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ABSTRACT

This study analyzes the evolution of phenological (start-of-season, end-of-season, length-of-season, day of maximum-of-season)
and productivity (small and large seasonal integrals) parameters for six major crop types in Czechia (winter cereals, spring cereals,
winter rapeseed, fodder crops, sugar beetroot, and corn), using a 35-year Landsat time series (1986—2020). The leaf area index (LAI)
was retrieved using an artificial neural network regression model trained on PROSAIL radiative transfer simulations and validated
with extensive in situ measurements collected in 2017 and 2018 in the lowlands of Central Bohemia. The supervised classification
of Landsat quarterly composites enabled the identification of crop spatial patterns for each growing season. Phenological and pro-
ductivity indicators were then derived from LAI time series aggregated at the level of ten agro-climatic regions using the threshold
approach. Changes in phenological and productivity parameters over the examined period were assessed through the linear least
squares regression analysis and the significance of trends was tested. Results revealed significant negative trends in the end-of-
season and day of maximum-of-season for winter and spring cereals, winter rapeseed (up to —0.7 days/year), and fodder crops (up
to —1.6 days/year), indicating an earlier maturation and harvest. Significant differences in trends in phenological and productivity
parameters were observed between agro-climatic regions in more than 40% of cases, and the response was observed to be highly
crop-specific. While the shift in harvest dates and the shortening of the season for corn and fodder crops were more pronounced
in warmer regions, the shift in winter rapeseed phenology occurred more rapidly in colder regions. The findings underscore the
relevance of crop type and regional climate in shaping phenological responses, offering a basis for future research and planning of
agricultural adaptation strategies.
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1. Introduction

Phenology studies periodic life cycles of living organ-
isms in relation to weather, climate or other biotic and
abiotic factors (Lieth 1974; Nord and Lynch 2009). It
is mostly based on monitoring time occurrence of cer-
tain clearly recognizable signs of plant development
(i.e. emergence, flowering, changes in coloring, etc.),
which are generally known as “phenological events”.
The periods between them are then referred as “phe-
nological phases (Caparros-Santiago et al. 2021). The
shifts of phenological events due to climate change
have been foreseen and studied for decades (Sparks
and Carey 1995; Menzel 2000; Hassan et al. 2023). In
the case of plants, the most evident are advancements
in spring and summer but delay in autumn (Capar-
ros-Santiago et al. 2021; Hassan et al. 2023; Campi-
oli et al. 2025). An increasing length of the growing
season on one hand causes an increase in net prima-
ry production but on the other hand has impacts on
atmospheric CO2 content (positive in spring time,
negative due to extending autumn phenophases),
water exchange or alternation in species interaction
which may cause a decrease of biodiversity (Capar-
ros-Santiago et al. 2021; Yuan et al. 2024).

The ground phenological (GP) observations have
a long history (Koch et al. 2007; Hajkova et al. 2012;
Fitchett et al. 2015). Standardized procedures have
been developed to date. Thus, the phenological data
can be collected by volunteers in order to obtain
higher spatial coverage (Kaspar et al. 2014). In spite
of these efforts, the number of measurements is limit-
ed both in time and space. Satellite based monitoring
of vegetation growth stages, known as Land Surface
Phenology (LSP), allows for much larger spatial scale
using time series of vegetation-related characteris-
tics derived from the multispectral imagery (Capar-
ros-Santiago et al. 2021; GaSparovi¢ et al. 2024).
Unlike GP, LSP does not determine the phenological
events based on the presence of specific signs of plant
development. Instead, it defines the date on which
a certain level of the vegetation-related characteris-
tics under consideration is achieved by observing the
vegetation cover (e.g., the date on which the maxi-
mum value of a given vegetation-related indicator is
reached in a given year). LSP brings advantages, such
as being cost-effective and easier to relate to climatic
measurements that are usually coarser in resolution
and might be difficult to fit GP observations. Howev-
er, LSP is also affected by noise caused by sensor and
processing flaws, or mixed signals from multiple land
covers. It is also better suited to community-based
than individual-based observations. It is common
practice to combine GP and LSP observations when
GP serves as the ground truth for deriving and test-
ing LSP models, and when LSP is used to upscale GP
observations (Rodriguez-Galiano et al. 2015).

Phenological observations have long received
attention in agriculture (Wielgolaski 1974; Chmie-

lewski 2013). They are essential for crop manage-
ment (e.g., efficient irrigation, fertilization, pest man-
agement), yield estimation, or controlling crop agri-
cultural policies (Meroni et al. 2021; Pei et al. 2025).
Satellite data with a wide range of spectral, spatial,
and temporal resolutions is used for crop phenology
mapping (Gao and Zhang 2021). The sensors on the
Landsat satellites provide long-term data with high
spatial (30 m) and temporal (16 days) resolution. In
addition to the spatial resolution of 10 or 20 m, the
Sentinel 2 MSI sensor offers a higher temporal reso-
lution (up to 5 days) thanks to the constellation of two
satellites. Compared to Landsat data, it also has addi-
tional red-edge and SWIR spectral bands suitable for
vegetation monitoring. As a result, both Landsat and
Sentinel data, as well as their harmonized products
(HLS) (Claverie etal. 2018), are among the most wide-
ly used for monitoring agricultural crops at regional
or higher levels (Chaves et al. 2020; Misra et al. 2020;
Gao and Zhang 2021; Htitiou et al. 2024). They can be
fused with lower spatial but higher temporal resolu-
tion data, such as Moderate Resolution Imaging Spec-
troradiometer (MODIS) or Advanced Baseline Imag-
er (ABI) to densify the time series for modeling crop
grows in near real time (Schreier et al. 2021; Sishe-
ber et al. 2022; Dhillon et al. 2023; Shen et al. 2023).
Some authors have attempted to solve the problem of
clouds in optical data by fusion with SAR data. Meroni
et al. (2021) showed the complementarity of Senti-
nel-1 and Sentinel-2 data for LSP retrieval, especially
for winter crops.

Key LPS parameters derived from satellite images
include start of the season (SOS), end of the season
(EOS), length of the season (LOS), peak of the season
(POS), mild greenup and mild greendown (Hanes et
al. 2014). The common way to determine them is to
apply curve-based or trend-based approaches to the
generated time series of the selected vegetation index
(VI) such as normalized differential vegetation index
(NDVI), enhanced vegetation index (EVI), or leaf area
index (LAI). Curve-based approaches fit phenologi-
cal curves derived from historical time series of VIs
to current observations to predict current and future
crop growth stages. They are robust and reliable for
crops with consistent growth cycles. Trend-based
approaches detect upward or downward trends
from current time series data using momentum and
VI thresholds. They are simpler to implement and
more flexible to unexpected changes in crop growth
patterns. However, they are less effective for fore-
casting future phenological stages and are more sus-
ceptible to noise and anomalies in the data (Eklun-
dh and Jonsson 2016; Gao and Zhang 2021). Based
on VI time series and LSP parameters, crop biomass
(Dong et al. 2020), gross and net primary production
(Gitelson etal. 2012), or yield (Skakun et al. 2019; dos
Santos Luciano et al. 2021; Dhillon et al. 2023; Zhang
et al. 2023; Reznik et al. 2020) can be modeled and
estimated.
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Long-term satellite observations make it possible
to track changes in LSP over recent decades and place
them in the context of global change. Studies of global
trends of LSP parameters, mainly SOS and EOS, based
on MODIS and the Advanced Very High Resolution
Radiometer (AVHRR) data showed variances across
climatic regions over the Northen Hemisphere (Jeong
et al. 2011; Zhang et al. 2014) and the worldwide
(Zhang et al. 2014). While the first study points to sig-
nificant shifts in SOS and EOS in Europe, the latter one
finds the overall trends in Europe, and especially in
its temperate climate region, generally insignificant.
Yuan et al. (2024) provide an overview of the impacts
of global climate change on agricultural production.
BartoSova et al. (2025) present differences in long-
term GP observations (1961-2021) from Czechia for
wild plants and agricultural crops across three alti-
tude intervals. They observed some asynchrony in
phenological shifts, with agricultural crops showing
more pronounced shifts towards the beginning of
the season compared to wild plants especially in low
(0-299 m) and mid altitudes (300-499 m).

The present study uses a Landsat time series span-
ning over 30 years (1986-2020) to investigate long-
term trends in crop development and productivity
across Czechia. Specifically, we focus on the following
objectives:

1. Extracting selected crop phenological (start-of-
season: SOS, end-of-season: EOS, length-of-season:
LOS, and day of maximum-of-season: MAX_DOY)
and productivity characteristics (namely the small
and large integral of the seasonal curve, SINT and
LINT, respectively).

2. Analysing crop-specific temporal patterns to
understand how these phenological and produc-
tivity metrics evolve over time for different crop
types.

3. Assessing the role of natural conditions by examin-
ing how the observed trends in crop development
and productivity vary across agro-climatic regions
of Czechia.

The innovative element lies in linking long-term
satellite-derived crop metrics with regional agro-cli-
matic variability, offering new insights into the spatial
and temporal dynamics of agricultural systems under
changing environmental conditions.

Based on GP observations (BartoSova et al. 2025),
we formulate the following hypotheses:

H1: Significant temporal trends in LSP and produc-
tivity characteristics (SOS, EOS, LOS, MAX_DOY,
SINT, LINT) are expected over the observed period
(1986-2020).

H2: Variability in trends will be detectable across
agro-climatic regions of Czechia, enabled by the
use of high spatial resolution Landsat data and
detailed knowledge of crop distribution.

The following crops (or groups of crops) were
taken into account for the analysis 1) winter cereals
(including winter wheat, winter barley, winter rye
etc.), 2) spring cereals (including spring wheat, spring
barley, oat, spring rye etc.), 3) winter rapeseed, 4) fod-
der crops (including alfalfa, clover etc.), 5) sugar beet-
root and 6) corn. The reasons for this selection were
following: 1) the selected crops are the most frequent
ones in the conditions of Czechia as they represent ca.
93% of the arable land in the country, and 2) they rep-
resent crops with different requirements for growing
conditions. For the purpose of the study, the defini-
tions of the Vegetation Phenology and Productivity
parameters by Copernicus Land Monitoring Service
is used (HR-VPP: User Manual). The study builds on
previous work of the authors when a radiative trans-
fer model-based algorithm for retrieval of LAI from
Sentinel-2 and Landsat data for dominant crop types
in Czechia was proposed and implemented (Tomicek
etal. 2021; Tomicek et al. 2022).

2. Study area

The area of interest covers the entire Czechia. We
used the Czech national agroclimatic regionalization,

Tab. 1 Characteristics of climatic regions according to decree No. 327/1998 Coll. issued by the Ministry of Agriculture.

0:vT

Mean annual temp. Mean annual precipitation

very warm, dry 2800-3100 9-10°C 500-600 mm
1:T1 warm, dry 2600-2800 8-9°C <500 mm
2:T2 warm, mildly dry 2600-2800 8-9°C 500-600 mm
3:T3 warm, mildly humid 2500-2800 (7)8-9 °C 550-650 (700) mm
4:MT1 mildly warm, dry 2400-2600 7-8.5°C 450-550 mm
5:MT2 mildly warm, mildly humid 2200-2500 7-8°C 550-650 (700) mm
6:MT3 mildly warm (to warm), humid 2500-2700 7.5-8.5°C 700-900 mm
7:MT4 mildly warm, humid 2200-2400 6-7°C 650-750 mm
8:MCh mildly cold, humid 2000-2200 5-6 °C 700-800 mm
9:CH cold, humid <2000 <5°C > 800 mm
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Fig. 1 Methodology and processing workflow comprising Landsat time series pre-processing, ground leaf area index (LAI) measurements,
LAl retrieval based on the PROSAIL radiative transfer model and an artificial neural network (ANN) regression model, crop classification,
derivation of crop phenological and productivity characteristics and their analysis over agroclimatic zones.

as defined by Decree No.327/1998 Coll. issued by the
Ministry of Agriculture (Decree No. 327/1998), which
divides the territory of Czechia into 10 agroclimatic
zones based on temperature and humidity character-
istics. Table 1 contains the values of the key climatic
characteristics of individual agroclimatic regions.

3. Materials and methods

The Landsat series of satellites has been providing
high-resolution multispectral data for more than
three decades. For the present study, the Landsat
time series covered the period from 1986 to 2020.
The overall methodology and processing workflow is
depicted in Fig. 1 and described in detail in the follow-
ing subsections 3.1-3.5.

3.1 Landsat imagery preprocessing

The Landsat spectral bands with native spatial reso-
lution of 30 m were used in this study. The raw Level
1 scenes were processed to Level 2 (top-of-canopy
reflectance) in the ARCSI (Atmospheric and Radi-
ometric Correction of Satellite Imagery) software
(ARCSI GitHub). Invalid or defective pixels (such as
snow, cloud and shadows, saturated pixels, etc.) were
masked using the FMask algorithm (Zhu and Wood-
cock 2012; Zhu et al. 2015).

3.2 Development of the Leaf Area Index
retrieval model

3.2.1 Ground-truth LAl measurements
Ground-based LAI measurements were collected in
Elbeland, a fertile lowland area in central Bohemia

belonging to agroclimatic region T2 (average annu-
al temperature 8-9 °C, precipitation 500-600 mm;
Tab. 1). this area is considered one of the most fer-
tile in the Czechia. Reference LAI values were meas-
ured using two methods: (1) with a Delta-T SunScan
instrument (Webb et al. 2016), and (2) through digital
hemispherical photography (DHP). At each sampling
point (an area of approximately 20 x 20 m), either five
SunScan measurements, eight DHP images, or both
were collected - depending on site conditions - and
averaged as reference values. Points where both DHP
and SunScan LAl measurements were collected simul-
taneously allowed for direct comparison between the
two methods. To maximize the consistency between
the two LAI datasets, a simple linear transformation
was applied to the SunScan-derived LAI values; see
Tomicek et al. (2021) for more detailed description. In
total, 432 points were measured on 39 plots in 2017
and 2018 in Elbeland, central Bohemia (Fig. 2). Ref-
erence data were used to calibrate and validate the
LAI estimation model (section 3.2.2. for details). The
campaigns were scheduled to cover key phenological
phases of the growing season (campaign dates togeth-
er with reference Landsat scenes are listed in Tab. 2).

3.2.2 LAl retrieval approach

The applied approach of LAI retrieval from high res-
olution satellite data was proposed in our previous
studies (Tomicek et al. 2021; Tomicek et al. 2022).
The developed algorithm uses crop-optimized PRO-
SAIL radiative transfer model (RTM) to generate a
database of simulations for training of the regression
model. Ranges and distribution functions of biophys-
ical, biochemical and structural parameters (the input
parameters of the PROSAIL RTM) for individual crops
of interest were derived based on an extensive dataset
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Fig. 2 Agricultural parcels where field campaigns took place in 2017 and 2018.
Tab. 2 Summary on field sampling dates and the reference Landsat scenes.
Date of field sampling 29.-31.3.2017 17.-19.5. 2017 19.-21. 6. 2017 27.-30.4.2018 21.5.2018 26.7.2018
Reference Landsat scene 1.4.2017 19.5. 2017 20. 6. 2017 28.4.2018 22.5.2018 25.7.2018

of field measurements and an empirical parametriza-
tion procedure (Tomicek et al. 2021).

We used an artificial neural network (ANN)
approach as the regression model for LAl quantita-
tive estimation. Despite its “black-box” nature, this
approach provides the ability to implicitly model
complex nonlinear relationships between model
inputs and outputs (Richter et al. 2012). Using the
TensorFlow python library, a feed-forward neural
network with one hidden layer was implemented, the
widely used rectified linear unit (ReLu) was chosen as
the activation function (Wolanin et al. 2019; Xu et al.
2022). To evaluate model performance, the training
dataset were divided into calibration (80%) and val-
idation (20%) subsets, and mean squared error was
tracked as the loss function within an early stopping
mechanism (Tomicek et al. 2021).

The accuracy assessment was performed on cloud-
free images with a maximum time delay of 5 days
from the collection of ground-truth reference data.
For most crops of interest, RMSE was below 1 (except
for spring cereals, RMSE = 1.36 and winter rapeseed,
RMSE = 2.38) and R? was above or equal to 0.7 (except
for spring cereals, R? = 0.48), Tomicek et al. (2022) for
detailed validation results.

3.3 Generation of yearly crop maps

Since changes in phenological and productivity char-
acteristics are monitored specifically for different
crops, it was first necessary to know spatial pattern of
the crops for the considered growing seasons. Unfor-
tunately, a systematic registry of crop type cultivat-
ed on particular agricultural parcels is available only
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from 2016 onwards; LPIS/GSAA registry data was
provided by the State Agricultural Intervention Fund.
Therefore, the spatial patterns of the considered
crops for the period before 2016 had to be obtained
by an alternative way - in this case by supervised clas-
sification of Landsat satellite data.

Multitemporal composites were generated first
from the source imagery using quarterly time step.
The main aim of such temporal aggregation was to
cover the entire area of interest by valid data for the
given period with no (or at least minimum) occur-
rence of “nodata gaps” caused by clouds, shadows
or snow. The aggregation was based on calculating
weighted average of the input reflectance values tak-
ing into account 1) spatial distance of the given pixel
to the nearest cloud/shadow/snow (the further the
pixel is, the higher weight it gets) and 2) temporal dis-
tance of the given data acquisition to the mid-date of
the used compositing period (scenes acquired closer
to the mid-date are preferred over those acquired at
the beginning or the end of the period).

Support Vector Machine (SVM) classifier was used
for classification of the crop classes: 1) winter cereals,
2) spring cereals, 3) winter rapeseed, 4) fodder crops,
5) sugar beetroot, 6) corn and 7) other crops. The two
input parameters of the SVM classifier (C and gamma)
were automatically tuned by repeated training to find
the best performing configuration. Also, two different
kernels (linear and RBF) of the algorithm were con-
sidered. The described crop classification was applied
under a cropland mask derived from (a) archival
LPIS data (available from 2004 onwards) and (b) an
internal land cover classification, which accounts for
cropland areas not included in the 2004 LPIS dataset.
The crop classification procedure then resulted in a
thematic raster layer (crop map) and a pixel-based
probability layer. The last step was postprocessing,

Climatic regions
of Czechia
[ T

I
[
| ]
[Jmm
[CmT2
s
i vTa

[ mch
[ cn

including thematic filtering (pixels with a probabili-
ty below 70% were reassigned to the “other crops”
class) and spatial filtering using a sieve filter (the min-
imum mapping unit was set at 10 pixels).

Reference data used for training the SVM classifier
as well as for validation of the output crop classifica-
tion maps were obtained by visual interpretation of
Landsat images. The visual interpretation was per-
formed using false-colour RGB combination of NIR,
SWIR-1 and SWIR-2 bands, which was found to be the
most suitable spectral combination for identification
of the different crop types. Plots for this visual inter-
pretation were selected randomly across the entire
Czechia, with particular attention given to cases where
there was high certainty regarding the assigned/
interpreted crop type. In addition, independent val-
idation dataset was created as well. However, as the
visual interpretation of crop types was highly time
demanding, validation data were interpreted only for
some years (1986, 1993, 2000, 2002, 2011, 2012).
Selection of the reference years took into account two
different aspect: 1) quality of the input imagery used
for visual interpretation and 2) main phases of the
economic development of Czechia (1986: late phase
of the socialistic regime, 1993: beginning of economic
transformation, restitutions and privatization of agri-
cultural land, 2000 and 2002: preparation for the EU
membership, 2011, 2012: EU membership). For each
validation year, between 400 and 500 parcels were
analysed.

3.4 LAl time series generation

Successful determination of phenological and pro-
ductivity parameters from remote sensing imagery
requires a relatively dense time series of observations.
However, for the vast majority of the period of interest

Fig. 3 Landsat tiles covering the territory of Czechia together with agroclimatic regions.
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between 1986 and 2020, only Landsat data are avail-
able, with a revisit time of 16 days. To overcome this
problem, Landsat-derived LAI products were spatially
aggregated based on agroclimatic regions (described
in section 2), where each of the regions spans two or
more Landsat tiles (Fig. 3). The key assumption was
that climatic conditions play a fundamental role in the
timing of the phenological cycle of vegetation.

Zonal median of LAI was calculated for each sin-
gle acquisition date of the source imagery and for all
existing combination of agroclimatic region and crop.
The number of dates for which aggregated LAI values
are available is then considerably higher compared to
the situation when LAI is considered locally (e.g. on
parcel or point level).

3.5 Determination of crop phenological and
productivity characteristics

Annual time series of the LAI values were filtered by
the Savitzky-Golay filter as a first step to suppress
influence of noise in the source data. In the next step,
a radial basis function (RBF) was fitted to interpolate
the LAI seasonal profile within a 1-day step. A ‘thresh-
old approach’ was then applied to extract phenologi-
cal (SOS, EOS, LOS, MAX_DOY) and productivity (SINT,
LINT) parameters. The threshold approach uses a cer-
tain percentage of the annual LAl amplitude (i.e., the
difference between the annual maximum and mini-
mum LAI) as a threshold to determine the timing of
phenological phases.

In the case of our study, 25% of the LAI annual
amplitude was set as the threshold value. Date, when
LAI first reaches such threshold is then considered as
the SOS date, whereas EOS date is then considered as
the day when LAI drops below the threshold. The date
of reaching the annual LAl maximum is MAX_DQY, the

season maximum

season amplitude

Leaf Area Index (LAI)

season baseline
LINT

MAX DOY EOS

time (DOYs)

SOs

Fig. 4 Diagram illustrating the principle used to determine
phenological and productivity parameters.

period between SOS and EOS is then considered as
LOS. Smoothed and interpolated LAI profiles were
also used for extraction of vegetation productivity
indicators (small integral, SINT and large integral,
LINT). Both of these indicators represent area under
the LAI temporal curve. The difference is that the
LINT takes into account full area under curve (i.e.
above LAI = 0), whereas the SINT indicator takes into
account only the area under curve above the baseline
defined as the annual LAI minimum. The principle of
determining phenological and productivity parame-
ters is shown in the diagram in Fig. 4. The described
approach is used for example in case of TIMESAT soft-
ware (Eklundh and Jénsson 2015) which is applied
for production of the High Resolution Vegetation Phe-
nology and Productivity (HR-VPP) products under
the Copernicus Land Monitoring Service (CLMS). The
SINT and LINT indicators show a strong correlation
specifically with the SPROD (seasonal productivity)
and TPROD (total productivity) parameters produced
in the HR-VPP dataset.

The 35-year evolution of phenological and pro-
ductivity parameters was then examined using lin-
ear least squares regression. For each combination
of a) climatic region, b) crop and c) phenological or
productivity parameter, the slope of the regression
line was calculated. The statistical significance of the
trend was verified using the Wald test with the t-dis-
tribution of the test statistic. The Wald statistic results
from dividing the regression coefficient by its corre-
sponding standard error; the null hypothesis states
that the slope is equal to zero.

In order to compare the influence of the agrocli-
matic regions, the differences in slope values between
regions were calculated for each LSP, productivity
parameter and crop individually. To ensure consisten-
cy in the sign of the differences, the slope value corre-
sponding to the colder agroclimatic region was always
subtracted from that corresponding to the warmer
region. A Wilcoxon signed-rank test was used to test
the null hypothesis that the median of differences in
slope values equals zero for six crops and six param-
eters (36 cases in total). Rejecting the null hypothesis
indicated a systematic shift in the slope of the given
combination of parameters and crops across the agro-
climatic regions.

4. Results
4.1 Crop classification accuracy assessment

Two raster layers (thematic crop map and probability
map) were obtained for each year of the 1986-2015
period as the output of the SVM classification mod-
el. These layers were further the subject of quality
assessment based on a standardized validation work-
flow calculating class-related accuracy indicators
(user’s and producer’s accuracy and F-1 score) as
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well as the overall accuracy. For all validation years,
the overall accuracy was higher than 80%. We expect
similar accuracy characteristics for the rest of the
years since the same crop classification workflow was
applied there. The results of the crop classification
accuracy assessment are shown in Tab. 3.

4.2 Aggregated LAl time series

The set of six plots in Fig. 5 shows examples of sea-
sonal time series for six crops of interest: 1) winter
cereals, 2) spring cereals, 3) winter rapeseed, 4) fod-
der crops, 5) sugar beetroot and 6) corn derived by
spatial aggregation of the original LAI layers within
the extent of agro-climatic regions (data for the year
2018 and agro-climatic region MT1 were used here).
The original LAI values derived from the spectral
information of the Landsat data (hollow circles) were
smoothed using the Savitzky-golay filter (solid black
dots) and, as a final step, interpolated with a 1-day
step using the RBF function (black line). The quali-
ty of the created seasonal LAI time series is crucial
for the correct determination of the phenological and
productivity characteristics of the stand.

4.3 35-year development of phenology
and productivity

Fig. 6 shows an example of the 35-year evolution of
the six phenological and productivity parameters

of interest (SOS, EOS, LOS, MAX_DQY, SINT and LINT)
for winter cereals and climate region VT. Values for
individual years were fitted with a regression line
determined by the method of least squares for trend
evaluation. The p-value determines the significance of
the observed trend (in this case, the trend is signifi-
cant for parameters EOS and MAX_DOY).

The magnitude of the trend (slope of the regres-
sion line) of the 35-year evolution of the phenological
and productivity parameters of interest is visualized
in Fig. 7. The exact values together with their signif-
icance are then summarized in Appendix 1. Only a
few significant trends were documented in the case
of the phenological parameters SOS and LOS. Moreo-
ver, the variability of slope values was relatively high
across crops and climatic regions. However, a signif-
icant negative trend occurred in the case of EOS and
MAX-DOY phenological parameters in most climat-
ic regions of crops: winter cereals, spring cereals,
winter rapeseed and fodder crops, i.e. all crops with
the exception of the so-called summer crops (sugar
beetroot and corn). Specifically, for EOS, a significant
trend was demonstrated for winter cereals in 10,
spring cereals in 7, winter rapeseed in 8 and fodder
crops in 7 climate regions out of 10; for MAX-DOY
there were 10 occurrences for winter cereals, 8 for
spring cereals, 7 for winter rapeseed and 6 for fodder
crops. The slope of the regression line (the magnitude
of the trend) for the parameter MAX-DOY was in the
range of —0.4 and -0.7 in 90% of significant cases. In

Tab. 3 Crop classification accuracy assessment metrics (W.C. = winter cereals, S.C. = spring cereals, W.R. = winter rapeseed, F.C. = fodder crops,
S.B. = sugar beetroot, C. = corn, OA = overall accuracy, UA = user’s accuracy, PA = producer’s accuracy, F1 = F-1 score).

e | we | se | wn | re | se | c | o
UA

86.6 40.7 9.0 925 93.4 785
80.1
1986 PA 56.9 68.6 95.1 86.0 91.9 86.4 (n=433)
F1 68.6 51.1 95.6 89.1 92.7 823
UA 9.2 923 100.0 100.0 75.9 97.2
933
1993 PA 100.0 96.0 98.1 100.0 9.9 60.3 (= 434)
F1 98.0 94.1 99.0 100.0 85.1 745
UA 100.0 77.3 100.0 100.0 96.4 9.8
95.3
2000 PA 91.0 98.1 97.1 93.0 96.4 98.2 (n=424)
F1 95.3 86.4 98.5 96.4 96.4 9.5
UA 9.7 72.9 97.4 100.0 87.8 94.1
2002 PA 87.3 94.4 99.1 93.8 935 84.2 922
(n=503)
F1 91.8 823 98.2 9.8 90.6 88.9
UA 93.3 73.8 100.0 100.0 98.2 100.0
2011 PA 95.1 86.5 97.1 100.0 100.0 85.5 94.4
(n=430)
F1 94.2 79.6 98.5 100.0 99.1 92.2
UA 75.4 96.7 96.7 97.5 97.4 69.7
2012 PA 98.0 56.9 89.0 92.9 67.9 95.8 8.4
(n=397)
F1 85.2 716 92.7 95.1 80.0 80.7
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that the median difference was significantin 15 out of

contrast, slope values varied more between crops in

36 cases: six of these were positive and nine were neg-
ative. In the majority of cases, the slope values them-
selves were consistently either positive or negative

the EOS case. While for winter cereals, spring cereals

-0.3 and

for the fodder crops
-1.6 in all significant

and winter rapeseed, the slope was between

-0.5 in 92% of significant cases
the slope was between -0.7 and

cases.

)’

for a given crop type and observed parameter (Fig. 7

and Appendix 1). Therefore

a positive median differ-

’

ence indicates that the slope value decreases when
moving from warmer to colder regions. This implies
that shifts in the LSP and productivity parameters

In the case of productivity parameters, a signif-
icant trend in more than half of the climate regions
occurred only for spring cereals and sugar beetroot
SINT (8 and 6 occurrences out of 10, respectively).

were more pronounced in warmer regions during the
observed period, provided the slope values were both

Fig. 8 shows boxplots depicting the mean and dis-
persion statistics of the differences in LSP and pro-

ductivity parameter slope values between agroclimat-

positive. Conversely, when both slopes were negative,
stronger shifts in the observed parameters occurred

in the colder regions.

ic regions for each crop. The null hypothesis revealed
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etation. It provides a quantitative measure of vegeta-

tion growth stages
has been made in recent years in retrieving LAl based

indicator than purely spectral indices. Moreover, LAI
system processes. Furthermore, significant progress
on machine learning and radiative transfer models
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the total leaf area per unit ground area, LAI directly

reflects vegetation structure and function. It is closely
fluxes, making it a more meaningful physiological

(Misra et al. 2020; Zhang et al. 2023). In accordance
ported by its biophysical relevance. By measuring
linked to photosynthesis, transpiration, and carbon

EVI are used for LSP due to their ease of calculation
with (Lu et al. 2025),

Different vegetation spectral indices such as NDVI or

5.1 Retrieval of LSP parameters

5.D
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Fig. 7 Slope of individual phenological and productivity parameters derived over all combinations of climatic regions and crops (W.C. = winter
cereals, S.C. = spring cereals, W.R. = winter rapeseed, F.C. = fodder crops, S.B. = sugar beetroot, C. = corn).

evaluated empirical models for LAI derivation from
NDVI, EVI2, and soil adjusted vegetation index (SAVI)
as well as a biophysical model based on ANN embed-
ded to the ESA Sentinel Application Platform (SNAP)
software applied on Snetinel-2 and HLS product. After
comparison to in-situ measurement, the best models
revealed RMSE between 0.65 and 0.89 for corns (bar-
ley and wheat). Similarly to our approach, Dhakar et
al. (2021) conducted retrieval of wheat LAI by LUT-
based inversion of PROSAIL-5B model using atmos-
pherically corrected Landsat-8 OLI reflectance. They
achieved a good agreement with the in-situ observed
LAI having RMSE of 0.70.

Two main methods are often used to determine
Land Surface Phenology (LPS) metrics from satel-
lite data: the threshold method (used for example
in Timesat tool; Jonsson and Eklundh 2004) and

the derivative method (used for example in HANTS
workflow; Zhou et al. 2015). The threshold method
determines phenological events (such as SOS or EOS)
based on crossing a fixed level of the used variable
(e.g. LAI) typically corresponding to a certain percent-
age of its seasonal maximum or seasonal amplitude.
The threshold method is simple, intuitive and easy
to implement. It is also more tolerant to presence of
moderate noise in the input data if the thresholds are
chosen properly. Another advantage can be also seen
in its flexibility since the thresholds can be adjusted
independently for different types of vegetation. On
the contrary, the biggest disadvantages of this meth-
od include primarily its sensitivity to the thresh-
old choice when there is generally no exact clue on
what percentage of the season maximum (or ampli-
tude) is appropriate to be considered as start/end of
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Fig. 8 Statistics of differences in LSP and productivity parameters slope values between agroclimatic regions calculated

for each crop. Significant cases are highlighted in bold.

the season (e.g. Huang et al. 2019). In addition, the
threshold method is not very suitable for such case
typical for flat phenological profiles (i.e. low seasonal
amplitudes). It may also miss the full shape and com-
plexity of the phenological curve (this happen espe-
cially in cases where multiple growing season are
present at the given place). In summary, the threshold

method seems to be ideal for rapid applications or in
cases when lower-quality of the data is expected on
the input. The derivative method identifies phenolog-
ical events based on the rate of change in the input
variable (e.g. LAI) typically by finding the inflection
points using first derivative. Thus, there is no need to
define any thresholds and the condition for detection
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of the main phenological events (such as SOS and
EOS) are there clearly defined. It is also better cap-
turing full dynamics of the phenological profile and
thus itis more suitable in in cases typical for rapid LAI
transitions (i.e. as a spring “green-up”). On the other
hand, performance of the derivative method is high-
ly sensitive to noise in the input data and thus needs
high quality and well-smoothed inputs (e.g. de Beurs
and Henebry 2009). From implementation perspec-
tive, it is more complex (taking into account all the fit-
ting and smoothing steps before applying derivative)
and maybe less intuitive compared to the threshold
method.

5.2 Crop types classification and its accuracy

Knowledge of crop types and their spatial distribu-
tion was a crucial to the present study. As the infor-
mation from the LPIS/GSAA registry was unavailable
before 2016, supervised classification based on quar-
terly cloud free mosaics of Landsat imagery was car-
ried out instead. A comparative study performed by
(Pluto-Kossakowska 2021) showed that there are no
significant differences in accuracy when utilizing dif-
ferent machine learning (ML) algorithms for the mul-
titemporal classification of satellite images for crop
and arable land recognition. According to their find-
ings, the ANN classifiers perform just a few percent
better than ML. Among ML algorithms, SVM and Ran-
dom Forest (RF) are commonly used. User’s accuracy
achieved by our approach based on SVM algorithm is
comparable to or outperforms the results collected by
(Pluto-Kossakowska 2021) as shown in Tab. 4. (Van
Tricht et al. 2023) developed an open-source system
for global-scale, seasonal, and reproducible crop and
irrigation mapping. Their classification approach is
based on decision trees and Landsat and Sentinel-2
imagery. They claim user’s (and producer’s) accura-
cy of 94 and 86 (78 and 76)% for cereals and corn,
respectively. (Huang et al. 2022) focused on winter
cereals in Europe between 2016 and 2020. They
combined Landsat and Sentinel-2 imagery with Senti-
nel-1 SAR data in order to discriminate between win-
ter cereals and winter rapeseed. They implemented
a time-weighted dynamic time warping (TWDTW)
method, based on the comparison of seasonal chang-
es in NDVI with standard seasonal changes, as well
as RF classification, achieving overall accuracies of
91 and 81%, respectively. Specifically, in Czechia,
they reached equal user’s and producer’s accuracies
of 87% in discriminating winter cereals. Thus, the

classification accuracy based on the SVM algorithm as
applied in our study is among the best achieved using
comparable methods on Landsat imagery.

5.3 Phenological and productivity trends and their
relation to the crop types and climate regions

5.3.1 General trends of LSP and productivity
parameters

Over the last 40 years, LSP has undergone changes
that vary by climate region and fluctuate over time.
Jeong et al. (2011) observed an increase in LOS of
temperate vegetation in the Northern Hemisphere
between 1982 and 2008. They based their results on
analyzing NDVI derived from AVHRR and tempera-
tures. However, the SOS advance of 5.2 and 0.2 days
and the EOS delay of 4.3 and 2.3 days differed between
the 1982-1999 and 2000-2008 periods, respectively.
Specifically in Europe, the delayed EOS of 8.2 days was
more significant than the advanced SOS of 3.2 days
in the latter period. Global LSP based on AVHRR and
MODIS data from 1982 to 2010 was also studied by
(Zhang et al. 2014). The seasonal vegetative trajec-
tory was derived from daily EVI across Koéppen'’s cli-
mate regions. The analysis showed that SOS generally
shifted early in temperate, cold and polar climates in
the Northern Hemisphere. However, areas with a sig-
nificantly earlier SOS decreased in number between
2000 and 2010 compared to the period between 1982
and 1999, and LOS also increased. Notably, the overall
trends in Europe were generally insignificant.

In our study, we calculated and analyzed trends
in the six LSP and productivity characteristics of
six crops over ten agroclimatic regions of Czechia
between 1986 and 2020. Overall, there was no signif-
icant trend of SOS for the studied agricultural crops
except for winter rapeseed in regions T3 and MCh.
Nevertheless, there was a general trend towards ear-
lier SOS for most crops except for sugar beetroot and
corn. On average, the shift was 1.1 day per decade for
winter and spring cereals, and 2.1 day for winter rape-
seed and fodder crops. Similar SOS behavior of rainfed
and irrigated crops was observed in Spain (Michavila
etal. 2024). The later occurrence of SOS of corn, which
has a later emergence, is in accordance with study
carried out the Midwest of the United States (Zhang
etal. 2019). The EOS trend was significant in a great-
er number of crops and agroclimatic regions, with an
average shift of 5.6 days per decade for the four most
significant crops. Contrary to the findings of (Jeong et
al. 2011) but in accordance with those of (Michavila et

Tab. 4 Average user’s accuracy (UA) achieved by SVM classification of Landsat images compared to accuracies reported for the same crops by
(Pluto-Kossakowska, 2021). In the case of rapeseed and sugar beetroot only RF classification results were available in the reference literature.

UA our study %

91 76 98 92 89

UA P-K % 72 53

96 79 90
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al. 2024), this shift is negative, i.e. towards an earlier
DOY. It should be noted that both Jeong et al. (2011)
and Zhang et al. (2014) focused on vegetation in gen-
eral. The LSP parameters of agricultural crops are spe-
cific because, in addition to natural processes such as
temperature, day length or precipitation, they are also
determined by human management decisions such as
the actual planting and harvest days, irrigation, ferti-
lization and pests and weed control (BartoSova et al.
2025). Moreover, in the case of agricultural crops, the
EOS does not represent the biological termination of
the vegetation curve, as it does for natural vegetation.
Instead, the senescence phase of the curve is artifi-
cially shortened by harvesting, with the harvest date
primarily depending on the timing of crop maturity.
Therefore, they are not fully comparable. Even when
only agricultural plots are considered, the coarser res-
olution of MODIS or AVHRR causes slight changes to
SOS and EOS trends due to the surrounding natural
vegetation mixing with crops in the fragmented agri-
cultural landscape (Sisheber et al. 2023).

In general, the significance of the LOS trend was
low in our study. On average, it tended towards a
shortening of 3.5 days per decade which is again con-
trary to the findings of Jeong et al. (2011). The short-
ening of LOS is mainly caused by the advance of EOS.
The LAI maximum (MAX_DOY) trends show similar
patterns of significance to those of EOS (Appendix 1).
Also, its average advance of 5.5 days per decade for
the four most significant crops is almost equal to the
shift in EOS. On the other hand, the negative trends
of the four LSP parameters discussed are in accord-
ance with predictions of changes in the time of sow-
ing, flowering and maturity of cereals in Europe due
to climate change (Olesen et al. 2012)but also affect-
ed by day length and potential physiological stresses.
Responses may vary between species and varieties.
Climate change will affect the timing of cereal crop
development, but exact changes will also depend on
changes in varieties as affected by plant breeding and
variety choices. This study aimed to assess chang-
es in timing of major phenological stages of cereal
crops in Northern and Central Europe under climate
change. Records on dates of sowing, flowering, and
maturity of wheat, oats and maize were collected
from field experiments conducted during the period
1985-2009. Data for spring wheat and spring oats
covered latitudes from 46 to 64°N, winter wheat from
46 to 61°N, and maize from 47 to 58°N. The number of
observations (site-year-variety combinations, given
an average temperature increase of 0.35°C per decade
in Czechia (Crhova et al. 2022.

Examining crop types, most significant trends in
LSP parameters relate to winter and spring cereals,
winter rapeseed, and fodder crops. All these crops
show a trend of EOS and MAX_DOY advancement but
they do not differ considerably across the agroclimatic
regions except for fodder crops that exhibit the most
pronounced trend, as well as greatest variability in

EOS (Fig. 7). Fodder crops are harvested at least twice
during the season (Springer and Aiken, 2015)theoret-
ical ethanol yield, crude protein (CP. The timing and
frequency are determined by natural conditions, such
as soil type, temperature and precipitation. However,
they mainly depend on whether the crop is harvest-
ed for forage or seed. Thus, increasing temperatures
might explain the advance in harvest and different
management practices the higher variability.

The productivity parameters vary in terms of their
signs and values. A significant increase in the SINT
can be observed for spring cereals and for sugar beet-
root in 9 and 6 of the agroclimatic regions, respec-
tively. An opposite trend, though significant only in
two warmest regions, is evident for fodder crops and
winter cereals (with no significant cases). For the
LINT parameter, significant trends appear mostly for
non-cereals in warmer regions. Again, LINT trends
are not significant for winter cereals, but they have an
opposite sign, which can be interpreted as an increase
in total LAl while the area above the seasonal baseline
was decreasing (Fig. 4).

5.3.2 Relation of LSP and production parameters

to agroclimatic regions

Evaluating the differences in the slopes of the LSP
parameters between the agroclimatic regions
revealed a significant dependence in one-third of the
24 cases (i.e. four parameters times six crops), but
this did not apply to cereals. The significant positive
median slope differences in SOS and MAX_DOY for
winter rapeseed indicate that the advance of SOS and
MAX_DOY was higher in the colder regions, of around
0.5 days per decade for both parameters. The other
significant shifts (fodder crops - EOS and LOS; corn -
EOS, LOS, and MAX_DOY; and winter rapeseed - LOS)
exhibited negative median differences. These obser-
vations suggest that during the observed period, the
advancement of the harvesting of fodder crops and
corn and the shortening of the production season
were larger in warmer regions than in colder ones.
When interpreting the negative median difference in
the MAX_DOY parameter for corn, the sign of the slope
must be considered. While it shows slight advance-
ment in warmer regions, there is a trend towards later
DOY in colder regions. This is consistent with the idea
of using colder regions to grow crops that were previ-
ously only suitable for warmer regions, as discussed
in relation to northern Europe, for example (Unc et
al. 2021).

Bartosova et al. (2025) examined the relationship
between elevation and the phenological phases of
winter wheat. They analyzed in-situ observations of
registered winter wheat cultivars at 17 experimen-
tal stations in Czechia between 1961 and 2021. The
three stages evaluated were: i) jointing (first node
at least 1 cm above the node); ii) heading (begin-
ning of heading); and iii) ripening (fully ripe, hard-
ened grains). The observations were grouped into
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Fig. 9 Median, minimum, and maximum elevation calculated within the agroclimatic regions.

three elevation categories: 0-299 m, 300-499 m, and
500-750 m above mean sea level (a.m.s.l.). The agro-
climatic regions used in our study cover a variety of
elevations, as can be seen in Fig. 9.

For purposes of comparison, we aggregated the
agroclimatic regions and used the most suited slope
values for winter cereals, since winter wheat domi-
nates this category. If the SOS is neglected, as it did
not demonstrate a significant trend in our study, the
MAX_DOY parameter exhibits a steeper negative slope
of approximately 2.5 days per decade in the two lower
elevation intervals and 1 day per decade in the highest
interval, as shown in Table 5. The EOS shows a good
fit with ripening, except in the high elevation interval
where it indicates an advance to an earlier DOY of 1.7
days per decade. Despite these slight differences, both

types of observation indicate the same trend direction
and magnitude. The reasons for these differences are:
i) the parameters are defined differently, although
they are closely related; ii) winter cereals also include
other crops (e.g. winter barley and winter rye); iii) the
start and therefore the length of the time series differ
(1961-2021 vs. 1986-2020). Nevertheless, the over-
lap between the two studies is the greatest among
existing literature in terms of research objectives,
covered territory and crop type.

Regarding the productivity parameters, the sig-
nificant positive median slope differences in SINT
for spring cereals and in LINT for winter and spring
cereals indicate that these parameters increased
more in warmer regions than in colder regions dur-
ing the observed period. Conversely, the significant

Tab. 5 Comparison of trends in selected phenological parameters of winter cereals (winter wheat) in relation to elevation above mean sea
level (a.m.s.l.). All parameters exhibited a significant trend, except SOS (in italics).

Elevation interval a.m.s.l.

Results Bartosova et al. (2025) LSP observations

jointing -4.5 S0S -0.8

0-299 m .

VT, T1-T3, MT3 heading -3.3 MAX_DOY -5.6
ripening -4.4 EOS -4.5
jointing -6.9 S0S -0.8

300-499 m .

MTL, MT2, MT4 heading -3.6 MAX_DOY -6.2
ripening -4.8 EOS -4.2
jointing -5.7 S0S -1.8

>500m .

MCH, CH heading 4.0 MAX_DOY 5.1
ripening -3.3 EOS -5.0
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negative median for both SINT and LINT for fodder
crops shows that productivity loss is smaller in colder
regions during the observed period (as the slope is
negative in the majority of agroclimatic regions).

Our first hypothesis was formulated as follows:
“There are significant trends in LSP and productivity
characteristics over the observed period.” The results
of the present analysis partially confirmed this. EOS
and MAX_DOY were the only two parameters with
a significant negative trend; however, this was only
observed for cereals, rapeseed and fodder crops. Our
study thus confirmed the existence of LSP trends and
their direction over the observed 35-year period. At
the same time, however, it showed that despite a sig-
nificant trend in some LSP characteristics, the pro-
ductivity parameters revealed negligible significance.
The LSP of agricultural crops differs and should be
considered in regional studies on crop productivity
(Lobell and Gourdji 2012), land use and land cover
changes (Zhang et al. 2019), and the impacts of glob-
al change on agriculture (Brown et al. 2012; Yuan et
al. 2024) and vice LSP feedback to global change (Liu
etal. 2017).

The results of the discussion also proved the valid-
ity of the second hypothesis: “Using high spatial reso-
lution Landsat data and knowledge of the distribution
of specific crops will enable us to observe differences
in LSP and productivity trends between agroclimatic
regions”. Significant differences in trends in the LSP
and productivity parameters were observed between
the agroclimatic regions in 15 out of the 36 studied
cases.

6. Conclusions

This study demonstrates the potential of long-term,
high-resolution optical satellite data series for mon-
itoring and analyzing trends in crop phenology and
productivity at a regional scale. Using a 35-year
Landsat time series, we evaluated four key phenolog-
ical (SOS, EOS, LOS, MAX_DOY) and two productivi-
ty (SINT, LINT) parameters for six major crop types
(winter cereals, spring cereals, winter rapeseed, fod-
der crops, sugar beetroot, and corn) in ten agro-cli-
matic regions in Czechia. The methodology combined
robust ground-based LAI measurements, advanced
radiative transfer modeling (PROSAIL), machine
learning-based LAI retrieval, and supervised crop
classification to calculate dense LAI time series for
each climatic region and crop. The annual LAI time
series were then smoothed using a Savitzky-Golay fil-
ter and interpolated with RBF to produce daily pro-
files, from which phenological (SOS, EOS, LOS, MAX_
DOY) and productivity (SINT, LINT) parameters were
extracted using a threshold approach based on 25%
of the annual LAl amplitude.

Accurate knowledge of crop types and their spatial
distribution was essential for this study. Supervised

classification of Landsat images using the SVM
algorithm provided results with an overall accura-
cy of higher than 80% for all validated years. The
achieved accuracy is comparable or better than other
approaches in recent regional studies based on Land-
sat data. The phenology and productivity parameters
in Czechia have shown different trends over the last
four decades across climatic regions and crop types.
While global vegetation studies often find a lengthen-
ing of the growing season due to earlier spring and lat-
er autumn, our analysis of six key crop types between
1986 and 2020 in Czechia tends to show only a signif-
icant negative shift of EOS and MAX-DOY - especially
for winter and spring cereals, winter rapeseed (up to
-0.7 days/year) and fodder crops (up to -1.6 days/
year). For agricultural crops in general, EOS reflects
the harvest date rather than natural senescence and is
thus strongly related to MAX-DOY because the grow-
ing season is artificially terminated by harvest as the
crop matures. Productivity trends varied by crop and
climatic region, with SINT increasing significantly for
spring cereals and sugar beetroot, while significant
LINT trends were observed mainly for non-cereals
in warmer regions. Approximately 40% of the crop
and phenological /productivity parameter combina-
tions show significant differences in trends between
agro-climatic regions, with the shift in SOS and MAX_
DOY for winter rapeseed occurring more rapidly in
colder regions, while the shift in harvest dates and
shortening of the season for corn and fodder crops
is more pronounced in warmer regions. Compari-
son with phenological study based on altitude (Bar-
toSova et al. 2025) confirmed similar directions and
magnitudes of trends for winter cereals. Productivi-
ty parameters (SINT and LINT) for cereals increased
more in warmer regions, while losses in fodder crops
productivity were less pronounced in colder regions.

The study was based entirely on satellite data, and,
to the authors’ knowledge, it is unique in the level of
detail of the performed analysis. In order to elaborate
on differences in LSP and productivity trends between
agroclimatic regions, detailed meteorological obser-
vations such as temperature and precipitation on a
monthly or quarterly basis are necessary.
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Appendix 1 Trend slope values for individual phenological and productivity parameters derived over all combinations of climatic regions and
crops of interest (W.C. = winter cereals, S.C. = spring cereals, W.R. = winter rapeseed, F.C. = fodder crops, S.B. = sugar beetroot, C. = corn). The
slopes for SINT and LINT were calculated for values scaled by 0.0001.

‘ Crop ‘ 0:vT ‘ 1Tl ‘ 2:T2 ‘ 3:T3 ‘ 4:MT1 ‘ 5:MT2 ‘ 6:MT3 ‘ 7:MT4 ‘ 8:MT ‘ 9:MCH

Phenological parameters

W.C. -0.200 -0.100 -0.100 -0.100 -0.010 -0.068 0.040 -0.150 -0.190 -0.160
S.C. -0.300 -0.000 0.000 -0.100 -0.130 -0.500 -0.132 -0.053 0.020 -0.024
W.R. -0.200 -0.000 -0.300 -0.300 -0.100 -0.384 -0.175 -0.203 -0.320 -0.228
508 F.C. -0.200 0.030 -0.200 -0.300 -0.280 0.032 -0.056 -0.462 -0.210 -0.272
S.B. 0.060 0.100 0.000 -0.200 -0.170 -0.029 0.104 0.128 -0.030 0.016
C. 0.160 0.340 0.180 0.170 -0.090 0.298 0.293 0.242 0.396 0.114
W.C. -0.460 -0.370 -0.430 -0.600 -0.480 -0.410 -0.380 -0.370 -0.440 -0.550
S.C. -0.440 -0.350 -0.410 -0.420 -0.400 -0.280 -0.350 -0.480 -0.440 -0.270
W.R. -0.410 -0.270 -0.350 -0.480 -0.440 -0.440 -0.490 -0.380 -0.380 -0.250
F0s F.C. -1.190 -1.630 -1.190 -0.750 -1.050 -0.740 -1.280 -0.810 -0.200 -1.140
S.B. 0.120 -0.570 -0.140 0.100 -0.150 0.040 -0.040 0.170 -0.300 0.030
C. -0.400 -0.650 -0.340 -0.210 -0.430 -0.130 0.080 -0.020 -0.190 -0.340
W.C. -0.300 -0.300 -0.300 -0.500 -0.480 -0.338 -0.422 -0.220 -0.240 -0.392
S.C. -0.200 -0.300 -0.400 -0.300 -0.270 0.220 -0.220 -0.425 -0.460 -0.248
W.R. -0.300 -0.200 -0.100 -0.100 -0.340 -0.053 -0.316 -0.180 -0.060 -0.026
o F.C. -1.000 -1.700 -1.000 -0.400 -0.770 -0.770 -1.227 -0.346 0.008 -0.865
S.B. 0.060 -0.700 -0.100 0.280 0.025 0.069 -0.142 0.045 -0.270 0.017
C. -0.600 -1.000 -0.500 -0.400 -0.340 -0.425 -0.212 -0.266 -0.590 -0.450
W.C. -0.500 -0.500 -0.700 -0.700 -0.790 -0.599 -0.466 -0.457 -0.480 -0.536
S.C. -0.700 -0.600 -0.600 -0.400 -0.200 -0.669 -0.441 -0.525 -0.620 -0.624
W.R. -0.200 -0.600 -0.500 -0.500 -0.460 -0.595 -0.664 -0.659 -0.520 -0.515
MAX-DOY
F.C. -0.600 -0.800 -0.700 -0.400 -0.610 -0.563 -0.342 -0.610 -0.340 -0.860
S.B. -0.500 -0.300 -0.300 -0.400 -0.480 -0.765 -0.019 -0.357 -0.090 -0.272
C. -0.200 0.090 -0.400 -0.200 0.181 0.491 0.044 0.677 0.732 0.414
Productivity parameters
W.C. -0.129 -0.103 -0.169 -0.151 -0.160 -0.156 -0.174 -0.117 -0.163 -0.152
S.C. 0.273 0.295 0.304 0.316 0.304 0.297 0.236 0.167 0.152 0.254
W.R. -0.064 -0.006 0.091 0.050 -0.012 0.008 0.077 -0.039 -0.003 0.190
SN F.C. -0.379 -0.419 -0.299 -0.131 -0.236 -0.226 -0.185 -0.008 0.094 -0.165
S.B. 0.133 0.170 0.290 0.484 0.465 0.469 0.262 0.191 0.115 0.241
C. 0.041 0.050 0.056 0.036 0.153 0.092 0.077 0.101 -0.044 0.063
W.C. 0.123 0.172 0.101 0.160 0.158 0.071 0.084 0.102 0.033 0.018
S.C. 0.133 0.083 0.060 0.103 0.123 0.059 0.196 0.095 0.005 0.006
W.R. 0.205 0.272 0.246 0.297 0.259 0.110 0.133 0.145 0.070 0.162
s F.C. -0.419 -0.511 -0.361 -0.369 -0.141 -0.306 -0.191 -0.299 -0.042 0.065
S.B. 0.016 -0.053 0.078 0.120 0.281 0.142 0.229 0.125 0.087 -0.053
C. -0.108 -0.237 -0.136 -0.125 -0.054 -0.118 -0.082 -0.068 -0.066 -0.163
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