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Abstract: Adipose tissue is recognized as an active endocrine organ that produces 
a number of endocrine substances referred to as “adipokines” including leptin, 
adiponectin, adipolin, visfatin, omentin, tumour necrosis factor-alpha (TNF-α), 
interleukin-6 (IL-6), resistin, pigment epithelium-derived factor (PEDF), and 
progranulin (PGRN) which play an important role in the food intake regulation  
and significantly influence insulin sensitivity and in some cases directly affect  
insulin resistance in skeletal muscle, liver, and adipose tissue. The review 
summarizes current knowledge about adipose tissue-derived hormones and their 
influence on energy homeostasis regulation. The possible therapeutic potential  
of these adipokines in the treatment of insulin resistance, endothelial dysfunction,  
a pro-inflammatory response, obesity, eating disorders, progression of 
atherosclerosis, type 1 diabetes, and type 2 diabetes is discussed.
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Introduction
Adipose tissue (AT) was originally considered as a passive reservoir for energy 
storage, mechanical and heat insulation, and participating in the regulation 
of thermogenesis (Trayhurn and Beattie, 2001). However, AT is now known 
to synthesize and secrete a variety of bioactive peptides, currently known as 
“adipokines”, which act at both autocrine/paracrine and endocrine level (Proença 
et al., 2014). Adipokines participate in the regulation of glucose and lipid 
metabolism, energy homeostasis, feeding behaviour, insulin sensitivity, inflammation, 
immunity, adipogenesis, vascular function or coagulation (Romacho et al., 2014) 
(Figure 1). AT is innervated by the sympathetic nerve endings and the  
cross-talk between adipocytes and hypothalamic neurons as well with sympathetic 
nervous system neurons is mediated by multiple signals and may control 
adipokine secretion. Furthermore, AT is composed not only of differentiated 
mature adipocytes but also of other cell types termed the stroma-vascular 
fraction (SVF), containing endothelial cells, nerve cells, immunocompetent cells 
especially monocytes/macrophages, T and B lymphocytes, dendritic cells, mast cells, 
neutrophils, eosinophils, pericytes, fibroblasts, myocytes, adipose-derived stem cells 
or undifferentiated adipose precursor cells (3T3-L1 preadipocytes) (Wozniak et 
al., 2009; Esteve Ràfols, 2014; Exley et al., 2014; Vieira-Potter, 2014). The balance 
between these different cell types is closely related to maintenance of energy 
homeostasis. An adipocyte size, number and polarization of lymphocytes and 
infiltrated monocytes/macrophages are closely related to metabolic and obesity-
related diseases (Vieira-Potter, 2014).

AT is the largest endocrine organ by secreting hundreds of hormones and 
cytokines. These adipokines affect processes in the peripheral and the central 
nervous system. In this vein, TNF-α and macrophages are associated with peripheral 
diabetic neuropathy contributing to the diabetic microvascular complications 
(Purwata, 2011). Moreover, it is known that adipokines regulate not only feeding 
behaviour, but also neurodegeneration, synaptic plasticity, neurogenesis, axon 
growth, apoptotic cell death, cognitive deficits, memory consolidation, and learning 
processes (Arnoldussen et al., 2014).

Therefore, AT produces a variety of pro-inflammatory and anti-inflammatory 
hormones including adipokines leptin, resistin, adiponectin, adipolin, visfatin, and 
omentin as well as cytokines such as tumour necrosis factor-alpha (TNF-α), 
interleukin-6 (IL-6), pigment epithelium-derived factor (PEDF), and progranulin 
(PGRN). Pro-inflammatory hormones produced by AT have been implicated as 
participants in the development of insulin resistance and obesity and the increased 
risk of cardiovascular disease, whereas anti-inflammatory and insulin-sensitizing 
adipokines adiponectin, adipolin, and omentin are decreased (de Souza Batista 
et al., 2007; Knights et al., 2014; Proença et al., 2014; Romacho et al., 2014). Also, 
PEDF and PGRN are novel substances affecting insulin sensitivity (Famulla et al., 
2011; Li et al., 2014). Furthermore, pro- and anti-inflammatory factors are also 
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Figure 1 – Adipose tissue is a network of endocrine signals that regulates glucose and lipid metabolism, energy 
homeostasis, pro- and anti-inflammatory response and enables the organism to adapt to a range of different 
metabolic challenges such as starvation, stress, infection, and periods of energy excess.
AdipoQ, Adiponectin, Adipocyte complement-related protein of 30 kDa (regulates glucose, lipid homeostasis, 
and insulin sensitivity), Adipolin (is an insulin-sensitizing adipose tissue-derived hormone), Visfatin (is an 
important adipokine that involved in glucose and lipid metabolism and is related to the pathogenesis of 
insulin resistance), Omentin (is a novel depot-specific adipokine with insulin-sensitizing and anti-inflammatory 
properties), TGF-β, transforming growth factor-beta (regulates a wide variety of biological response including 
proliferation, differentiation, and apoptosis), PEDF, pigment epithelium-derived factor (plays a causal role in 
insulin resistance), VEGF, vascular endothelial growth factor (regulator of angiogenesis), PGRN, progranulin (is 
associated with systemic insulin resistance, metabolic syndrome, and obesity), NGF, nerve growth factor (is 
secreted by white adipocytes and involved in an inflammatory response), Adipophilin (may be a specific marker 
for lipid accumulation in the cells), Apo E, apolipoprotein E (important regulator of lipoprotein metabolism), IGF-I, 
insulin growth factor I (stimulates proliferation of a wide variety of cells and mediates many of the effects of 
growth hormone), ASP, acylation stimulating protein (influences the rate of triacylglycerol synthesis in adipose 
tissue), Agouti-related protein, AGRP (regulates adipose tissue function), NPY, Neuropeptide Y (orexigenic NPY 
is also produced by adipocytes and mediates reduction of leptin for central feedback of adiposity signals), PG, 
prostaglandin (implicates in regulatory functions such as inflammation and blood clotting), Catecholamines 
(are synthesized in adipose tissue), Angiotensinogen (precursor of angiotensin II, regulator of blood pressure 
and electrolyte homeostasis), Leptin (signals to the brain about body fat stores, regulation of appetite and 
energy expenditure), MIF, macrophage migration inhibitory factor (involved in pro-inflammatory process and 
immunoregulation), Adipsin (possible link between the activation of the alternative complement pathway and 
adipose tissue metabolism), Monobutyrin, 1-butyryl-glycerol (is a vasoactive factor secreted by differentiating 
adipocytes), IL-6 + sR – interleukin-6 and soluble receptors (implicated in host defense and in glucose and lipid 
metabolism), TNFα + sR – tumour necrosis factor alpha and soluble receptors (interferes with insulin receptor, 
development of insulin resistance in obesity), PAI-1, plasminogen activator inhibitor-1 (inhibitor of fibrinolytic 
system), Tissue factor (cellular initiator of the coagulation cascade), Resistin (hormonal factor relates with the 
resistance to insulin in obesity).
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produced by activated macrophages. M1 or “classically activated” macrophages are 
characterized by increased production of TNF-α and IL-6, which promote insulin 
resistance and state of low-grade inflammation in adipocyte hypertrophy in obese 
patients. However, M2 or “alternatively activated” macrophages are characterized 
by increased production of anti-inflammatory cytokine interleukin-10 (IL-10) in 
lean AT and adipocytes are smaller in size and tend to be more sensitive (Galic 
et al., 2010). Obesity causes a shift of macrophage subtypes in AT from M2 to M1 
activation leading to higher levels of pro-inflammatory adipokines which induce 
insulin resistance (Lumeng et al., 2007).

Visceral AT is morphologically and functionally different from subcutaneous AT. 
Visceral and subcutaneous AT exhibit unique adipokine expression and secretion 
profiles (Kershaw and Flier, 2004). Visceral AT produces more pro-inflammatory 
cytokines such as IL-6, plasminogen activator inhibitor (PAI-1) and angiotensinogen, 
whereas subcutaneous AT secretes more leptin and larger quantities of anti-
inflammatory and insulin-sensitizing adiponectin. Furthermore, visceral AT 
is composed of large insulin-resistant adipocytes and has a well-developed 
vasculature, rich in blood supply, heavily innervated and more sensitive to lipolysis, 
with the infiltration of higher levels of macrophages, T cells, and natural killer 
cells. Thus, pro-inflammatory cytokines and metabolites from visceral AT and AT 
macrophages are released into portal vein and directly impact liver metabolism. 
Indeed, visceral AT accumulation has been linked to increased risk of obesity-
related diseases and mortality. On the contrary, subcutaneous AT is characterised 
by small insulin-sensitive adipocytes with less vascularity, innervation, and cellular 
infiltration, and serves as storage of fat depot, which is drained systematically 
(Ibrahim, 2010). Increased subcutaneous AT is associated with a reduced risk of 
obesity-induced metabolic dysregulation and enhanced insulin sensitivity, and thus, 
subcutaneous AT accumulation particularly in the thighs and buttocks is proposed 
to be protective when compared with the deleterious consequences of visceral 
adiposity (Booth et al., 2014).

The aim of this review was to describe the role of selected and recently 
discovered adipokines with a focus on their source and their effects on whole-
body energy metabolism and insulin resistance.

An overview of adipose tissue-derived hormones

Leptin
Leptin is a 16 kDa protein hormone produced primarily by adipocytes (Zhang 
et al., 1994) that regulates food intake and energy expenditure. Leptin was 
first identified as the product of the ob gene in obese ob/ob mice (Zhang et 
al., 1994). Leptin deficient ob/ob mice are hyperphagic and morbidly obese, 
indicating increased energy intake with reduced energy expenditure. Indeed, 
leptin administration in congenitally deficient ob/ob mice causes a decrease in 
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appetite and promotes weight loss (Campfield et al., 1995). In humans, congenital 
leptin deficiency is associated with severe obesity, glucose intolerance, and insulin 
resistance which can be reversed by leptin replacement therapy (Farooqi et al., 
1999). Thus, in congenitally leptin deficient children and adults, recombinant human 
leptin therapy successfully reduces obesity and restores reproductive functioning, 
and improves the hypothalamic dysfunctions associated with leptin deficiency 
(Farooqi et al., 2002; Licinio et al., 2004). Therefore, it was documented that the 
treatment with recombinant human leptin is useful in monogenic human obesity 
caused by leptin deficiency (Farooqi and O’Rahilly, 2005; Dubern and Clement, 
2012).

Currently it is demonstrated that leptin levels are positively correlated with 
body fat in obese individuals and decreased in lean subjects (Mendoza-Núñez et 
al., 2002). In fact, leptin is an important regulator of energy homeostasis to inform 
the hypothalamic satiety centre of the body fat stores (Nogueiras et al., 2008). 
Therefore, leptin functions as an afferent signal in a negative feedback loop that 
regulates food intake to maintain homeostatic control of AT mass (Friedman, 
2014). Indeed, leptin serves as an “adipostat”, as circulating plasma leptin levels 
reflect the degree of adiposity and its release from adipocytes signals to the 
brain to trigger the suppression of food intake and to boost energy expenditure. 
Moreover, it was documented that leptin is the major hormone to trigger the 
adaptation of an organism to food restriction (Ahima et al., 1996). Hypoleptinaemia 
is actually accompanied by a decrease in basal energy expenditure in women with 
amenorrhea. Indeed, in anorexia nervosa (AN) and bulimia nervosa (BN) patients, 
plasma leptin levels were found to be lower than in normal weight controls 
(Nedvídková et al., 2000; Dostálová et al., 2007; Smitka et al., 2011, 2013a, b). 
However, realimentation leads to an increase in plasma leptin levels in AN and BN 
patients.

Adipose-derived leptin accelerates puberty in human and animal studies and 
restores reproductive function in leptin-deficient mice and humans (Hileman et 
al., 2000). Plasma leptin levels are decreased in healthy men when compared with 
healthy women. It was shown that leptin replacement during fasting prevents 
starvation-induced changes in the hypothalamic-pituitary-gonadal axis in healthy 
men (Chan et al., 2003). Moreover, administration of recombinant leptin resulted 
in recuperation of reproductive outcomes and corrected in the gonadal, thyroid, 
growth hormone (GH), and adrenal axes in lean women with hypothalamic 
amenorrhea (Welt et al., 2004).

Leptin exerts insulin-like effects on glucose metabolism and was considered 
as potential treatment to decrease hyperglycaemia in type 1 diabetes in mice 
(Wang et al., 2010). Furthermore, leptin improves insulin sensitivity in mice 
through activation of adenosine monophosphate-activated protein kinase (AMPK) 
contributing to an increased oxidation of free fatty acids (FFA), thereby reducing 
ectopic accumulation of lipids in skeletal muscle and liver (Minokoshi et al., 
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2002). Importantly, treatment with leptin and adiponectin together completely 
reversed insulin resistance in lipoatrophic mice when compared with only partial 
improvement with adiponectin or leptin alone (Yamauchi et al., 2001).

Leptin exerts its effect on central and peripheral tissues by binding to its 
receptor (Ob-R). This Ob-R was found primarily in the dorsomedial and 
ventromedial hypothalamic nuclei involved in the control of food intake. This 
receptor was also found in several peripheral tissues including AT, skeletal muscle, 
liver, pancreatic beta cells, blood mononuclear cells, lymphocytes, and endothelial 
cells. Thus, leptin acts on immune and endothelial cells to stimulate the production 
of a spectrum of pro-inflammatory cytokines (Cao, 2014). Indeed, an increased 
pro-inflammatory response has been reported in hyperleptinaemia with leptin 
resistance during obesity (Vázquez-Vela et al., 2008) leading to hepatic steatosis 
and ectopic accumulation of lipids in skeletal muscle, heart, and pancreas.

In obese humans, endogenous high leptin levels or exogenous leptin treatment 
was ineffective in terms of weight loss (Zelissen et al., 2005), consistent with 
the concept of leptin resistance (Bjørbaek and Kahn, 2004; Sáinz et al., 2015). 
The potential mechanisms for leptin resistance has been proposed and include 
defective transport of leptin across the blood-brain barrier (Bjørbaek and Kahn, 
2004; Flier, 2004), defects in leptin receptor/post-receptor signalling cascade 
through molecular mediators of leptin resistance such as suppressor of cytokine 
signalling-3 (SOCS3) (Bjørbaek et al., 1998) and protein tyrosine phosphatase 1B 
(PTP1B) (Cheng et al., 2002), and a desensitization of cellular downstream signalling 
at central and peripheral level (Münzberg and Myers, 2005). Finally, in this context, 
leptin desensitization found in obese humans can affect the regulation of lipid and 
glucose handling in the AT, muscle, and liver as well as the gastrointestinal nutrient 
utilization and contribute to the worsening of the obese state (Sáinz et al., 2015).

As the above mentioned, leptin-deficient mice and humans exhibit severe 
hyperphagia and obesity, and administration of recombinant leptin leads to an 
almost complete reversal of this phenotype (Campfield et al., 1995; Farooqi 
et al., 1999, 2002; Licinio et al., 2004; Farooqi and O’Rahilly, 2005; Dubern and 
Clement, 2012). However, in non-leptin-deficient human obesity, administration of 
recombinant human leptin has failed to produce meaningful weight loss in obese 
men and women with glucose intolerance and type 2 diabetes, presumably due to 
leptin resistance that impairs leptin action (Heymsfield et al., 1999; Hukshorn et al., 
2000, 2002; Moon et al., 2013).

It was documented that leptin exerts insulin-like effects on glucose metabolism 
and that leptin is considered as potential treatment to attenuate hyperglycaemia 
in type 1 diabetes in mice, rats, and lipodystrophy syndromes in humans (Petersen 
et al., 2002; Wang et al., 2010; Perry et al., 2014). In fact, leptin has been identified 
as a suppressor of ACTH-dependent cortisol secretion in vitro (Szücs et al., 2001). 
Thus, Perry et al. (2014) showed that administration of leptin corrected fasting 
hyperglycaemia and ketoacidosis in rodent models of type 1 diabetes through 
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glucocorticoid-mediated decreases in lipolysis. Likewise, Hathout et al. (1999) 
observed that plasma leptin increase was paralleled by a rise in insulin levels and a 
decline in blood glucose and cortisol levels after insulin treatment in patients with 
type 1 diabetes. These results have potential translational significance for leptin 
replacement, i.e. that plasma cortisol levels were increased before insulin treatment 
in patients with type 1 diabetes and in patients with diabetic ketoacidosis (Hathout 
et al., 1999; Kitabchi and Umpierrez, 2003; Kratzsch et al., 2006). Indeed, Oral 
(2012) summarized the basic and clinical data that provide support to exploration 
of administration of recombinant leptin as an adjunctive therapy for patients 
suffering from type 1 diabetes. For example, leptin replacement can reduce the 
number of insulin injections as well as the total daily insulin dose required for 
patients with type 1 diabetes (Oral, 2012). Moreover, leptin replacement can 
suppress glucagon levels and hyperglucagonaemia is a hallmark feature of type 1 
diabetes (Oral, 2012). Nevertheless, the role of leptin as an insulin-sensitizing 
adipokine still needs further clarification (Knights et al., 2014).

Adiponectin
Adiponectin is a protein produced by adipocytes, which was discovered in the 
1990s by four independent groups, and it was named adipocyte complement-
related protein of 30 kDa, Acrp30, AdipoQ, apM1, and GBP28 (Scherer et al., 
1995; Hu et al., 1996; Maeda et al., 1996; Nakano et al., 1996). It was believed 
that adiponectin was secreted predominantly by AT. However, adiponectin is 
also produced by human cardiomyocytes and human skeletal muscle (Brochu-
Gaudreau et al., 2010). Adiponectin plasma levels are negatively correlated with 
body mass index (BMI) and fat mass in patients with obesity, type 2 diabetes, and 
cardiovascular disease (Weyer et al., 2001). Unlike leptin, adiponectin plasma levels 
are elevated in lean human subjects and reduced in human and animal subjects with 
obesity and type 2 diabetes (Hotta et al., 2000, 2001; Yang et al., 2001).

Adiponectin exists as a full-length protein of 30 kDa and was found in the 
circulation as a number of multimeric complexes, i.e. low molecular weight (LMW) 
trimers, medium molecular weight (MMW) hexamers, and high molecular weight 
(HMW) multimers (12 to 18 mers) (Pajvani et al., 2003). Importantly, plasma HMW 
multimers are related to insulin sensitivity, while failure in multimerarization of 
adiponectin is associated in patients with type 2 diabetes mellitus (Waki et al., 
2003). Two isoforms of adiponectin receptor have been identified: AdipoR1 and 
AdipoR2 (Yamauchi et al., 2003). AdipoR1 is expressed primarily in skeletal muscle 
and is activated by AMPK phosphorylation, whereas AdipoR2 occurs mainly in the 
liver and is involved in the activation of peroxisome proliferator activating receptor 
alpha (PPAR-α) (Lee et al., 2008). Furthermore, we found significantly higher plasma 
levels of adiponectin in patients with AN when compared with healthy women. 
Indeed, increased production of adiponectin may contribute to increased insulin 
sensitivity in patients with AN (Dostálová et al., 2006). Our observations of a 
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negative correlation between plasma adiponectin levels and plasma insulin levels 
in patients with AN confirm the relationship between adiponectin and insulin 
sensitivity. Therefore, insulin is an important regulator of adiponectin and it was 
documented that prolonged exposure of insulin leads to a decrease in levels of 
adiponectin gene expression in 3T3-L1 adipocytes in vitro (Fasshauer et al., 2002). 
From the viewpoint of clinical medicine appears to be an important relationship of 
adiponectin to the development of insulin resistance and atherosclerosis. Indeed, 
adiponectin has a preventive effect against the development of atherosclerosis 
by preventing the transformation of macrophage foam cells and reduces the 
expression of surface adhesion molecules on macrophages, which affects the early 
stages of atherosclerotic plaque formation in humans (Okamoto et al., 2000). 
It is assumed that adiponectin increases insulin sensitivity and reduces risk of 
atherosclerosis. This hypothesis is supported by the fact that reduced plasma levels 
of adiponectin in human obesity will cause a reduction in insulin sensitivity, which is 
associated with the development of insulin resistance and type 2 diabetes mellitus 
(Nedvídková et al., 2005; Skop et al., 2009). Adiponectin secretion is up-regulated 
via PPAR-gamma (γ) agonists such as the anti-diabetic drugs thiazolidinediones 
(TZDs). PPAR-γ mediated adiponectin up-regulation is a mechanism contributing to 
improved insulin sensitivity shown in animal and human subjects treated with TZDs 
(Yamauchi and Kadowaki, 2008).

It was shown that estradiol is negatively and indirectly associated with 
adiponectin, whereas there is no association between serum adiponectin and leptin, 
cortisol, or free testosterone levels in humans (Gavrila et al., 2003). However, 
Nishizawa et al. (2002) documented that testosterone leads to a reduction in 
plasma adiponectin in men.

In contrast to leptin, which has been suggested to enter the brain via endocytosis 
through the leptin receptor, the mechanism by which adiponectin is able to reach 
the hypothalamus is unknown. Importantly, this study also showed that leptin 
sensitivity is markedly increased in adipo-/-mice leading to the proposal that the 
central actions of leptin and adiponectin have reciprocal functions to provide a 
homeostatic mechanism to maintain energy stores through the suppression or 
stimulation of appetite and energy expenditure (Kubota et al., 2007).

It was reported that a selective cannabinoid CB1 receptor antagonist rimonabant 
stimulated adiponectin mRNA expression in AT and reduced body weight in obese 
rats (Bensaid et al., 2003). In obese patients, the CB1 receptor blocker rimonabant 
upregulated adiponectin mRNA expression in omental AT explants (Ge et al., 
2013). Likewise, obese and diabetic patients treated with 20 mg rimonabant daily 
exhibited an increase in adiponectin levels (Després et al., 2005, 2009; Rosenstock 
et al., 2008). However, rimonabant and other blood-brain barrier penetrant CB1 
receptor antagonists exert serious psychiatric side effects in obese patients 
(Christensen et al., 2007). It is noteworthy that novel non-brain-penetrant CB1 
receptor antagonists URB447, JD-2114, and AM6545 (McElroy et al., 2008; LoVerme 



95)

Adipokines and Adipose Tissue

Prague Medical Report / Vol. 116 (2015) No. 2, p. 87–111

et al., 2009; Cluny et al., 2010) have recently been developed to produce many of 
the beneficial metabolic and anti-obesity effects of the prototypical CB1 receptor 
antagonist rimonabant and thus devoid of central side effects.

It was documented that administration of recombinant adiponectin can reverse 
obesity and obesity-related pathological conditions in animals (Li et al., 2012). 
However, there is currently no direct clinical evidence that adiponectin is effective 
in treating obese humans and obesity-related cardiometabolic diseases (Li et al., 
2012). Furthermore, recent evidence showing association of higher adiponectin 
levels with heart failure and mortality in patients with stable ischaemic heart 
disease (Beatty et al., 2012). Indeed, adiponectin may be associated with the obesity 
paradox (Flegal et al., 2013), which indicates that obese patients may demonstrate 
lower all-cause and cardiovascular mortality when compared with normal-weight 
individuals (Hainer and Aldhood-Hainerová, 2013).

Adipolin
Adipolin (CTRP12) is a novel adipose-derived insulin-sensitizing adipokine 
(Enomoto et al., 2011). Adipolin (CTRP12) circulates in human and mouse 
plasma in two isoforms: full length fCTRP12 (40 kDa) and a cleaved gCTRP12 
(25 kDa). In plasma, gCTRP12 (25 kDa) is the predominant isoform (Wei et al., 
2012). Enhancement of insulin signalling by adipolin was noted through increased 
phosphorylation of the insulin signalling proteins (insulin receptor substrate 
[IRS-1, 2], serine/threonine kinase [Akt], and mitogen-activated protein kinase 
[MAPK]) (Wei et al., 2012). A negative correlation between adipolin levels and 
pro-inflammatory hormone resistin was reported (Wei et al., 2012). Plasma 
adipolin levels are diminished in obese mice and administration of adipolin leads 
to improved insulin sensitivity and glucose tolerance in obese and diabetic animal 
models (Wei et al., 2012). Moreover, adipolin reduces macrophage infiltration in AT 
and may decrease pro-inflammatory cytokines. This suggests an anti-inflammatory 
role of adipolin in obese and insulin resistant state (Enomoto et al., 2011).

To date there has been limited study of adipolin in humans. Tan et al. (2014) 
investigated the effect of metformin treatment on plasma adipolin levels in humans. 
They conclude that increase of plasma adipolin levels might constitute a novel 
pharmacological approach in the treatment of insulin resistant states.

Visfatin
Visfatin was described as a 52 kDa pre-B cell colony-enhancing factor (PBEF) and 
expressed in peripheral blood lymphocytes (Samal et al., 1994). It was renamed 
and identified as a new adipokine “visfatin” because its production is higher in 
visceral AT when compared to subcutaneous AT (Fukuhara et al., 2005). Moreover, 
plasma visfatin levels are correlated positively with visceral AT mass. Ziora et al. 
(2012) documented that plasma visfatin levels were decreased in AN patients 
when compared with healthy controls. Instead, Dostálová et al. (2009) reported 
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that plasma visfatin levels were not affected by the presence of both chronic 
malnutrition in AN or bingeing/purging behaviour in BN patients.

Similarly to insulin, visfatin in vitro enhanced glucose uptake by adipocytes 
and myocytes, and amplified adipocyte differentiation, and inhibited hepatocyte 
glucose release (Fukuhara et al., 2005). Visfatin insulin-like effects are observed 
in the phosphorylation of insulin receptors IRS-1 and IRS-2. Interestingly, visfatin 
and insulin have the same affinity for insulin receptor, but interacting with insulin 
receptor at different site. Visfatin plasma levels are elevated in patients with type 2  
diabetes, while fasting visfatin levels tended to be lower in patients with type 1 
diabetes (Kralisch et al., 2005; Chen et al., 2006). It has been shown that plasma 
visfatin levels increase with progressive beta cell deterioration in type 2 diabetes 
(López-Bermejo et al., 2006).

It is important to note that visfatin has a structure identical to two molecules, 
the extracellular form of the PBEF and the intracellular form of the nicotinamide 
phosphoribosyl-transferase (NAMPT). Thus, visfatin was rediscovered as the 
key enzyme of nicotinamide adenine dinucleotide (NAD) biosynthesis. Indeed, 
visfatin (or NAMPT) regulates intracellular activity of the NAD/NADH dependent 
enzymes that are critical for glucose-stimulated insulin secretion in pancreatic beta 
cells (Revollo et al., 2007).

Finally, neutralizing the actions of visfatin may bring benefits in models of 
inflammation, metabolic and inflammatory diseases and in the development  
of atherosclerosis (Moschen et al., 2010; Romacho et al., 2013).

Omentin
Omentin is a 38–40 kDa novel adipokine preferentially produced by visceral 
AT and predominantly expressed in the SVF of visceral AT (Yang et al., 2006). 
Omentin (or intelectin-1) was originally identified as a soluble galactofuranose-
binding lectin (Tsuji et al., 2001). It was documented that omentin enhances 
insulin-stimulated glucose uptake in human adipocytes through Akt signalling 
in vitro and that expression of omentin in visceral AT is reduced in obesity and 
insulin resistance (Yang et al., 2006; de Souza Batista et al., 2007). Furthermore, it 
was shown that animal and human endothelial cells treated with omentin led to 
vasodilatation through endothelium-derived nitric oxide (NO) and to suppression 
of TNF-α induced vascular inflammation (Yamawaki et al., 2010, 2011). Likewise, Tan 
et al. (2010) reported that omentin decreased in vitro migration and angiogenesis 
in human endothelial cells induced by human sera, VEGF, and C-reactive protein 
(CRP), and TNF-α induced activation of the nuclear factor kappa-light-chain 
enhancer of activated B cells (NF-κB).

In fact, omentin is highly expressed in perivascular AT and epicardial AT (Sacks and 
Fain, 2007). Thus, omentin may play a protective role in coronary atherosclerosis, 
obesity-related cardiovascular disorders, and hypertension, given the vasodilatating 
effect of omentin on blood vessels (Fain et al., 2008; Yamawaki et al., 2010).
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Brunetti et al. (2013) suggest that omentin may be involved in regulation of 
appetite. Indeed, in rats, administration of omentin diminished the expression 
of cocaine- and amphetamine-regulated transcript (CART) and increased 
norepinephrine release in the hypothalamus. Thus, these observations propose 
central orexigenic function of peripheral omentin (Brunetti et al., 2013).

Recently, Oświęcimska et al. (2015) reported that serum omentin levels are 
significantly higher in AN and significantly lower in obesity when compared with 
healthy subjects. Moreover, serum omentin levels correlated negatively with BMI, 
serum insulin, and HOMA-IR index. They conclude that omentin is the nutritional 
marker reflecting body weight and insulin resistance (Oświęcimska et al.,  
2015).

Finally, Herder et al. (2015) suggest that omentin acts via upregulation of 
adiponectin, which in turn affects lipid metabolism and thereby also indirectly 
enhances insulin sensitivity in humans.

Tumour necrosis factor-alpha (TNF-α)
TNF-α is synthesized as a 26 kDa transmembrane protein that undergoes cleavage 
by a metalloproteinase to be released into the circulation as a 17 kDa protein 
(Kriegler et al., 1988). In 1993, it was found that TNF-α is produced by adipocytes 
in obese mice (Hotamisligil et al., 1993) and this first adipose-derived factor 
suggested to represent a link between obesity, inflammation and diabetes. These 
experimental results were confirmed by the later work which showed that the 
increased production of pro-inflammatory cytokine TNF-α in human adipocytes 
was correlated positively with the degree of obesity, insulin levels and insulin 
resistance (Kern et al., 2001). However, it was recognized that adipocytes are not 
the major source of TNF-α in obesity but that macrophages from the SVF are the 
primary source of adipose-derived TNF-α and that higher plasma levels of TNF-α in 
obesity are due to the increased infiltration of AT with M1 macrophages (Weisberg 
et al., 2003).

Mechanism of action of TNF-α in AT is autocrine via insulin signalling cascade, 
TNF-alpha induces phosphorylation of the IRS-1 and thus prevents the interaction 
of insulin with an insulin receptor (Paz et al., 1997). Further, TNF-α enhances 
activity of hormone sensitive lipase (HSL) in AT and thus increases the release of 
FFA into circulation leading to the insulin resistance in the liver and skeletal muscle 
(Zahorska-Markiewicz, 2006). An interesting finding was that the administration 
of TNF-α suppresses insulin-sensitizing effect of adiponectin and increases 
leptin receptor action, whereas administration of adiponectin attenuates insulin 
resistance induced by administration of TNF-α (Maeda et al., 2002; Gan et al., 
2012). Furthermore, neutralization of TNF-α with an antibody against TNF-α did 
not improve insulin sensitivity in type 2 diabetes mellitus (Ofei et al., 1996), while 
neutralization of TNF-α improved insulin resistance in patients with rheumatoid 
arthritis (Gonzales-Gay et al., 2006).
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TNF-α may play a direct role in the development of atherosclerosis through 
induction of adhesion molecule expression (vascular cell adhesion molecule-1 
[VCAM-1], intercellular adhesion molecule-1 [ICAM-1], monocyte chemotactic 
protein-1 [MCP-1], and E-selectin) in endothelial and vascular smooth muscle cells 
resulting in endothelial cell apoptosis (Choy et al., 2001).

Interleukin-6 (IL-6)
IL-6 circulates in multiple glycosylated forms ranging from 22 to 27 kDa. 
Approximately one third of circulating IL-6 originates from AT (Mohamed-Ali et al., 
1997). Secretion of IL-6 is 2 to 3 times greater in visceral relative to subcutaneous 
AT (Fontana et al., 2007). However, most of the adipose-derived IL-6 comes 
from SVF composed of endothelial cells, monocytes/macrophages, myocytes, and 
fibroblasts (Fain et al., 2004).

Plasma levels of IL-6 are elevated in patients with obesity and involved in the 
development of insulin resistance and type 2 diabetes (Pradhan et al., 2001; 
Klover et al., 2005). Infusion of recombinant IL-6 to human subjects leads to an 
increase in hepatic glucose output and hyperglycaemia; IL-6 has a lipolytic effect 
with a consequent increase of FFA levels in circulation (Polák et al., 2006). A 
pro-inflammatory cytokine IL-6 inhibits the insulin signalling cascade leading to an 
impairment of insulin-induced insulin receptor and IRS-1 phosphorylation (Senn 
et al., 2003). Experimental studies have confirmed that IL-6 together with TNF-α 
decreased adiponectin mRNA in vitro (Bruun et al., 2003).

Resistin
Resistin is a 12.5 kDa peptide produced by adipocytes in rats, whereas in humans it 
is synthesized by immunocompetent cells. Resistin belongs to the family of resistin-
like molecules (RELMs), also known as “found in inflammatory zone” (FIZZ). It 
was hypothesized that resistin and its increased levels causes insulin resistance in 
obesity (Steppan et al., 2001). Administration of resistin in healthy mice impaired 
glucose tolerance, whereas immunoneutralization of resistin in mice with diet-
induced obesity improved insulin sensitivity and glucose tolerance (Steppan and 
Lazar, 2002). Resistin levels in AT are significantly increased after administration 
of insulin (Kim et al., 2001). However, PPAR-γ ligands such as TZDs inhibit resistin 
secretion (Rajala et al., 2004).

Resistin was considered to be a link between obesity, insulin resistance and 
diabetes. However, the role of resistin in human insulin resistance is less clear. In 
humans, resistin is more expressed in preadipocytes during adipogenesis than in 
mature adipocytes, in which its expression is negligible (McTernan et al., 2002). 
Some authors documented that plasma resistin levels are elevated in obese 
humans (Piestrzeniewicz et al., 2008), whereas other authors reported that high 
insulin-sensitive athletes have higher plasma resistin levels than obese subjects 
(Perseghin et al., 2006). In this vein, it was observed that testosterone increases 
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the expression of resistin (Fonseca-Alaniz et al., 2007). However, there were not 
reported gender differences in plasma levels of resistin (Yannakoulia et al., 2003). 
Moreover, resistin has been shown to influence pro-inflammatory properties which 
may be associated with its production by resident monocytes/macrophages in AT 
in humans (Patel et al., 2003). On the contrary, low plasma resistin levels in AN 
patients (Ziora et al., 2011a, b) were probably related to a defective monocyte-
macrophage number and/or function (Dostálová et al., 2007), however resistin 
mRNA expression in AT of AN patients is increased (Dolezalova et al., 2007). 
Also further experimental studies in humans have produced inconsistent results 
and increased levels of resistin in obesity and especially its etiopathogenetical 
relationship to insulin resistance was not confirmed (Heilbronn et al., 2004; 
Housova et al., 2005; Anderlová et al., 2006; Dostálová et al., 2007).

It seems that the main significance of resistin in humans appears to regulate the 
inflammatory process by immunocompetent cells and adipocytes than directly 
influencing insulin sensitivity (Kusminski et al., 2005). Furthermore, resistin 
augments in endothelial cells the expression of endothelin-1, MCP-1, and cell 
adhesion molecules (ICAM-1, VCAM-1) (Verma et al., 2003; Kawanami et al., 2004). 
Human resistin also induces proliferation of aortic muscle cells (Calabro et al., 
2004).

Finally, high resistin plasma levels are predictive of cardiovascular diseases such as 
coronary atherosclerosis (Reilly et al., 2005).

Pigment epithelium-derived factor (PEDF)
PEDF is a novel adipokine, which is a 50 kDa secreted glycoprotein that belongs  
to the serine protease inhibitor (serpin) family (Becerra, 1997). It was first 
identified as a neurotrophic factor secreted by the human retinal pigment 
epithelial cells and is able to convert retinoblastoma tumour cells into 
differentiated non-proliferative neurons (Tombran-Tink et al., 1991). PEDF exerts 
its angio-inhibitory effect by modulating the vascular endothelial growth factor 
(VEGF) and its receptors (VEGFR1 and VEGFR2) (Cai et al., 2006). Famulla et 
al. (2011) found that PEDF is one of the most abundant adipokines released by 
adipocytes which is implicated in the development of insulin resistance, diabetes, 
and obesity-related disorders. Recombinant PEDF activates macrophages to 
release TNF-α and IL-1 (Chavan et al., 2012). It was shown that administration of 
recombinant PEDF reduced insulin sensitivity during hyperinsulinaemic-euglycaemic 
clamp in mice, whereas neutralisation of PEDF restored insulin sensitivity (Crowe 
et al., 2009).

PEDF promotes lipolysis in an adipose triglyceride lipase (ATGL)-dependent 
manner and mobilises FFA into systemic circulation leading to inflammation 
and ectopic lipid deposition. ATGL serves as a putative PEDF receptor 
(Zimmermann et al., 2004). PEDF acts to provoke kinase-mediated inhibitory Ser/
Thr phosphorylation cascade of IRS that attenuates insulin signalling and induces 
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insulin resistance in peripheral tissues (Boura-Halfon and Zick, 2009). Hence, 
PEDF is adequate to initiate inhibitory array of Ser/Thr phosphorylation cascade 
to attenuate insulin signalling and induce insulin resistance in peripheral tissues. 
Moreover, it was shown that PEDF expression in AT positively correlates with 
obesity and insulin resistance in mice (Crowe et al., 2009).

Finally, inflammation, FFA mobilisation, and mitochondrial dysfunction are 
proposed mechanism of PEDF mediated insulin resistance. Thus, PEDF may be a 
potential therapeutic target in ameliorating insulin resistance (Carnagarin et al., 
2015).

Progranulin (PGRN)
PGRN was identified as a pro-inflammatory adipokine that is abundantly expressed 
in adipocytes and macrophages in AT and involved in the development of insulin 
resistance and obesity (Matsubara et al., 2012). PGRN is a 66–68 kDa secreted 
glycoprotein, also known as proepithelin cell-derived growth factor (PCDGF), 
has been shown to be a pluripotent growth factor that plays a role in cell-cycle 
progression, angiogenesis, wound healing, cancers, and neurodegenerative diseases 
(He and Bateman, 2003; Feng et al., 2010).

Interestingly, it was documented that inhibition of hypothalamic PGRN 
expression increased food intake and promoted weight gain in rodents (Kim et 
al., 2011). Thus, an endogenous PGRN may function as an appetite suppressor 
in the hypothalamus. These data show that PGRN could function as a cytokine 
participating in regulation of food intake and energy balance.

TNF-α and dexamethasone treatment increase PGRN levels in adipocytes 
(Matsubara et al., 2012). Moreover, PGRN was documented as a ligand that 
binds to the TNF-α receptors (Tang et al., 2011). Thus, PGRN is a key adipokine 
that promotes insulin resistance by increasing levels of IL-6 and inhibiting insulin 
signalling cascade (Matsubara et al., 2012).

Li et al. (2014) reported that serum PGRN levels were significantly higher in 
patients with metabolic syndrome and correlated positively with BMI, fasting insulin, 
fasting plasma glucose, glycated haemoglobin A1c, triglyceride, and homeostasis 
model assessment of insulin resistance (HOMA-IR), and were inversely related 
to HDL cholesterol. Collectively, these findings suggest that circulating PGRN is 
significantly associated with systemic insulin sensitivity.

Conclusion
Taken together, it is now generally accepted that AT is an active secretory organ 
and its products affect a wide variety of central and peripheral organs such as 
the brain, liver, pancreas, and skeletal muscle. AT-sympathetic nervous system-
hypothalamus serves as a feedback loop through sensory inflow informs the brain 
of the short- and long-term peripheral energy status. Therefore, dysregulation 
of pro-inflammatory and anti-inflammatory adipokines contributes to the 
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development of metabolic and cardiovascular disorders. Leptin, adiponectin, 
adipolin, omentin, and visfatin show beneficial effects on insulin action and lipid 
metabolism. However, there are still many discrepancies between resistin results 
in animal models and humans and the molecular mechanism by which resistin 
exerts its detrimental effect on insulin action. Moreover, AT in the obese state is 
infiltrated by inflamed M1 macrophages that release TNF-α and IL-6 with insulin-
resistant effect. Adipose-derived PEDF is a pro-inflammatory mediator, elevated 
in obesity, and implicated in the development of insulin resistance (Famulla et al., 
2011). PGRN may function as a potential link between chronic inflammation and 
insulin resistance (Li et al., 2014). Also, omentin is a novel depot-specific adipokine 
in human AT with insulin-sensitizing effects and anti-inflammatory properties (Yang 
et al., 2006; Proença et al., 2014).

The strong correlations between AT and the secretion of adipokines has led to 
suggestion that the loss of AT mass may be strategy for the treatment of obesity-
related disorders. However, ablation of AT leads to severe insulin resistance in 
patients with lipoatrophic diabetes (Reitman et al., 1999).

Importantly, the primary treatment of obesity and its cardiometabolic health 
risks should be visceral AT and fat localized within organs such as the liver, skeletal 
muscle, and pancreatic beta cells and not subcutaneous fat which could play a 
protective role with regard to metabolic complications of obesity, particularly 
if placed over the hips and buttocks. Indeed, gluteofemoral subcutaneous AT is 
associated with metabolic protection. High thigh adiposity is associated with lower 
glucose and triglycerides, higher HDL, insulin sensitivity, and decreased risk for the 
metabolic syndrome and type 2 diabetes (Manolopoulos et al., 2010; McLaughlin et 
al., 2011; Karpe and Pinnick, 2015).

Further understanding of the endocrine function of AT and monocyte/
macrophage recruitment from the circulation as well as macrophage polarization 
will open potential pharmacological treatment strategies and therapeutic tools in 
metabolic abnormalities associated with obesity and malnutrition.
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