consists of the periodic and the 
noise component. Analogously the energy of the signal equals the sum of the energies of 
its parts. Hence, in our approach the energy of the noise component was calculated as a 
complement to the energy of the periodic component. The wavelet-based HNR estimate 
was calculated as a logarithmic ratio between the energy of the periodic and the noise 
component. Though we are aware of the fact that this may be a very crude measure of 
the signal’s harmonic content, we will continue to use the term HNR even for the ratio 
calculated based on this wavelet decomposition.

3. Results and discussion

The vowels are speech sounds with periodic character. Their periodic component is 
dominant and in healthy speakers it prevails over noise. This also applies to the distribu-
tion of energy in vowels – the most energy is concentrated in harmonic locations. Based 
on these considerations we measured 3 sets of data with the wavelet-based approach in 
MATLAB. In each set the periodic component was represented by a different frequency 
band of the signal (0–1248 Hz, 0–1326 Hz and 0–1404 Hz) and the noise component 
was calculated as the complement. This selection was motivated by the visually observed 
distribution of energy in the vowel samples (see Figure 2).

First we tested the 3 sets of data against each other. A significant correlation (p < 0.05) 
between the 3 groups was discovered. This means that the setting of boundary, which 
in our approach separates the periodic and the noise part of the signal, in the interval 
between 1248–1404 Hz, does not significantly influence the value of HNR.

Afterwards we tested one set of wavelet-based HNR estimates, where the period-
ic component was represented by the frequency band 0–1248 Hz, against the values 
retrieved in Praat by the AC-based approach. Both data sets were analysed with ANOVA 
(see Figure 3). The relationship between the harmonicity and vowel’s quality proved to be 
significant both for the AC-based (F(11,779) = 15.56; p < 0,001) and the wavelet-based 
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method (F(11,779) = 108.49; p < 0.001). However, we observed a noticeable difference 
between the AC- and wavelet-based values (mean absolute difference of 6.34 dB). The 
correlation between the AC- and wavelet-based estimates proved to be weak r = 0.3, 
p < 0.05 (see Figure 4).
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Figure 3. The results of ANOVA analysis for the AC-based and wavelet-based HNR estimates.

Figure 4. Correlation between the AC-based and wavelet-based HNR estimates. N = 791, p < 0.05.
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4. Conclusions

The aim of this paper was to compare the Fourier and the wavelet transforms on the 
example of harmonicity. The Fourier transform is commonly used in speech analysis. 
The tools to retrieve the information about acoustic cues from speech signal have been 
implemented into graphical user interfaces that are easy to use also for non-technicians. 
Praat is one of these examples. To measure HNR in Praat we need to use a couple of but-
tons. Therefore we chose the AC-based HNR values measured in Praat as reference values 
for our comparison. In contrast to Praat, MATLAB is a general computing environment. 
It is not tailored for speech processing. In the wavelet toolbox we find tools to analyse 
the signal, but there are no direct options to detect F0 or to measure HNR. Therefore 
we had to propose an algorithm in MATLAB to obtain wavelet-based HNR values. We 
expected that this method would provide similar results as Praat. This hypothesis, how-
ever, proved to be wrong. There was no significant correlation between both data sets 
detected. We observed significant differences between the AC-based and wavelet-based 
values. We put these findings down to the method of HNR estimation in MATLAB. In 
our approach the signal was decomposed, a specific frequency band was chosen to rep-
resent the periodic component, and HNR was computed. We believe that the reason for 
the obtained discrepancy in the results is the fact that our wavelet-based approach counts 
only with additive noise as a negative factor influencing the HNR value and it does not 
reflect F0 perturbations. This became especially obvious for back vowels. The energy of 
the first and the second formant is in the case of back vowels concentrated below 1200 Hz 
(Palková, 1997: 172–175). Figure 5 shows an example of a short vowel [u] with AC-based 
HNR value 13.8 dB measured in Praat. For the same example the wavelet-based approach 
computed HNR value of 33.65 dB. Such a high value is in accordance with the energy 
distribution in the lower frequency bands (see Figure 2). It is obvious that the waveform 
decays in time. This, however, seems not to be reflected in the wavelet-based method. 

Figure 5. Oscillogram and spectrogram of vowel [u] with 13.18 dB HNR value calculated in Praat using 
AC-based approach and 33.65 dB HNR calculated in MATLAB using wavelet-based approach.
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On one hand, Ferrand (2002) indeed informs that the harmonicity measure quanti-
fies the amount of additive noise in the voice signal. On the other hand, Murphy (2006) 
reports that the harmonicity is influenced not only by the additive noise but also by 
inter-period glottal waveshape differences and F0 perturbations. Our results proved that 
the employed methods for harmonicity measurement are not comparable and therefore 
our results are inconclusive with respect to the comparison of the Fourier and the wavelet 
transforms and their advantages and disadvantages for speech analysis. We assume that 
to reach the correlation between the AC- and wavelet-based HNR values we would also 
need to take into consideration F0 perturbations.

A possibility for future research could be an implementation of HNR based on the Fou-
rier transform as used in Praat into MATLAB environment and their comparison. Also 
an analysis of a non-stationary signal where a wavelet-based approach could prove more 
convenient could be interesting with regard to the confrontation of the wavelet- and DFT-
based analysis of speech. As a suitable material for such research the transitions between 
vowels and voiceless consonants appear. Such an analysis for AC-based HNR estima-
tion was performed in Praat with promising results (see Heranová and Skarnitzl, 2011).
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FOURIEROVA A VLNKOVÁ TRANSFORMACE V PROCESU ŘEČI: 
PŘÍPAD HARMONICITY 

Resumé

Tento příspěvek se věnuje problematice analýzy řečového signálu, konkrétně Fourierově a vlnkové 
transformaci. Nejčastějším a nejrozšířenějším způsobem pro získání frekvenční reprezentace signálu 
je ve fonetickém výzkumu Fourierova transformace. Ta má však i své nevýhody, přičemž tou hlavní 
je nepřímý vztah mezi časovým a frekvenčním rozlišením. V porovnání s Fourierovou transformací 
představuje vlnková transformace poměrně novou a pro účely fonetického výzkumu neprozkoumanou 
metodu, která, jak se zdá, umožňuje přirozenější rozklad signálu než klasická transformace Fourierova. 
Cílem tohoto příspěvku bylo srovnání obou metod analýzy signálu na příkladu harmonicity, pomě-
ru harmonických a šumových složek signálu v decibelech. Pro srovnání jsme jako referenční hodnoty 
použili hodnoty harmonicity naměřené v programu Praat, volně šiřitelném programu k akustické ana-
lýze a zpracování zvuku, který ke zjištění periodicity signálu využívá metodu autokorelace. V prostředí 
MATLAB jsme poté navrhli metodu měření harmonicity, která využívá k rozkladu signálu vlnkovou 
paketovou analýzu (anglicky wavelet packet analysis). Srovnáním hodnot harmonicity získaných pomocí 
obou metod jsme dospěli k závěru, že námi navržená metoda v prostředí MATLAB nezohledňuje per-
turbace F0, které do signálu také zanášejí šum, a tudíž se nepotvrdila naše hypotéza, že výsledky obou 
metod budou vykazovat korelaci.


