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CUSTOMISING CZECH PHONETIC ALIGNMENT USING 
HuBERT AND MANUAL SEGMENTATION

ADLÉTA HANŽLOVÁ, VÁCLAV HANŽL

ABSTRACT
This paper presents Prak, a forced alignment tool developed for Czech, 
with a focus on transparent modular design and phonetic accuracy. In 
addition to a rule-based pronunciation module and exception handling, 
Prak introduces a novel application of non-deterministic, backward-pro-
cessing FSTs to model complex regressive assimilation processes in Czech 
consonant clusters. We further describe the integration of a HuBERT-based 
transformer model and training including extensive manually time-aligned 
data to enhance phone classification accuracy while maintaining ease of 
installation and use. Evaluation against a manually aligned test corpus 
demonstrates that the enhanced model significantly outperforms both our 
earlier Prak-CV model and the long-established previous forced alignment 
baseline. The new model reduces major boundary errors and mismatch-
es, bringing alignment accuracy closer to manual phonetic segmentation 
standards for Czech. We emphasize both methodological transparency and 
practical usability, aiming to support phoneticians working with Czech as 
well as developers interested in extending the tool for other languages.

Keywords: forced alignment; phonetic segmentation; Czech; HuBERT; 
Prak; Praat

1. Introduction

The majority of phonetic analyses require labelling recordings to identify their con-
tents (the type of content varying based on the research question) in order to accurately 
measure properties that are to be related to said contents. Among the most common 
types of audio labelling is identifying phone boundaries as a means to then measure 
formant frequencies, spectral or temporal properties, assess pronunciation and much 
more. Labelling recordings is often a very tedious and time-consuming process, but also 
one that is vital to ensure the validity of measurements that are made based on the deter-
mined time boundaries. The general effort therefore is to automate these processes as 
much as possible using forced alignment software tools.

There are many forced alignment software tools available, most of them focusing on 
phone alignment of English-language material (for a comprehensive list see Pettarin, 
2018). Only a small subset of these support multiple languages and even the ones that 
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do often do not include Czech as an option. Among the most used alignment tools with 
support for multiple languages generally employed in phonetic research are the Munich 
alignment system MAUS (Schiel, 1999) with its web-based implementation, and the 
Montreal forced alignment software (McAuliffe et al., 2017). Tools developed specifically 
for alignment of Czech-language material include Prague Labeller (Pollák et al., 2005, 
2007) and more recently, Labtool (Patc et al., 2015) and Prak (Hanžl & Hanžlová, 2023). 
There is also a forced alignment tool directly integrated in Praat (Boersma & Weenink, 
2023), which is useful as an easy-to-access tool. It has, however, potential for further 
upgrading and development (personal conversation with Paul Boersma, 2023). Some 
features of these tools will be elaborated on below.

When editing a sound and textgrid simultaneously in Praat’s View & Edit window, 
selecting the menu item Interval / Align Interval (or Ctrl+D) will add a word and phone 
tier to the existing textgrid with time-aligned intervals. The option works for many lan-
guages (including Czech) and can align single words or short phrases. The alignment 
tool in Praat uses a speech synthesizer to create an audio track based on the provided 
orthography. The created sound is then compared to the provided audio and aligned 
using dynamic time warping (Boersma et al., 2023). This makes the alignment option 
simple to implement, but also limits its use when aligning longer sequences, especially 
ones containing pauses, as these are not reliably identified by the algorithm. The option 
also works exclusively from the View & Edit window and doesn’t have a setting for auto-
matic alignment of multiple files.

A very widely used forced alignment software with easy access and no installation is 
the Munich Automatic Segmentation System (MAUS, Schiel, 1999) with its web service 
(Kisler et al., 2017). The use of the MAUS web service is free for members of academic 
institutions for non-profit use, otherwise users must obtain a license to use it (Bavarian 
Archive for Speech Signals, 2018). The alignment software supports over 30 languages, 
with multiple dialect variants for English and German. The list of supported languages 
does not, however, include Czech. The web-based interface makes forced alignment using 
MAUS easily accessible with only a web browser and internet connection, but obscures 
the source code and does not therefore allow tweaking the way the system runs or imple-
mentation of the user’s own models, such as models trained for other languages.

The forced alignment software that was until recently very commonly used to align 
Czech recordings for purposes of phonetic research is Prague Labeller (Pollák et al., 2005, 
2007), developed at the Czech Technical University. The aligner uses HTK GMM models 
and employs a rule-based pronunciation generator. The software was a state-of-the-art 
forced alignment tool at the time of its development and was in consistent use for more 
than a decade at the Institute of Phonetics, Charles University. We have included a com-
parison of this aligner with our newly developed tool in Section 5. Development of new 
language model software options in the recent years has led to the tool becoming imprac-
tical to install with its dependencies. There is also a demand for higher accuracy of the 
automatic alignment. Additionally, the software is not freely distributed and runs only 
under Windows, which prevents the public, including students of phonetics, from using 
the alignment software with their own devices.

There has also been an effort to develop a newer forced alignment tool focused on 
Czech, implementing HMM-based phonetic segmentation using Kaldi instead of HTK 
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models (Patc et al., 2015). The main focus of this tool was to enable detailed study of 
pronunciation variation in spontaneous Czech speech through automated segmentation 
and variant detection, integrating Kaldi’s acoustic modelling techniques. Experimental 
results showed that Kaldi-based models provided more consistent and precise phone 
boundaries compared to older HTK-based methods. Despite these results, the software 
is not in public distribution and has not been widely deployed by Czech phoneticians.

A similarly recent Kaldi-based forced alignment software with a wide range of sup-
ported languages, including Czech, is the Montreal Forced Aligner (MFA, McAuliffe et 
al., 2017), which is available under a MIT license (Opensource.org, 2025). The instal-
lation of the MFA requires Kaldi as a dependency and the download of models for the 
desired language. The aligner includes several pre-trained models for Czech, the more 
basic ones being trained on the same CommonVoice (Ardila et al., 2019) database as the 
original model in Prak (Hanžl & Hanžlová, 2023). More advanced models use training 
data from larger databases, including paid datasets. The option to choose from multiple 
models allows some customization for the user, nevertheless, the phone sets implement-
ed in the models for Czech may not be sufficient for the purposes of detailed phonetic 
research (as discussed in Hanžl, 2023). The MFA tool does allow for implementation of 
the user’s own models if so desired, so these issues can be resolved, but the installation is 
still quite convoluted, so developing a new easy-to-install tool along with more precise 
models is a logical step in the process of ameliorating Czech forced alignment options.

The most recent tool which specifically aims to provide a streamlined installation 
process as well as resolve known automatic segmentation issues and improve phone 
alignment of Czech recordings (with the option to train and implement models for oth-
er languages) is Prak (Hanžl & Hanžlová, 2023). Similarly to the MFA, this software is 
freely available on all major computer operating systems under a MIT license. However, 
unlike most forced alignment tools that are in wide use, Prak requires only minimal 
dependencies and aims to keep its architecture simple in order to not only be usable 
as a user-friendly alignment tool, but also to enable other researchers or programmers 
in the future to build on it without restrictions. The default model provided in the free 
distribution of Prak is trained on CommonVoice (CV) Czech recordings, as mentioned 
above. Due to its simplicity, the tool is useful even for non-phoneticians, such as students 
in a pronunciation class, to help navigation in longer sound files by quickly obtaining an 
overview of the contents of a recording.

While the aligner with this CV-trained model significantly outperforms the forced 
alignment softwares for Czech that have been in use before, the phone boundaries still 
often need to be moved manually after the automatic alignment to achieve the precision 
needed in phonetic research. The newest step in the development of Prak therefore was 
to train a new model in collaboration with the Institute of Phonetics, Charles University, 
which would use manually aligned recordings and HuBERT (Hsu et al., 2021) embed-
dings in addition to the original training dataset in order to more closely mimic human 
behavior based on established Czech segmentation rules (Machač & Skarnitzl, 2009), 
hopefully further reducing the amount of manual labor necessary after using the forced 
alignment software.

In this paper, we aim to present Prak and its functionality in a comprehensive way, 
as well as provide detail about the training of the new model and compare both Prak 
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models with the output from Prague Labeller as the long-standing predecessor in Czech 
phonetic alignment. Our goal is twofold: first, to introduce our software to its intended 
users; and second, to present the underlying concepts and development strategies in 
sufficient detail to enable future developers and researchers to build upon it. To that end, 
this paper is structured to reflect both the practical and methodological dimensions of 
the tool.

We provide an outline of the installation process, including software prerequisites and 
integration with the Praat environment. This is followed by a description of the pronun-
ciation modeling framework, including built-in replacement rules, the exceptions file, 
and the modular Finite State Pronunciation Blocks. We then detail the training procedure 
for the HuBERT-based model, discussing both the use of additional manually aligned 
data and the architectural considerations that informed our design choices. Finally, we 
evaluate the performance of the system, comparing both Prak models with the Prague 
Labeller using manually aligned data as a reference, and report on alignment accuracy in 
terms of phone identity and boundary placement.

2. Design and installation

2.1 Installation of the software and prerequisites

The use of Prak requires only two external software tools, namely Python 3 (Van Ros-
sum & Drake, 2009) with the PyTorch (Paszke et al., 2019) and TorchAudio (Yang et al., 
2022) libraries. The installation of these prerequisites is clearly outlined in the official 
Prak installation instructions (Hanžl & Hanžlová, 2025), and no knowledge of program-
ming or speech technology is necessary to complete the setup. The documentation pro-
vides step-by-step commands that can be run via command line, and offers platform-spe-
cific guidance where relevant. This makes the software accessible to phoneticians and 
linguists as well as other researchers or students who may not necessarily have a tech-
nical background. At the same time, this simple and modular structure ensures that the 
code remains easily readable and modifiable for programmers or developers who wish 
to extend its functionality.

The Prak installation process further involves only downloading the Prak code (via 
Github or as a zip file) and choosing the desired model for alignment. Available options 
include the basic Prak-CV model (as presented in Hanžl & Hanžlová, 2023) or the more 
fine-tuned, recent model based on HuBERT (Hsu et al., 2021). Details regarding the 
HuBERT-based model and its properties are provided in Section 4. Once installed, Prak 
can be run via command line or through a script which integrates Prak’s functionality 
into the GUI in Praat (Boersma & Weenink, 2023) while also adding supplementary 
features, as described in the following section.

2.2 Praat GUI integration and additional functionality

Apart from functioning directly from the command line, Prak provides a Praat script 
which embeds the main Python forced alignment tool and can be added to Praat’s dynam-
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ic menu for easy access. The script also performs several assessments of the input files 
and provides additional options for the alignment. First, basic file checks are performed. 
The number of sound and textgrid files are counted and compared to ensure all desired 
recordings have a text input to be used in the alignment. The Praat interface also provides 
an additional option to use only one text input to align multiple sound files. Sound and 
textgrid names are also compared and in case of name mismatch, the user is prompted to 
decide whether the combination of the files with different names was deliberate. When 
working with multiple files, this check can be overruled and sounds aligned by the order 
in which the items are open in Praat.

The contents of each textgrid provided to the tool are also reviewed in order to deter-
mine the source text correctly. The tool expects the tier containing the source text to 
be named “phrase” and outputs three tiers after performing the alignment: a “phone” 
tier containing the phone boundaries, a “word” tier containing word boundaries and 
a “phrase” tier with the original source text. This is modelled after the Prague Labeller 
(Pollák et al., 2005, 2007) output, established as the standard at the Institute of Phonetics, 
Charles University. An example of the output textgrid is presented in Figure 1. The script 
integrating Prak into the Praat UI firstly checks that the source textgrid doesn’t contain 
a non-empty “phone” tier to prevent accidental overwriting of files. If such a tier is found 
in the textgrid, the user is notified of this circumstance and can choose to either stop the 
script or continue and overwrite said file. Similarly, if a “phrase” tier is missing in the 
source textgrid, the user is prompted to identify the tier containing the source text which 
is to be used.

Figure 1 Example of an output textgrid after forced alignment using Prak.

If all assessments of source files are successful, the sounds and their corresponding text 
sources are fed to the Python tool to proceed with forced alignment. In the alignment 
process, textgrids containing the source text are replaced with output files containing the 
three tiers described above. All other tiers that may be in the original textgrids in addi-
tion to the source text are ignored and are not part of the final aligned files. All output 
textgrids are also renamed after the sound files they correspond to.
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3. Pronunciation rules

The pronunciation generator in the original Prak used several novel principles, 
trying to remedy deficiencies of pronunciation generators used in previous decades, 
especially trying to make the set of rules manageable long term and the level of detail 
adjustable should the scientific research at hand require such a change. An overview 
of the phonetic alphabet used, text cleanup issues and basic design of the pronunci-
ation generator was presented in our original Prak introduction publication (Hanžl 
& Hanžlová, 2023). While we mostly reused the generator unchanged for the new ver-
sion of Prak, the available descriptions of the design principles and implementation 
are rather superficial, leaving direct inspection of the source code as the sole option 
for researchers seeking insight into the details. We therefore take the opportunity to 
describe these components in a format that is more accessible and comprehensible to 
readers.

The primary user group targeted by the design of Prak are researchers who are like-
ly to fine-tune the pronunciation rules logic. Simple dictionary-based approaches often 
employed for English are largely insufficient for Czech, which is a highly flexible lan-
guage, necessitating many entries for all the forms of every word and making manual 
ad-hoc additions of new words to the dictionary quite cumbersome. Usual approaches 
based on replacement rules are also hard to apply, mainly due to large consonant clusters 
with complex assimilation rules in Czech pronunciation, where, among other process-
es, regressive assimilation of voicing applies to all viable consonants within said cluster 
(Skarnitzl, 2011, p. 123). Coping with the voicing or devoicing of phones presents a con-
siderable challenge. As a result, the scope of our pronunciation generator tool is rather 
narrow, addressing the specific needs of phoneticians working with the Czech language. 
Nonetheless, there is potential for reusing components of our software in other languages 
with similar phonotactic and assimilation patterns, such as Polish, Slovak, Russian, or 
even Armenian (Kuldanová et al., 2022; Pavlík, 2009).

After decades of experience with the replacement-rule-based Czech pronunciation 
generator used in Prague Labeller (Pollák et al., 2005, 2007), we decided to address the 
main known shortcoming: The rules table grew to hundreds of entries over years of use, 
and while this approach worked, inserting a new rule in the correct position among 
existing ones became a highly expert task, as it always required verification on a large 
corpus of previously generated pronunciations, identifying all changes caused by the new 
rule, and determining whether they served the intended purpose. Making pronunciation 
rules position-independent was therefore an important design goal of Prak. This initially 
seemed difficult, as the rule order also corresponded to gradually changing layers of rep-
resentation which started with graphemes and gradually progressed through phones to 
allophones. However, we were able to find a practical solution, structuring the pronunci-
ation processing in two layers using two different approaches:
1.	 A set of replacement rules without any human-defined order. The rule with the longest 

match is applied first. The rest of the word is then subject to more possible replace-
ments but whichever part was already touched by another replacement rule is not 
affected by any other. This part can be easily used to specify pronunciation of “foreign 
looking” substrings and stay close to the graphemes.
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2.	 A Finite State Machine based layer mainly taking care of Czech assimilations. This 
layer can be adapted to a particular research goal and the corresponding details of 
phonemic representation but does not require changes as new speech material is being 
added.

3.1 Built-in replacement rules and Exceptions file

Built-in rules deal with the most common patterns of foreign pronunciation in Czech. 
They can also serve as a didactic example for entries in the Exceptions file, as the format 
of both is the same and in practice, they are mixed by Prak into a single optimized struc-
ture with priority assigned by match length. Any built-in replacement rule can therefore 
be overridden in the Exceptions file simply by using a longer (more specific) string to be 
replaced. A notable feature of the replacement rule engine in Prak is its ability to consider 
multiple replacements. Each rule specifies a substring to be found in a word and lists one 
or more possible replacement strings. Selection of the right pronunciation version is later 
determined by the acoustic properties of the signal being processed.

As mentioned above, in addition to the built-in replacement rules, the Prak source 
contains an Exceptions file, where further pronunciation rules can be specified by the 
user. The built-in pronunciation generator is very meticulous in considering possible 
assimilations (of various kinds) and even glottal stop presence, which is not always 
required by the orthoepic norm (Volín, 2012; Volín & Skarnitzl, 2018, p. 22) and can 
have multiple acoustic realizations (Machač & Skarnitzl, 2009, pp. 125–131). However, 
due to the nature of the pronunciation generator, as described below, Prak has limited 
lexical knowledge and therefore may require additional input for handling cases that fall 
outside the scope of general pronunciation rules.

The Exceptions file is consulted when Prak is invoked from Praat. It uses very simple 
entries, modelled after the built-in rules, which are easy to follow and add to as the need 
arises. The file allows users to manually specify the pronunciation of strings at or below 
word-level which then override any other rule that may otherwise be applied to said 
strings within the default processing. This is particularly useful for dealing with proper 
names, loanwords, abbreviations, or unusual morphophonological irregularities that are 
difficult to capture systematically. Each entry in the exceptions file maps a written string 
directly to its target phonetic or allophonic representation, ensuring accurate alignment 
in contexts where automatic rule application could be unreliable. Specific instructions 
along with examples of added pronunciation rules can be found on the Prak installation 
page linked in Section 6.1.

3.2 Finite State Pronunciation Blocks

Finite State Transducers (FSTs) have appeared as a unifying concept in some speech 
recognition systems in the past. However, using backward-going FSTs to translate one 
symbol sequence into another as a pronunciation assimilation tool is a rather unique 
feature of Prak, and we believe it is a highly efficient option for Czech (and potentially 
for other structurally similar languages). Furthermore, we use non-deterministic FSTs, 
which may suggest multiple output symbol options. The convolution of several such 
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non-deterministic FSTs, together with the potentially multi-option replacement rules 
described above, creates a very powerful tool capable of handling complex Czech assim-
ilations, even in words of foreign origin. At the same time, describing possible pronun-
ciations remains mentally manageable, as it is decomposed into clearly understandable 
parts – rules handling foreign elements at a level close to graphemes, and FSTs dealing 
with assimilations, with each simple FST addressing just one phenomenon. The resul
ting pronunciation options can then be visualized as a so-called “sausage” structure, 
offering a more accessible alternative to Directed Acyclic Graphs.

The need for the use of FSTs arises from ongoing efforts to enumerate the possible 
assimilation changes in Czech consonant clusters. As mentioned in Section 3.1, in the 
Czech language, many of these changes are like a domino effect going backward in 
a sequence of possible phones. The change can be rather far reaching, and consonant 
clusters can be remarkably long. For example, in the approximately 6,000 different words 
in our training set, nearly 700 distinct consonant clusters were identified, 17 of which had 
a length of five or more characters. Capturing the essence of assimilation logic in FSTs 
turned out to be a practical solution to dealing with this vast variety.

Figure 2 demonstrates a FST handling backward assimilation of the voiced/unvoiced 
property. The current FST state depicts the influence being exerted on the phone to the 
left. For clarity, only a subset of the edges is shown in the figure (edge labels are in the for-
mat Input/Output). The word “kdyby” is processed right to left, changing the consonant 
cluster “kd” to [ɡd].

Figure 2 Illustration of regressive assimilation of voicing, as processed through backward traversal of the 
voiced/unvoiced property by a FST. Token (pawn) represents the current state.

ı  b ı  d k /  ı  b ı  d g

let it 
be

make 
it 

voiced

make it 
unvoiced

ı / ı

b/b

d/d

ı / ı

k/g

p/b

b/p

ı / ı

The current state is depicted as a token (pawn), which can travel along edges, consum-
ing an input symbol I and producing an output symbol O when moving along an edge 
labeled I/O. Should there be multiple possible edges with the same matching input symbol 
I, the token “clones” itself into multiple tokens, each following a different path and creating 
separate branches in the pronunciation “sausage” graph. When clones meet at the same 
state, the tokens merge again along with the pronunciation branches they represent.
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A typical example of this branching occurs at word boundaries. Depending on the 
degree of word separation, the assimilation domino effect may either cross the boundary 
or stop at it. Another example – modeled by a different FST – would be pronunciation of 
the word “galantní”, where the cluster “ntn” can be realized as [ntɲ], [ncɲ], or [ɲcɲ]. This 
represents another case of non-deterministic regressive assimilation that can be effective-
ly modeled by FSTs. The actual Prak algorithm is somewhat more nuanced than simply 
applying non-deterministic replacement rules followed by a convolution of several back-
ward-going non-deterministic FSTs, but a large portion of Czech pronunciation logic 
can indeed be captured using this scheme. Further details regarding the pronunciation 
generator and its implementation can be observed in the Prak source code.

4. Training the new HuBERT model

The original Prak release prioritized simplicity, easy maintainability of the codebase 
and simple installation. The neural network architecture of the Prak-CV model used 
only a very simple stack of ReLU (Rectifying Linear Unit) layers for phone classification. 
The goal was to design the system in a way that would be accessible to researchers who 
are mainly interested in phonetics, rather than artificial intelligence specialists who are 
more likely to experiment with complex and rapidly evolving architectures. Even under 
this restriction, the improvement in precision was substantial when compared to the pre-
viously employed Gaussian mean models from the HTK toolkit era. Nonetheless, trans-
former-based embeddings have become so widespread in recent years (Lin et al., 2022) 
that we decided to incorporate them in an improved version of our phone classification 
module.

Maintaining relative simplicity was still among our aims for the new model, therefore, 
we selected a freely available neural network model that computes HuBERT embeddings 
(Hsu et al., 2021). This network is pre-trained on a mix of many languages and coeffi-
cients of this neural network are available for automatic download from public servers at 
the time of first inference on a particular computer. Even though it would be possible to 
fine-tune coefficients of the HuBERT network, doing so would compromise the simplic-
ity of installation and coefficients of the fine-tuned HuBERT network would need to be 
included in the distribution of Prak itself, making the distribution package many times 
bigger. Instead, we decided to use the HuBERT network in its default form and train an 
alternative of our original simple ReLU stack which would use HuBERT embeddings as 
an additional input. This approach proved to be largely sufficient for our goal of achieving 
more precise identification of phone identities and time boundaries.

4.1 Using additional manually time-aligned training data

As mentioned in the introduction, the original Prak phone classifier model was trained 
exclusively on the freely available CommonVoice dataset (Ardila et al., 2019). The goal was 
to enable easy portability to other languages – the CommonVoice database is available for 
many languages, not only Czech – as well as keep the prospect of future precision improve-
ments with retraining on the ever growing CommonVoice data. All phone boundaries in 
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the original model were automatically derived during training, as the CV dataset contains 
only recordings of sentences and their orthographic transcripts. Any exact match between 
manually annotated and automatically derived phone boundaries is therefore just a result 
of a coincidental match between human judgment and the system’s estimation of the most 
likely boundary location (nevertheless, this match is often notably close).

The match achieved by the original Prak model was still a significant improvement 
over the tools used previously – this fact being a tribute not only to Prak but also to the 
human team working on the reference labeling, trying to make evidence based deci-
sions based on an agreed upon sensible set of rules. Convergence of the time boundaries 
derived by these two independent processes, one based on human expertise and manual 
annotation and one purely data driven, was remarkable. However, greater precision was 
still achievable, and the long-term goal remained to train a model which would place 
time boundaries where human researchers expect them, given their specific research 
approaches and objectives. In line with this goal, we added data with manually time-
aligned boundaries to the training dataset for the new HuBERT-based Prak model.

The dataset used for the training of this model in addition to the CV recordings used 
in the original model was a corpus of manually corrected time-aligned recordings, gen-
erously provided by the Institute of Phonetics, Charles University. This additional dataset 
consists of 1435 recordings with a total duration of 5 hours and 15 minutes. All record-
ings in the dataset were aligned by a forced alignment software (the majority by Prague 
Labeller) and subsequently manually checked and adjusted to comply with the Czech 
standards for phonetic segmentation (Machač & Skarnitzl, 2009)6. The manual align-
ment was done for the purposes of conducting phonetic research (see for example the 
research by Volín & Skarnitzl, 2022, which uses a subset of this corpus) rather than train-
ing a model for forced alignment software. This corpus should therefore reflect the needs 
of Czech phoneticians in terms of the standards expected when conducting research. The 
exact contents of our time-aligned training dataset are presented in Table 1.

Table 1 Overview of the contents of the corpus of manually corrected time-aligned recordings used in 
addition to the CommonVoice dataset in training the new Prak model.

type of text type of speaker total duration n female speakers n male speakers

audiobooks professional 134 m 10 s 6 5

poetry reading amateur 89 m 22 s 14 12

radio news
professional 59 m 25 s 5 11

amateur 31 m 49 s 8 1

total 314 m 46 s 33 29

The dataset consists of recordings from three different genres, recorded under differ-
ent conditions by both professional and amateur speakers. The first genre, accounting 
for approximately 2.25 hours of the recordings, were spoken narratives (i.e. storytelling) 

6	 Based on our approximation, the labelling of this corpus of recordings took more than 300 hours of 
manual labour in addition to using a forced alignment software.
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extracted from audiobooks recorded by experienced actors in professional studios and 
produced by renowned publishers. The extracts used in the training dataset were read by 
6 female and 5 male speakers.

The second type of recordings in our training dataset were readings of poetry, the total 
duration of which was around 1.5 hours. These samples of poetry reciting were recorded 
by 14 female and 12 male speakers. The recordings were done in the sound treated studio 
of the Institute of Phonetics in Prague. The speakers were volunteering students of phi-
lology with an interest in poetry.

The third genre included in the dataset were two types of news reading with a total 
duration around 1.5 hours, similarly to the poetry reciting samples. Two thirds of this 
subset (around 1 hour) consist of recordings of authentic news-bulletins from Czech 
radio broadcasts, recorded by 16 (5 female, 11 male) professional speakers. The remain-
ing third of the samples are texts taken from said Czech radio broadcasts read by 9 vol-
unteering students (i.e. nonprofessional speakers; 8 female, 1 male) in the same studio 
the poetry reciting was recorded.

4.2 Details of the HuBERT model

The HuBERT model computes a transformer-based embedding, similar in principle 
to word representations used in many translation systems and artificial intelligence dia-
logue systems, and analogous to amino-acid context-aware representations in modern 
approaches to analyzing or even synthesizing proteins in biochemistry, among other uses. 
The transformer-based processing has become a highly successful overarching paradigm 
(Lin et al., 2022; Vaswani et al., 2017). HuBERT, in particular, applies this paradigm to 
short (20 ms) segments of the speech signal, representing these as long vectors of num-
bers describing not only the spectral characteristics of the specific sound (as traditional 
cepstral features do) but also the meaning of the sound chunk in a particular context.

The HuBERT model is pre-trained on a large multilingual corpus of unlabeled speech. 
Similar to training procedures in other domains, this process involves masking short 
segments of the speech signal and requiring the model to reconstruct these masked parts 
as precisely as possible. This forces the model to capture long-range dependencies in the 
speech signal, enabling it to perform speaker adaptation and other phone-level analyses, 
ultimately acquiring enough knowledge to fill in the missing segments with high confi-
dence (Boigne, 2021). In practical use of the pre-trained HuBERT model, our goal is often 
different, as we typically have the complete recording without any missing segments. We 
instead leverage the internal representation developed during the training and reuse it for 
particular tasks at hand. As it turns out, these internal representations are very rich and 
context-aware and can be applied to a variety of tasks with notable success.

There are two ways to use the pre-trained transformer-based models:
1.	 Keep the pre-trained model unchanged and train an additional neural network con-

nected to it. The added network uses the pre-trained representations as inputs and is 
trained to produce the desired outputs.

2.	 Train not only the additional network but also fine-tune the pre-trained model itself.
We decided to employ the first approach, which provided satisfactory results for 

our purposes, so we kept it as the final solution. As mentioned above, while the second 
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approach could theoretically achieve even better results in our tests, it would also come 
with the technical disadvantage of having to distribute the modified HuBERT parameters 
together with Prak, making the installation package significantly larger. Apart from this 
technical nuisance, there is also another risk: further training of the HuBERT coefficients 
could actually reduce Prak’s precision in practice due to overfitting (see Chicco, 2017), 
as our training datasets are quite small for a model of HuBERT’s size. Given all these 
considerations, we opted to use the unchanged HuBERT coefficients.

There are multiple versions of the HuBERT model – the BASE version, pre-trained on 
960 hours of unlabeled audio from the LibriSpeech dataset (Panayotov et al., 2015), and 
the larger LARGE and XLARGE models, pre-trained on 60,000 hours of speech. Given 
the relative simplicity of our phone alignment task – compared to other HuBERT appli-
cations such as speech recognition – and our overall goal of maintaining simplicity, we 
opted for the smallest BASE model (Torchaudio Contributors, 2024).

The original Prak used a 10 ms time resolution for its cepstral features, while HuBERT 
uses 20 ms time steps. We certainly did not want to make Prak-detected time boundaries 
more coarse-grained (on the contrary, we would even consider a 5 ms time step for future 
work), so we simply repeated each HuBERT output vector twice. This way, HuBERT con-
tributes mainly the long-term contextual information, while the 10 ms cepstral features 
allow for a sharper local resolution.

The HuBERT model uses a multilayer transformer input stack, computing different 
embeddings at each level. Each additional layer of this stack should theoretically produce 
increasingly more abstract and more context-aware embeddings, making the top layer 
the most information rich. In practice, any layer can be used as input for the subsequent 
processing, not restrained to the top one. Using one of the lower layers offers the poten-
tial benefit of computational savings, as the upper layers do not have to be computed. 
We therefore trained several variants of the system, aiming to identify the lowest layer 
that still allows the system to operate with negligible precision loss compared to the best 
(likely the topmost) transformer stack layer being used. After multiple training attempts, 
we selected layer 7, though the differences in performance across layers were relatively 
minor.

HuBERT BASE uses a 16 kHz waveform as input (the same as the original Prak). 
Instead of MFCC, the pre-trained HuBERT model uses a 7-layer Convolutional Neural 
Network which does a learned feature extraction, generating a 512-dimensional vector 
every 20 ms. These vectors are then processed by a stack of 12 transformer layers, each 
using 12 attention heads. Each 20 ms unit is represented as a vector of 768 numbers 
when passing between layers. This is the representation that is forked to the Prak phone 
classifier network.

The original Prak model used 13-dimensional MFCC features with 9 context frames 
on both the left and right, resulting in (9 + 1 + 9) × 13 = 247 numbers, further augmented 
by 4 × 13 = 52 speaker adaptation values, for a total of 247 + 52 = 299 values every 10 ms. 
The HuBERT-based Prak model retains this entire representation and concatenates it 
with the 768-dimensional vectors from HuBERT’s 7th transformer layer (each vector 
being used twice, as HuBERT operates with 20 ms chunks), resulting in 299 + 768 = 1067 
values every 10 ms. This representation is fed to the 3-layer ReLU stack with an internal 
vector size 100, followed by a final softmax layer to produce phone probabilities.
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Among the phone probabilities is also the probability of a «silence» sound which 
includes not only a real silence but also all non-speech events like breaths or hesitations, 
as encountered in the training data. Common Viterbi decoder then decides globally opti-
mal phone identities and silence boundaries, given the choices proposed by a pronunci-
ation generator.

5. Evaluation and comparison of phone alignment

5.1 Method and material

In order to evaluate the performance of our new HuBERT-based model, we compared 
the output of Prak alignment using this model with both the previous Prak-CV model 
(Hanžl & Hanžlová, 2023) and the Prague Labeller (Pollák et al., 2005, 2007), using man-
ually aligned recordings provided by the Institute of Phonetics as the ground-truth eval-
uation baseline. We measured the percentage of phone identity mismatches compared to 
the baseline, as well as the percentage of phone boundary misalignments.

We contrasted the generated pronunciations, counting phone insertions, deletions and 
substitutions. Direct comparison of phone identities determined by the forced alignment 
tools is not straightforward, as the phone sets differ based on the inventories used by each 
aligner. For instance, compared to the Prague Labeller, Prak also detects glottal stops, distin-
guishes between voiced and voiceless “ ř ” or accounts for assimilations at word boundaries. 
Manually time-aligned textgrids may, on the other hand, reflect slightly different approach-
es to phone identity labeling, depending on the research questions for which the recordings 
were originally intended. Additional annotations of some segments, such as syllabic [l]̩ or 
[r̩], may also be present and contribute to the phone identity mismatch percentage.

At places where phone identity matched, we measured time shifts of the phone bound-
aries relative to the manual reference. While the phone identity may in some cases be sub-
ject to interpretation, as discussed above, the time positions in the manually aligned ref-
erence data should be in compliance with the segmentation standard for Czech (Machač 
& Skarnitzl, 2009) and can therefore be considered accurate for the purposes of Czech 
phonetic research. An important parameter affecting the efficiency of manual correction 
of automatically aligned files is the frequency of boundary misalignments that require 
adjusting multiple phone boundaries to correct the error. We therefore used the number 
of boundary shifts exceeding thresholds of 100 and 200 ms as a quality measure of major 
boundary misplacement.

For our evaluation, we used a subset of the phonetic corpus presented in Section 4.1. 
We selected 156 recordings (balanced across the file subtypes in the dataset) that were 
not used at any stage of training for our HuBERT-based model or any other model. 
These recordings have a total duration of approximately 30 minutes and contain about 
20,000 individual phones. We obtained the original output TextGrids of forced align-
ment produced by the Prague Labeller without any manual correction, and we performed 
forced alignment of the same recordings using Prak with both the CV and HuBERT 
models. The source text was copied from the manually labeled files and used as input in 
all three alignment iterations.
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When we examined individual cases of divergence between manual labeling and 
Prak-HuBERT labeling, we found that most differences were caused by non-uniform man-
ual labeling, for example, the use of different phone sets, the omission of certain phenome-
na, or, conversely, the inclusion of additional detail. While we invested substantial effort in 
automatic normalization of all the manually labeled data to a common standard, this pro-
cess had inherent limitations. To gain additional insight, we further double-checked the 
manual labeling in our test set for errors and compliance with the selected transcription 
method in cases where it diverged from the Prak-HuBERT labelling. We then re-evaluated 
the Prak-HuBERT model and observed, for instance, nearly ten times fewer boundary 
shifts exceeding 0.1 s. We therefore added an additional test for shifts over 50 ms to gain 
finer granularity. While the results in this additional table are truly impressive, they are no 
longer strictly objective and should be interpreted as suggesting that Prak-HuBERT errors 
are approaching the limits of what can be reliably measured.

5.2 Results and discussion

Table 2 shows the percentage of errors in the phone identity mismatch and boundary 
misplacement tests, as well as the cumulative results of these tests, comparing the output 
of Prak’s models and the Prague Labeller with data from manually time-aligned files. It 
is evident that Prak generally outperforms its predecessor in all types of tests provided, 
indicating a significant decrease in errors leading to manual corrections requiring adjust-
ment of more than one boundary.

Table 2 Percentage of phone mismatch and boundary misplacement, comparing the output of Prak’s two 
models and the previously most used forced alignment tool with manually time-corrected recordings.

test type Prague Labeller Prak-CV Prak-HuBERT

phone identity mismatch 6.61% 1.88% 1.12%

match, but misplace ≧ 0.1 s 4.28% 0.36% 0.04%

match, but misplace ≧ 0.2 s 3.22% 0.09% 0.00%

mismatch or misplace ≧ 0.1 s 10.89% 2.24% 1.16%

An improvement can also be observed between the two Prak models, with the 
HuBERT-based model reducing boundary misplacement errors of 100 ms or more from 
0.36% in the Prak-CV model to 0.04%. The new model also virtually eliminates errors 
involving boundary misplacements of 200 ms or more, which suggests that word-level 
identification by this model is highly reliable.

Prak-CV and Prak-HuBERT use the same pronunciation module. However, this mod-
ule often generates variant pronunciations, and Prak-HuBERT makes better use of the 
acoustic evidence to select the correct variant. This explains the improved performance 
of Prak-HuBERT, even in terms of phone identification. The phone identity mismatch 
could be further reduced by using the pronunciation exceptions file. This is an expected 
practice when using Prak for research purposes, however, we did not generate a dedicated 
exceptions file for our test set.
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Results of additional testing using the Prak-HuBERT model with test data modified to 
comply with our selected labeling method are shown in Table 3. Compared to the initial 
test, boundary misplacements of 100 ms or more were reduced ten times, and phone 
identity mismatch decreased by 0.3 percent following this adjustment. The additional test 
for boundary misplacements of 50 ms or more can be interpreted as capturing all major 
shifts, including ones smaller than the typical duration of one phone.

Table 3 Percentage of phone mismatch and boundary misplacement, comparing the output of 
Prak’s HuBERT model with manually time-corrected recordings further double checked for errors and 
compliance with the selected transcription method.

test type Prak-HuBERT

phone identity mismatch 0.946%

match, but misplace ≧ 0.05 s 0.133%

match, but misplace ≧ 0.1 s 0.005%

match, but misplace ≧ 0.2 s 0.000%

mismatch or misplace ≧ 0.1 s 0.951%

Overall, the results demonstrate that the HuBERT-based version of Prak significant-
ly improves alignment accuracy over both the earlier Prak-CV model and the Prague 
Labeller. Reductions in phone identity mismatches and major boundary misplacements 
indicate a strong alignment with manually annotated data, while additional tests suggest 
that remaining errors are minimal and approach the limits of what can be reliably meas-
ured. These findings support the practical applicability of Prak-HuBERT in precise phone 
labelling for phonetic research in Czech.

6. Additional remarks

6.1 Public availability

We have decided to make the improved version of Prak, incorporating HuBERT and 
fine-tuning on additional time-aligned data, freely available for any purpose, with the 
only added requirement being the citation of relevant publications. The user of Prak now 
has two options:
1.	 Use the original model trained on CommonVoice, in which case Prak is available 

under the very permissive MIT license.
2.	 Opt for increased precision in phone boundary alignment, closer to practices estab-

lished by the Institute of Phonetics, Charles University in Prague. In this case, the only 
additional requirement is that any publication benefiting from the improved model 
should cite the relevant publications of the Institute of Phonetics, as stated on the 
license page at time of installation.
Download of the software, along with usage details for both models, is available 

through the project website on GitHub: https://github.com/vaclavhanzl/prak



58

6.2 Future work

Prak was designed for the alignment of relatively short recordings, typically around one 
minute in length. Some internal algorithms (such as the search for the best alignment path 
and attention evaluation in the transformer layers) have roughly quadratic complexity, 
which makes processing slow for exceedingly long inputs. Manually splitting recordings 
into smaller parts is a simple workaround, but automating this step would be a much more 
user-friendly solution. This will require some additional research, as both the audio and 
the corresponding text must be divided into corresponding chunks, and the chunks must 
be large enough to preserve the contextual benefits provided by the transformer-derived 
embeddings. Nevertheless, such a feature would undoubtedly be welcome by users.

Additional testing of Prak’s current and potential future models can also be conducted, 
for example examining the relevance of phone boundary precision in common phonetic 
measurements such as formant detection. Outputs based on measurement from purely 
automatically aligned data could be compared with results obtained using manually cor-
rected time boundaries, providing insight into the level of precision required for reliable 
acoustic measurements in phonetic research.
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RESUMÉ

Článek představuje nástroj Prak, určený pro automatické časové zarovnání hlásek v češtině, který 
klade důraz na transparentní modulární strukturu a fonetickou přesnost. Kromě výslovnostního modulu 
pracujícího s pravidly a seznamem výslovnostních výjimek zavádí Prak nové využití nedeterministic-
kých, zpětně postupujících konečných překladových automatů (FST), zejména pro modelování regre-
sivní asimilace v konsonantických shlucích. Dalším inovativním prvkem je integrace modelu HuBERT 
a trénování na rozsáhlém korpusu manuálně časově zarovnaných nahrávek, čímž se zvyšuje přesnost kla-
sifikace hlásek, aniž by byla ovlivněna náročnost instalace a použití nástroje. Porovnání časového zarov-
nání hlásek s testovacím korpusem manuálně segmentovaných nahrávek ukázalo, že rozšířený model je 
výrazně přesnější v porovnání s předchozím Prak-CV modelem i dřívějším dlouhodobě používaným 
nástrojem pro časové zarovnání hlásek. Nový model výrazně snižuje pravděpodobnost výskytu hrubých 
chyb v určení hranic i nesouladů v identifikaci hlásek, čímž se úroveň zarovnání přibližuje standardům 
manuální segmentace. Nástroj je určen nejen fonetikům zabývajícím se češtinou, ale i vývojářům pracu-
jícím s jazyky s podobnou strukturou.
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