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ABSTRACT

Accurate and updated land cover maps provide crucial basic information in a number of important enterprises, with sustainable devel-
opment and regional planning far from the least of them. Remote sensing is probably the most efficient approach to obtaining a land cover 
map. However, certain intrinsic limitations limit the accuracy of automatic approaches to image classification. Classifications within highly 
heterogeneous urban areas are especially challenging. This study makes a presentation of multilayer perceptron (MLP), an artificial neural 
network (ANN), as an applicable approach to image classification. Optimal MLP architecture parameters were established by means of a train-
ing set. The resulting network was used to classify a sub-scene within ASTER imagery. The results were evaluated against a test dataset. The 
overall accuracy of classification was 94.8%. This is comparable to classification results from a maximum likelihood classifier (MLC) used for 
the same image. In built-up areas, MLP did not exaggerate built-up areas at the expense of other classes to the same extent as MLC.
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1. Introduction

Urbanization has an enormous impact on the environ-
ment at every scale – local, regional and global (Lu et al. 
2008). Anthropogenic land use changes, such as various 
forms of cultivation, livestock grazing, settlement and 
construction, reserves and protected lands, and timber 
extraction, have made cumulative transformations to 
global land cover (Turner et al. 1994). This in turn influ-
ences the environment: climate, biodiversity, soils, water 
and sediment flow are all in continuous states of change. 
The urbanization process is very often driven by other 
interests: nevertheless, efficient urban planning should 
be based on chronologically and spatially accurate land 
cover maps (Novack et al. 2011). 

Remote sensing provides data and tools which enable 
the most efficient mapping of urban land cover (Novack 
et al. 2011). Image classification, the assignation of pixels 
to selected classes, is one of the basic methods used to 
generate thematic maps from remote sensing (Vatsavai et 
al. 2011). Approaches to automatic classification still face 
certain limitations. Improving the accuracy of land cover 
classification has attracted a great deal of recent interest 
in remote sensing studies. Detailed and accurate classifi-
cation of built-up areas is one of the basic problems, aris-
ing out of the enormous spatial and spectral heterogenei-
ty of urban areas, in which built-up structures (buildings, 
transportation areas), various types of vegetation cover 
(e.g. parks, gardens, agricultural areas), bare soil zones 
and bodies of water exist in close proximity (Herold et 
al. 2002). Definition within built-up areas depends heav-
ily upon the spatial resolution of whatever input images 
are available. With very high-resolution imagery, every 

building, road or pavement can be identified and built-
up areas are represented as a union of these objects. At 
a coarser resolution, it is impossible to identify individual 
objects and individual pixels consist of several types of 
real-world item (building, road, pavement, garden, forest, 
soil, etc.). In this case, built-up areas are defined as pixels 
with prevailing areas of impervious surfaces (including 
roofs, roads, pavements, car parks, etc.). Spatially and 
spectrally high and very high-resolution images are not 
enough to map urban land cover precisely. Improved 
image classification techniques are of equal importance 
(Herold et al. 2002).

Recently, several approaches have been suggested that 
may overcome or suppress some of the features that make 
it difficult to classify urban land use/land cover correctly 
using traditional approaches. Thus, for example, subpixel 
classification reduces the effect of heterogeneity in built-
up areas by estimating the composition of a single pixel 
area (Wu and Murray 2003; Adams and Gillespie 2006; 
Lu and Weng 2006, 2009; Powell et al. 2007). An object-
based approach enables consideration of matters other 
than spectral characteristics and is particularly useful for 
classification of very high resolution imagery (Kux and 
De Pinho 2006; Chen et al. 2007; Cleve et al. 2008; Zhou 
et al. 2009; Myint et al. 2011; Pu et al. 2011; Dingle Rob-
ertson and King 2011). Machine learning methods do not 
assume any specific theoretical data distribution (Bagan 
et al. 2008; Yuan et al. 2009; Mountrakis et al. 2011; Sow-
mya et al. 2011; Rodriguez-Galiano et al. 2012; Jin 2012; 
Tehrany et al. 2013). 

Our study is motivated by the fact that different sur-
faces (land cover categories) in urban areas significantly 
influence spatial distribution of air temperature and they 
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contribute directly e.g. to urban heat island formation. 
Thus land cover maps of urban areas are needed with 
relatively high precision and in time. This contribution 
presents artificial neural nets as a non-traditional method 
of urban land cover classification. In the following sec-
tion we briefly review recent classification approaches to 
urban remote sensing. The study area is described in Sec-
tion 3, together with the classification scheme employed. 
The available data and a detailed description of the mul-
tilayer perceptron algorithm are presented in Section 4. 
The classification results appear in Section 5, with an 
evaluation of them and comparison with a statistical clas-
sifier in Section 6. Section 7 consists of discussion and 
our main conclusions appear in Section 8.

2. Review of methods 

Remote sensing image analysis acquires the results of 
a wide range of approaches to land cover mapping that 
have already been used – with varying degrees of success – 
in the urban environment. Some of these appear below.

Traditional parametric statistical approaches to super-
vised classification depend on an assumption of nor-
mal data distribution, which may be one of the reasons 
that they often fail to classify heterogeneous urban areas 
correctly. Among them, maximum likelihood classifier 
(MLC) often serves for the evaluation of results arising out 
of other classification methods, because MLC provides the 
most accurate results compared to other classifiers (Bishof 
et al. 1992; Paola and Schowengerdt 1995; Zha et al. 2003; 
Seto and Liu 2003; Vyorálková 2003; Setiawan et al. 2006). 

Methods of spectral enhancement, including the con-
struction of spectral indices (Xu 2007) may be used to 
extract built-up areas. Spectral indices are usually defined 
as a simple or normalized ratio of image channels. Nor-
malized difference built-up index (NDBI) has been used 
for direct extraction of built-up areas (Zha et al. 2003). 
This is a combination of the short-wavelength infrared 
(SWIR) and near-infrared (NIR) channels. It is based 
on the significant increment from NIR to SWIR in the 
reflectance of built-up areas and barren lands in compar-
ison with only slightly larger or smaller digital number 
values representing vegetation in the SWIR band than in 
the NIR band (Zha et al. 2003). NDBI results are often 
worked up together with other spectral indices, such as 
the normalized difference vegetation index NDVI (Zha 
et al. 2003; He et al. 2010), normalized difference water 
index NDWI, and others (Xu 2007; Uddin et al. 2010). 
The most serious practical difficulty associated with spec-
tral indices is establishment of the most suitable thresh-
old for extracting built-up areas (He et al. 2010). 

Subpixel classification may also be employed when 
urban land cover is mapped by means of remote sens-
ing. The original specific three-dimensional “vegetation 
– impervious surface – soil” (V-I-S) model was present-
ed by Ridd (1995), in which classes of urban land cover 

may be modelled as fractions of vegetation, impervious 
surface and soil (Wu and Murray 2003). Setiawan et al. 
(2006) made a comparison between V-I-S and MLC. The 
overall accuracy achieved by the subpixel approach was 
80%, as against 53% for MLC. For estimating impervi-
ous surfaces, spectral mixture analysis is the technique 
most frequently used (Roberts et al. 1998; Wu and Mur-
ray 2003; Adams and Gillespie 2006; Lu and Weng 2006, 
2009; Powell et al. 2007). This is based on the “un-mixing” 
of individual land cover fractions, and thus utilizes the 
same concept as the V-I-S model.

Object-oriented classification is based on segmen-
tation of the original image, dividing the image into 
groups of neighbouring pixels (objects). These objects 
are homogenous according to previously-defined criteria. 
Subsequently, these objects may be classified according 
to their spectral properties, as well as textural and spa-
tial characteristics. The object-oriented approach allows 
images of various spatial resolutions to be classified. It is 
often used in conjunction with very high-resolution sen-
sors (Herold et al. 2002; Kux and De Pinho 2006; Myint 
et al. 2011; Pu et al. 2011), and for aerial data (Cleve et 
al. 2008; Zhou et al. 2009). Object-based classification of 
urban land cover has been tested with high-resolution 
Landsat data (Dingle Robertson and King 2011) and 
ASTER data (Chen et al. 2007). 

Recently, machine learning algorithms, such as Ran-
dom Forest (Rodriguez-Galiano et al. 2012; Jin 2012), 
Support Vector Machine (Mountrakis et al. 2011; Tehra-
ny et al. 2013) and Artificial Neural Networks (ANNs – 
Bagan et al. 2008; Yuan et al. 2009; Sowmya et al. 2011), 
have been applied to urban land cover classification 
(Vatsavai et al. 2011). These approaches can perform at 
both per-pixel and subpixel levels (Walton 2008) and be 
used in object-based classification (Smith 2010). One of 
their advantages for urban land cover classification is 
independence from theoretical data distribution. 

This contribution presents an example of classifica-
tion employing the multilayer perceptron (MLP) algo-
rithm with application of the back-propagation learn-
ing rule. MLP is one of the ANNs based on (presumed) 
human brain processing; its basic principles appear in 
section 4.2. As previous studies have shown (Paola and 
Schowengerdt 1995; Mustapha et al. 2010), the MLP algo-
rithm can achieve higher classification accuracy than the 
maximum likelihood method. Recently, certain authors 
(among them Hu and Weng 2009; Sun et al. 2011; Da 
Silva Brum et al. 2013) have combined or compared the 
MLP approach with other machine learning algorithms. 

3. Study area and classification scheme

Brno is the second largest city in the Czech Repub-
lic and the administrative centre of the South Moravian 
Region [Jihomaravský kraj]. In 2002, when the data used 
in this study were acquired, Brno had a population of over 
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370,000. Figure 1 shows the extent of its built-up area and 
a distribution of main land cover types as they appear in 
the ASTER imagery that was used for analysis in this paper.

The city is situated in complex terrain at the confluence 
of two rivers. Natural and anthropogenic surfaces create 
a rich mosaic, highly influenced by local topography. The 
historically earlier built-up areas are concentrated in the 
river valleys. The city has progressively expanded onto its 
surrounding slopes and also into the lower hills, where 
the most of housing estates are located (Figure 1). The 
complexity of terrain has always prevented the creation of 
a compact city. About 28% of the city administrative area 
is covered by forests, located mainly at higher altitudes 
to the north and west of the city. Agricultural fields and 
large industrial areas occupy the lowland southerly part 
of the study area, with a number of arterial highways. 

Five main land cover types were defined in the study 
area: built-up areas, agricultural areas, bare soils, forest 
areas and bodies of water. Built-up areas, the extraction 
of which is the aim of this classification, include densely 
built-up areas in the old city centre and housing estates at 
the edge of the town, suburban built-up areas, and contig-
uous industrial areas. Other land-cover types were select-
ed in a general way to refine the built-up area extraction. 
Agricultural areas take the form of fields surrounding the 
city boundary, especially to the south. Fields differ mainly 
in volume of vegetation and water content; the category of 
bare soils is largely represented by quarries. Forest areas 
include deciduous and coniferous forests located mainly 
in the northern part of the study area, as well as city parks 
characterized by a lower density of trees. Bodies of water 
include larger rivers and several small ponds. 

4. Data and methodology

4.1 ASTER Data

The advanced space-borne thermal emission and 
reflection radiometer (ASTER) imagery used in this 
study was acquired on the 24th of June 2005. Original 
VNIR and SWIR images were rectified using a second-or-
der polynomial transformation. All bands of VNIR and 
SWIR images at 30-m spatial resolution were merged into 
a single file.

The original image of nine bands (three VNIR and 
six SWIR) was cropped to the study area. VNIR bands 
represent the intensity of green, red and near-infrared 
radiation (wavelength range 0.5–0.9 μm) detected by 
the VNIR subsystem. The SWIR subsystem acquired 
six bands at near-infrared wavelengths (1.6–2.43 μm). 
The next step involved calculation of the divergence 
statistic that is used as a measure of inter-band corre-
lation (Narendra and Fukunaga 1977) and which may 
also be used to reduce the number of bands required 
for a classification. This approach selects bands of the 
highest discrimination between the categories classified. 
This is important for the ANN-based method, because 
reduction of the number of bands determines the size 
and architecture of the neural net and may significantly 
reduce its learning time. However, in this study, the net 
designed for different band subsets according to diver-
gence statistics did not achieve better results compared 
to the original set of nine bands. All nine VNIR and 
SWIR bands were therefore employed.

Fig. 1 The city of Brno in ASTER 
imagery, acquired on 2 April 2002; 
band VNIR 1.
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Fig. 2 An example of MLP architecture.

4.2 Multilayer perceptron

The MLP algorithm was applied for land-cover clas-
sification. MLP consists of a number of interconnected 
processing units, arranged in three layers – input lay-
er, one or more hidden layers, and output layer. This 
arrangement of units is known as the network architec-
ture (Figure 2). 

The network architecture was designed in terms of 
four main parameters: the number of input units, the 
number of hidden layers, the number of units in each of 
them and the number of output units. Input units pres-
ent the bands selected, and possibly other parameters 
of the image (such as a texture). Each feature may be 
represented by one or more input units. If more units 
are used to present a single feature, the range of feature 
values is divided uniformly; such division can provide 
enough differences to separate similar values (Bischof 
et al. 1992). 

The numbers of hidden layers and the numbers of their 
units also affect overall classification accuracy (Foody and 
Arora 1997). It is recommended to use one or two hid-
den layers (Šíma and Neruda 1996). An increase in the 
number of hidden layers enables the network to deal with 
more complex problems, but is associated with reduction 
of the ability to generalize and an increase in training 
time (Foody 1995). According to Lippmann (1987), if two 
hidden layers are used, the number of units in the second 
hidden layer should not exceed three times the number 
of units in the first hidden layer.

The number of output units is usually equal to the 
number of categories in the classification (Atkinson and 
Tatnall 1997). Some researchers suggest the use of a great-
er number of output units to enhance classification accu-
racy (Benediktsson et al. 1993).

The main principle of ANN is what has become known 
as the “feed-forward” concept. An input pattern is pre-
sented to the network via the input layer and the signals 
are passed to the neurons of the next layer. The signal is 
modified along its path through the network by weights 

associated with neuronal connections. Each receiving 
neuron sums up weighted signals from all neurons in 
the preceding layer to which it is connected. The out-
put of a given neuron is computed as a function (usually 
a non-linear sigmoid function) of the sum of its inputs. 
When the signal reaches the output layer it becomes net-
work output. In established hard classification the out-
put of one neuron in the output layer (representing one 
chosen class) is set to one, and the outputs of all other 
neurons are set to zero.

A  network of selected architecture was trained by 
means of a training set of pixels to set the weights asso-
ciated with neuronal interconnections. The aim of train-
ing is to build a  model that can predict outputs from 
inputs it has never seen before. This property is known 
as generalization. The back-propagation learning algo-
rithm, described originally by Rumelhart et al. (1986), 
was used to train the network. A training pattern is pre-
sented to the network and the signals are forward-fed via 
weighted interconnections. The weights are initially set to 
a random value. The input netj of a single neuron of the 
network is computed as a weighted sum of all the inputs 
it receives and a numerical value, bias bj (representing 
a usually-negative threshold value for the unit activation), 
is added to the sum. Formally, this can be stated as:
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where n is the number of units in the preceding layer, 
wji is the weight associated with the connection between 
the receiving unit j and the unit i of the preceding layer, 
while oi is the output signal of the unit i. The output oj 
of a given unit j is computed as a function of the sum 
according to:
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The network output is then compared to the desired out-
put and the net partial error Ei is calculated as:
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	  where k is the number of categories (number of units in 
the output layer), oij is the current output of an output 
unit j and tij is the proper output of this unit. The sum of 
net partial errors for the whole training set provides the 
total error E of the net. The error is then back-propagat-
ed and weights are altered to minimize it. This process is 
repeated until the computed error drops below a prede-
termined value or the number of iterations exceeds a pre-
defined maximum.
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5. Results

Several ANN architectures, with different numbers of 
input units, of hidden layers and their units and differ-
ent numbers of output units, were tested minimize total 
error and ensure maximal classification accuracy. The 
best results were obtained using three units per input 
channel, when the value range is divided into thirds. 
It follows that the input layer consists of 27 units. Net-
works tested with only one hidden layer failed to reduce 
total error to the desired degree. The use of more than 
two hidden layers mean that networks lose the ability 
to generalize – the value for total error decreased suc-
cessfully during the training phase, but the classification 
accuracy did not achieve a satisfactory value. This trend 
is known as overfitting. Optimal results were achieved 
using two hidden layers. The first hidden layer contained 
27 units and the second 11 units. The output layer of the 
optimal network architecture contained the five units 
that correspond to the individual land cover classes (see 
Section 4.2). The results of ANN classification appear 
in Figure 3.

Comparison of classification results (Figure 3) and 
the original data (Figure 1) indicates that the outer 
boundaries of built-up areas were identified satisfacto-
rily. Roads were correctly assigned to the built-up area 
class. Continuous internal parts of the city are disrupt-
ed by discrete pixels of agricultural areas, bare soils and 
bodies of water. Pixels that were incorrectly classified as 
agricultural areas and bare soils tended to be those of 
large areas covered by impervious surfaces without vege-
tation. Pixels incorrectly assigned to bodies of water were 
often shaded areas. 

The classification results were first inspected by simple 
visual comparison. Figures 4, 5 and 6 compare the built-
up areas extracted using MLP with those delimited from 
very high-resolution aerial photography in three different 
environments. Figure 4 shows built-up area extraction in 
the densely built-up city centre. Parks and other larger 
vegetated areas (site 1 in Figure 4 on the right) are clear-
ly delineated in a continuous street network. In contrast, 
small or linear parks (site 2) were not all recognised due 
to the coarser resolution of the image analysed. In Fig-
ure 5, a housing estate on the outskirts is presented for 

Fig. 4 Built-up areas extracted by classification 
(a) compared with aerial photography (b: source: 
WMS geoportal.cuzk.cz) of the city centre; see 
text for site numbers explanation.

Fig. 3 Land cover of the Brno area as 
classified from ASTER imagery using 
MLP.
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comparison. Buildings and roads are correctly assigned 
to built-up areas (site 1 in Figure 5 on the right). How-
ever, certain parts that are in fact fields are inaccurately 
classified as built-up areas as well (site 2). Finally, Figure 
6 shows the extraction of built-up areas in the suburban 
part of the city. Impervious surfaces representing built-
up areas are identified with considerable success (site 1 

in Figure 6 on the right). Gardens are correctly assigned 
to agricultural areas. A sharp boundary between built-up 
areas and forests is also visible in Figure 6 (site 2). A few 
buildings in the south-east are not assigned to built-up 
areas (site 3). These sites were under construction at the 
time of imagery acquisition and this construction zone 
was assigned to “bare soils”.

Tab. 1 Confusion matrix of a test dataset, comparing class assigned to pixel by the MLP classification and an appropriate class 
(abbreviations explained in text). 

Class
Test dataset

Sum UA [%]
1 2 3 4 5

C
la

ss
ifi

ed
 d

at
a

1 786   6   4     0   1  797 98.62

2  33 732   1     2   0  768 95.31

3   8   2 185     0   0  195 94.87

4   5  15  0  1041 10 1071 97.20

5  24   0  1    42 66  133 49.62

Sum 856 755 191  1085 77 2964 –

EO [%]      8.18     3.50    3.14       4.60   14.29 – –

EC [%]      1.29     4.77    5.24       2.76   87.01 – –

PA [%]     91.82     96.95   96.86      95.94   85.71 – –

Classes: 1 – built-up area, 2 – agricultural area, 3 – bare soil, 4 – forest area, 5 – body of water.

Fig. 5 Built-up areas extracted by classification 
(a) compared with aerial photography (b: 
source: WMS geoportal.cuzk.cz) of a housing 
estate on the outskirts; see text for site numbers 
explanation.

Fig. 6 Built-up areas extracted by classification 
(a) compared with aerial photography (b: source: 
WMS geoportal.cuzk.cz) of the city suburbs; see 
text for site numbers explanation.
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6. Verification of results 

The classification results were verified more formally 
and objectively in two ways. First, using an independent 
test dataset and confusion matrix. For an independent 
test, ground-truth data were divided into two parts. The 
first one was used for ANN training while the second one 
was used for validation of results (Section 6.1). Second, the 
same image was classified in terms of MLC and the results 
compared to MLP classification results (Section 6.2). 

6.1 Evaluation of results

For the MLP classification results, a confusion matrix 
was computed according to an independent test data-
set (Table 1). Five different measures of accuracy were 
derived – an error of omission (EO), an error of commis-
sion (EC), user accuracy (UA), producer accuracy (PA) 
and overall accuracy: definitions for these appear in, for 
example, Foody (2002).

An error of omission consists of the percentage of sin-
gle-class pixels assigned to incorrect classes by classifi-
cation. In the extraction of built-up areas, about 8% of 
the pixels were assigned to other classes, mainly to the 
agricultural area group. The highest error value (nearly 
15%) occurred in the class containing bodies of water, as 
10 pixels of a total of 77 test pixels in this class were clas-
sified as forests. The level of error of commission, specify-
ing the number of pixels incorrectly assigned to a specific 
class, is very high (nearly 90%) for the water body class, 
to which 42 pixels of forest area and 24 pixels of built-
up area were assigned. Such confusion between bodies 
of water and forested area arises largely out of the deep 
shadow thrown in forests. User accuracy defines the ratio 
of correctly-classified pixels to all pixels as assigned to 
specific classes. The highest value was derived for built-up 
areas; nearly 99% of pixels assigned to them truly belong 
to built-up areas. Except in the class covering bodies of 
water, user accuracy was around or over 95% for every 
class. Only one in two pixels assigned to water bodies 
represented an actual body of water. Producer accuracy 
describes the numbers of pixels in each class classified 
correctly. More than 95% of pixels for agricultural and 
forest areas and bare soils were assigned to the corre-
sponding, correct class. The overall accuracy of the MLP 
classification was almost 95%.

6.2 Comparison with MLC 

For maximum likelihood classification, the original 
five classes (Section 3) were divided into 11 sub-classes 
based on differences within categories. The built-up class 
was divided into three sub-classes. The first consisted of 
industrial and commercial areas characterized by large, 
continuous areas of impervious surface, such as concrete, 
asphalt, etc. The second corresponded to areas with a high 
density of buildings in the city centre and the third covered 
suburban areas of houses with gardens. The same set of 
training pixels as that employed for the MLP classification 
was used. Training pixels were assigned to sub-classes.

The sub-classes were aggregated into the original five 
categories and the results evaluated by means of the same 
independent test dataset as the MLP classification. The 
overall accuracy was similar (94.5%) to the MLP classifi-
cation. The error of omission was lower (4.3%) in built-
up areas in the MLC classification. However, the error of 
commission was higher (4.7%). The user accuracy of MLC 
was 95.3%, in comparison with 98.6% in MLP classifica-
tion. Altogether, this means that almost 5% of the pixels 
assigned to built-up areas actually belonged to different 
classes. In producer accuracy, MLC gave a higher per-
centage (95.7%) than MLP. A greater difference occurred 
in error of commission and producer accuracy for bodies 
of water. In MLC, the error of commission was 5% higher 
than in MLP and producer accuracy was 4% lower. The 
producer and user accuracies for most of the classes in 
MLP (Figure 7) were slightly higher than those in MLC.

A comparison of the overall area assigned to each class 
by MLC and MLP showed that MLC exaggerated built-up 
areas at the expense of other classes. MLP classified 36.5% 
of the image as built-up area, while MLC assigned 43.6% 
of all pixels to this class. 

7. Discussion

The neural network of MLP used in this study to 
extract built-up areas performed slightly better than 
statistical MLC. The MLC approach aims to define the 
subspaces in feature space corresponding to classified cat-
egories using parameters of normal distribution comput-
ed from a training set. Hence it fails correctly to classify 
highly heterogeneous built-up areas, which often deviate 

Fig. 7 Comparison of producer and user 
accuracy of MLP and MLC classification 
computed for all classes. 1 – built-up area,  
2 – agricultural area, 3 – bare soil, 4 – forest 
area, 5 – body of water.
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from “normality”. In contrast, MLP does not assume any 
specific theoretical distribution. Moreover, MLP training 
attempts to define boundaries between classes in feature 
space. Boundaries can best be established using atypical 
representatives of class pixels, independent of value dis-
tribution. In this study, the same training set of typical 
representatives was used for both classifications. This may 
have partly biased the result of comparison and may be 
behind the fact that differences in classification accuracy 
are only slightly significant.

Our analysis related to the design of ANN demonstrat-
ed that the accuracy of MLP classification results is influ-
enced to a large extent by ANN architecture. If a network 
has more than one input neuron for each input channel, 
it may capture slight differences between the inputs. As 
presented in Section 5, a topology with three input neu-
rons per channel was used in this study. However, the use 
of more is far from uncommon, e.g. Benediktsson et al. 
(1990) used eight neurons and Bischof et al. (1992) used 
13 neurons for each input channel. The number of hidden 
layers also influences network classification performance. 
A training phase for a smaller network can lead to a dead-
lock in the local minimum of total error function and the 
desired error value will not be achieved. Networks with 
a large number of neurons and hidden layers generally 
converge rapidly during the training phase, but there is 
considerable risk of overfitting. An overfitted network is 
capable of correct classification of a training set but can-
not correctly assign pixels it has never seen before. It is 
therefore necessary to seek the network architecture most 
appropriate to the particular problem. 

In general, MLP classification can be improved by 
objective selection of the bands required for classifica-
tion (Kavzoglu and Mathers 2003; Sotoca et al. 2007). 
Reduction of the number of input bands may serve to 
emphasize important information in the image. Further, 
it entails a reduction of units in the neural net and subse-
quently a reduction in the time required for net training. 
Transformation of original bands with, for example, prin-
cipal components, may also enhance important infor-
mation and suppress noise in the image classified. Band 
selection based on divergence statistics was used in this 
contribution, but it did not improve classification accura-
cy (Section 4.1). ANNs enable the inclusion into classifi-
cation of data from various sources. In the case of urban 
land-cover classification, texture information derived 
from the original image may also help distinguish highly 
heterogeneous built-up areas from other land cover types 
(Berberoglu et al. 2007).

Despite its successful classification results, the use of 
ANNs is still comparatively limited. Empirical rules (e.g. 
Atkinson and Tatnall 1997; Mather 1999) for determin-
ing the number of layers and their neurons are usually 
overestimated and generate over-large networks prone 

to overfitting. A large topology can usually be pruned. 
However, definition of the optimal fitting architecture is 
still a  trial-and-error process (Wilamowski 2009). The 
time required to train a net may be shortened using more 
effective computers, through parallel computing, or with 
faster learning algorithms (Yu and Wilamowski 2009).

8. Conclusion

The need for accurate and up-to-date land cover infor-
mation has become pressing (Feranec et al. 2007). Spatially 
and spectrally improved images and sophisticated classifi-
cation approaches provide tools that eliminate the draw-
backs of commonly-used statistical classifiers. Classifica-
tion results can be further improved by enhancement of 
specific information in an image with spectral indices and 
image transformations (Deng et al. 2008; Uddin et al. 2010). 

In agreement with several previous studies (e.g. Pao-
la and Schowengerdt 1995; Mustapha et al. 2010), we 
demonstrated that ANN can address the problem of urban 
land use/land cover classification as well as, or even better 
than, statistical approaches and that it does not exagger-
ate built-up areas as much as a statistical classifier. Thus 
ANN may be a powerful tool for image classification, 
but it is still limited by the complex process of finding 
the best-fitting net architecture (Vatsavai et al. 2011) and 
a time-consuming and non-deterministic training phase.

The ANN method of land cover classification applied 
in this case study and our main findings concerning the 
classification accuracy are related to long-term activities 
dealing with urban climate of Brno. As different land 
cover categories contribute differently to air temperature 
variability and to UHI intensity (Hart and Sailor 2009; 
Dobrovolný 2013), a compilation of more precise land 
cover maps is very important. The classification accuracy 
of the land cover maps directly influences precision of air 
temperature mapping and subsequently our abilities to 
mitigate negative consequences of UHI formation. Land 
cover mapping is important not only in empirically based 
studies (Dobrovolný and Krahula 2012), but may signif-
icantly contribute to urban climate modeling (Hidalgo 
et al. 2008). Both the land cover map compiled in this 
case study and the design of the ANN will be further used 
not only for estimation of UHI intensity but will be also 
provided to decision maker as a support for sustainable 
development and for regional planning in Brno area.
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RESUMÉ

Role neuronových sítí při klasifikaci druhů povrchu v zastavěných 
oblastech: vícevrstvá neuronová síť 

Aktuální a přesné mapy druhů povrchů poskytují zásadní infor-
mace pro řadu odvětví, mezi jinými pro územní plánování a trvale 
udržitelný rozvoj. Dálkový průzkum Země nabízí zřejmě nejefek-
tivnější přístup pro tvorbu těchto map. Přesnost metod automatic-
ké klasifikace obrazu je nicméně stále limitována, zvláště ve vysoce 
heterogenních zastavěných oblastech. Tato studie prezentuje více-
vrstvou neuronovou síť (multilayer perceptron) jako příklad jedno-
ho z možných přístupů ke klasifikaci obrazu. Optimálního nasta-
vení parametrů architektury použité neuronové sítě bylo dosaženo 
pomocí trénovací množiny vzorů. Výsledná síť se dvěma skrytými 
vrstvami byla použita pro klasifikaci satelitního snímku pořízené-
ho senzorem ASTER. Výsledek klasifikace byl následně zhodnocen 
pomocí testovací množiny dat. Celková přesnost klasifikace vůči 
testovacím datům dosahovala 94,8 %, což je srovnatelné s klasifi-
kací získanou využitím klasifikátoru maximální pravděpodobnosti 
(maximum likelihood) pro totožný snímek. Výraznějšího rozdílu 
v klasifikaci si lze povšimnout především ve výsledné rozloze zasta-
věných ploch, kdy klasifikátor maximální pravděpodobnosti znač-
ně nadhodnotil zastoupení zastavěných ploch v obraze (43,6 %) 
oproti ostatním klasifikovaným třídám. Klasifikací vícevrstvou 
neuronovou sítí byla zastavěná plocha vymezena na 36,5 % klasi-
fikovaného území.
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