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ABSTRACT

This paper provides a survey of recent methodology of characterizing dynamic behavior 
of viscoelastic bodies. A special attention is paid to problems of mechanical compatibility 
of artificial and biological structures. A detailed analysis of mechanical matching of skin 
and plasters or bondages is presented. The criterion for mechanical matching of two 
membranes is derived.
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INTRODUCTION

This paper aims to provide a survey of recent methodology of characterizing dynamic 
behavior of viscoelastic bodies, including examples of its applications in pharmacy. Specific 
attention is paid to problems of mechanical compatibility of artificial and biological structures.

Applications of medical plasters, bandages, prothesis, replacements and many other 
artificial auxiliaries or supporting tools lead usually to permanent mechanical contact with 
biological structures. These artificial structures and adjoining biological materials should 
be mechanically compatible.1 Mechanical compatibility means that the deformations are 
the same or, at least, sufficiently similar in both structures.

Mechanical incompatibility of these artificial structures and adjoining biological 
materials may lead to health problems and, in less critical situations, noticeable discomfort. 
The origin of these problems lies in tangent forces on the boundary between mechanically 
incompatible structures. These forces may result, among others, in tear‑off plasters and 
irritation of adjacent biological structures. Generally, the mechanical incompatibility may 
lead to inflammation and other health complications. A disintegration of the connection 
between artificial and biological structures cannot be excluded.
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In practice, the solution of these problems still depends mainly on experience. However, 
quantitative solution is principally possible, when modern theory of viscosity is applied 
and adequate methodology of measurements is used.2

THEORETICAL BACKGROUND

Solution of problems of mechanical matching requires knowledge of mechanical behavior 
of structures under study. Mechanical behavior may be defined as the relationship 
between forces and deformations. In case of viscoelastic bodies, including virtually all 
biological structures, mechanical behavior depends on theirs elastic as well as viscose 
properties.

Conventional approach to characterization of mechanical behavior of viscoelastic 
bodies is based on the identification of corresponding rheological model. Classical 
rheological models are structures combining several elastic and viscose bodies. The 
well known and often applied model is the Voigt’s model. It is possible to demonstrate, 
theoretically as well as experimentally, that classical rheological models do not provide 
satisfactory characterization of dynamic behavior of viscoelastic bodies. Extended 
viscoelastic models with additional non‑linear elements also do not lead to compliance 
with reality.

The more recent approach does not try to find a rheological model. Instead, the main 
idea is based on mathematical models and on theory of linear differential equations and 
Fourier transform.1 Mechanical behavior of viscoelastic bodies is quantified by complex 
dynamic moduli or complex dynamic stiffnesses. These characteristics fully describe 
mechanical behavior of linear or linearized mechanical systems.

For complex stiffness S(iω) it holds that:

� (1)

where F(iω) is the phasor representation of force, l(iω) is the phasor representation of 
deformation, i is the imaginary unit = −i 1 , ω is the angular frequency.

The knowledge of the relationships between amplitudes of forces and deformations 
is important in many situations. The ratio of the amplitude of force to the amplitude of 
deformation is given by the absolute value of the complex stiffness:

ω ω( ) ( ) ( )= +S S w S ,RE IM
2 2

where SRE is the real part of the complex stiffness and SIM is the imaginary part of the 
complex stiffness.

Complex modulus is often used in the case of tensile loading. Analogically to the 
equation (1), the following equation holds for the complex modulus E(iω):
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where σ(iω) is the phasor representation of stress, ε(iω) is the phasor representation of 
strain.

The ratio of the amplitude of stress to the amplitude of strain is given by the absolute 
value of the complex dynamic modulus:

ω ω ω( ) ( ) ( )= +E E E ,RE IM
2 2

where ERE is the real part of the complex modulus and EIM is the imaginary part of the 
complex modulus.

The imaginary part of the complex modulus (loss modulus) characterizes dissipative 
energy losses in a mechanical system. The real part of the complex modulus (conservative 
or storage modulus) characterizes energy stored in a mechanical system.

Loss factor L is the ratio between loss and storage modulus.

ω( ) =L i E
E

IM

RE

The loss factor describes the ratio between dissipative energy and conservative energy in 
mechanical system during dynamic process.

In tensile loading of a uniform rod, the complex modulus may be calculated from its 
complex stiffness and the rod geometry according to the formula (3):

� (3)

where A is the cross section area of the rod, l is the length of the rod.

MEASUREMENT

Currently available apparatuses for measurement of complex dynamic moduli or complex 
dynamic stiffness’s are so called Dynamic Mechanical Analyzers (DMA).3 Measurements 
are based on the measurement of the relationship between harmonic forces and harmonic 
deformations. The DMA apparatuses measure the ratio between amplitudes of forces 
and amplitudes of deformations and the phase shift between forces and deformations for 
different frequencies. The results are frequency dependence of storage and loss moduli. 
Usually the loss factor is also calculated.
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More modern measurements are based on mechanical resonance principle. Resonance 
Analyzers (RA) enable more sensitive measurements, RA are less complicated technically 
in comparison with DMA and less expensive.4

MECHANICAL MATCHING

Solution of problems of mechanical matching requires knowledge of the structure and the 
geometry of the system as well as knowledge of mechanical properties of components of the 
system. It may be a particularly complicated and difficult task. The analysis of mechanical 
matching of thin structures is relatively easy. Pharmaceutically interesting is for example the 
mechanical matching of skin and plasters, vessels walls and stents, or body surface and bandages.

For illustration, the analysis of mechanical matching of skin and plasters will be 
discussed in more details. Human skin as well as plasters may be considered as a membrane 
covering sub‑dermal and other inner structures.5 In membranes, differences of pressures 
inside and outside of the membrane lead to changes of the membrane geometry according 
to Laplace law.6 For spherical shape of a membrane it holds:

� (4)

where T is the membrane tension, P is the pressure difference, R is the radius of curvature.
Membrane tension T is force per length (see Fig. 1):

=T F
L

For stress in membrane it holds:

σ =
T
d

where d is the membrane thickness. Also holds:

σ =
F
dL

and

σ =
F
A

where A is the cross section area of membrane.
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Relative deformation ε of membrane is (see formula 2):

ε ω
σ ω

ω
( ) ( )

( )
=i

i
E i

Consequently, on the basis of measurement of pressure and radius of curvature, it is 
possible to calculate the membrane tension and the stress in the membrane. Furthermore, 
the deformation may also be calculated .

Membrane thickness is, according to its defi nition, much smaller than the curvature 
radius. Consequently tensions in membranes are the same (see Fig. 2). For strains in 
membranes holds:

σ =
T
d1

1

and

σ =
T
d2

2

As the condition for mechanical matching is

ε ε= ,1 2
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Fig 1 . Illustration to Laplace law

Fig 2 . Heterogeneous membrane and Laplace law
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the condition of mechanical matching for two membranes is:
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Example: Elastic modulus of material of medical plaster is 10 MPa. Suppose that the 
plaster is applied on skin. Suppose that elastic modulus of skin is 1 MPa and thickness of 
skin is 1 mm. Mechanical matching thus requires the thickness of plaster 0.1 mm.

The analysis outlined above illustrates basic principles of suggested methodology. It is 
limited to simple model situation. Naturally, the general solution of problems connected 
with mechanical matching of real heterogeneous structures requires more detail analysis.

CONCLUSIONS

Albeit the solution of mechanical matching of heterogeneous structures is in general 
a complicated problem, application of Laplace law may lead to relatively easy methodology 
in case of mechanical matching of walls surrounding large objects. The Young–Laplace 
equation (Laplace law) relates the pressure difference to the shape changes and wall 
tension (eq. 4) in case of a membrane surrounding large objects. In other words, radii of 
curvature must be much greater than the thickness of walls.

The methodology outlined in this paper may be applied to solve problems of mechanical 
matching of medical plasters and bandages. We hope that it will help manufactures to 
improve quality of these products. On the other hand, application of this theory requires 
appropriate experimental equipment.7,8 Mainly meters for determination of strain‑stress 
diagrams and complex moduli are necessary.
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