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ABSTRACT
This study analyzes the evolution of phenological (start-of-season, end-of-season, length-of-season, day of maximum-of-season) 
and productivity (small and large seasonal integrals) parameters for six major crop types in Czechia (winter cereals, spring cereals, 
winter rapeseed, fodder crops, sugar beetroot, and corn), using a 35-year Landsat time series (1986–2020). The leaf area index (LAI) 
was retrieved using an artificial neural network regression model trained on PROSAIL radiative transfer simulations and validated 
with extensive in situ measurements collected in 2017 and 2018 in the lowlands of Central Bohemia. The supervised classification 
of Landsat quarterly composites enabled the identification of crop spatial patterns for each growing season. Phenological and pro-
ductivity indicators were then derived from LAI time series aggregated at the level of ten agro-climatic regions using the threshold 
approach. Changes in phenological and productivity parameters over the examined period were assessed through the linear least 
squares regression analysis and the significance of trends was tested. Results revealed significant negative trends in the end-of-
season and day of maximum-of-season for winter and spring cereals, winter rapeseed (up to –0.7 days/year), and fodder crops (up 
to –1.6 days/year), indicating an earlier maturation and harvest. Significant differences in trends in phenological and productivity 
parameters were observed between agro-climatic regions in more than 40% of cases, and the response was observed to be highly 
crop-specific. While the shift in harvest dates and the shortening of the season for corn and fodder crops were more pronounced 
in warmer regions, the shift in winter rapeseed phenology occurred more rapidly in colder regions. The findings underscore the 
relevance of crop type and regional climate in shaping phenological responses, offering a basis for future research and planning of 
agricultural adaptation strategies.
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1. Introduction

Phenology studies periodic life cycles of living organ-
isms in relation to weather, climate or other biotic and 
abiotic factors (Lieth 1974; Nord and Lynch 2009). It 
is mostly based on monitoring time occurrence of cer-
tain clearly recognizable signs of plant development 
(i.e. emergence, flowering, changes in coloring, etc.), 
which are generally known as “phenological events”. 
The periods between them are then referred as “phe-
nological phases (Caparros-Santiago et al. 2021). The 
shifts of phenological events due to climate change 
have been foreseen and studied for decades (Sparks 
and Carey 1995; Menzel 2000; Hassan et al. 2023). In 
the case of plants, the most evident are advancements 
in spring and summer but delay in autumn (Capar-
ros-Santiago et al. 2021; Hassan et al. 2023; Campi-
oli et al. 2025). An increasing length of the growing 
season on one hand causes an increase in net prima-
ry production but on the other hand has impacts on 
atmospheric CO2 content (positive in spring time, 
negative due to extending autumn phenophases), 
water exchange or alternation in species interaction 
which may cause a decrease of biodiversity (Capar-
ros-Santiago et al. 2021; Yuan et al. 2024).

The ground phenological (GP) observations have 
a long history (Koch et al. 2007; Hajkova et al. 2012; 
Fitchett et al. 2015). Standardized procedures have 
been developed to date. Thus, the phenological data 
can be collected by volunteers in order to obtain 
higher spatial coverage (Kaspar et al. 2014). In spite 
of these efforts, the number of measurements is limit-
ed both in time and space. Satellite based monitoring 
of vegetation growth stages, known as Land Surface 
Phenology (LSP), allows for much larger spatial scale 
using time series of vegetation-related characteris-
tics derived from the multispectral imagery (Capar-
ros-Santiago et al. 2021; Gašparović et al. 2024). 
Unlike GP, LSP does not determine the phenological 
events based on the presence of specific signs of plant 
development. Instead, it defines the date on which 
a certain level of the vegetation-related characteris-
tics under consideration is achieved by observing the 
vegetation cover (e.g., the date on which the maxi-
mum value of a given vegetation-related indicator is 
reached in a given year). LSP brings advantages, such 
as being cost-effective and easier to relate to climatic 
measurements that are usually coarser in resolution 
and might be difficult to fit GP observations. Howev-
er, LSP is also affected by noise caused by sensor and 
processing flaws, or mixed signals from multiple land 
covers. It is also better suited to community-based 
than individual-based observations. It is common 
practice to combine GP and LSP observations when 
GP serves as the ground truth for deriving and test-
ing LSP models, and when LSP is used to upscale GP 
observations (Rodriguez-Galiano et al. 2015).

Phenological observations have long received 
attention in agriculture (Wielgolaski 1974; Chmie- 

lewski 2013). They are essential for crop manage-
ment (e.g., efficient irrigation, fertilization, pest man-
agement), yield estimation, or controlling crop agri-
cultural policies (Meroni et al. 2021; Pei et al. 2025). 
Satellite data with a wide range of spectral, spatial, 
and temporal resolutions is used for crop phenology 
mapping (Gao and Zhang 2021). The sensors on the 
Landsat satellites provide long-term data with high 
spatial (30 m) and temporal (16 days) resolution. In 
addition to the spatial resolution of 10 or 20 m, the 
Sentinel 2 MSI sensor offers a higher temporal reso-
lution (up to 5 days) thanks to the constellation of two 
satellites. Compared to Landsat data, it also has addi-
tional red-edge and SWIR spectral bands suitable for 
vegetation monitoring. As a result, both Landsat and 
Sentinel data, as well as their harmonized products 
(HLS) (Claverie et al. 2018), are among the most wide-
ly used for monitoring agricultural crops at regional 
or higher levels (Chaves et al. 2020; Misra et al. 2020; 
Gao and Zhang 2021; Htitiou et al. 2024). They can be 
fused with lower spatial but higher temporal resolu-
tion data, such as Moderate Resolution Imaging Spec-
troradiometer (MODIS) or Advanced Baseline Imag-
er (ABI) to densify the time series for modeling crop 
grows in near real time (Schreier et al. 2021; Sishe-
ber et al. 2022; Dhillon et al. 2023; Shen et al. 2023). 
Some authors have attempted to solve the problem of 
clouds in optical data by fusion with SAR data. Meroni 
et al. (2021) showed the complementarity of Senti-
nel-1 and Sentinel-2 data for LSP retrieval, especially 
for winter crops.

Key LPS parameters derived from satellite images 
include start of the season (SOS), end of the season 
(EOS), length of the season (LOS), peak of the season 
(POS), mild greenup and mild greendown (Hanes et 
al. 2014). The common way to determine them is to 
apply curve-based or trend-based approaches to the 
generated time series of the selected vegetation index 
(VI) such as normalized differential vegetation index 
(NDVI), enhanced vegetation index (EVI), or leaf area 
index (LAI). Curve-based approaches fit phenologi-
cal curves derived from historical time series of VIs 
to current observations to predict current and future 
crop growth stages. They are robust and reliable for 
crops with consistent growth cycles. Trend-based 
approaches detect upward or downward trends 
from current time series data using momentum and 
VI thresholds. They are simpler to implement and 
more flexible to unexpected changes in crop growth 
patterns. However, they are less effective for fore-
casting future phenological stages and are more sus-
ceptible to noise and anomalies in the data (Eklun-
dh and Jönsson 2016; Gao and Zhang 2021). Based 
on VI time series and LSP parameters, crop biomass 
(Dong et al. 2020), gross and net primary production 
(Gitelson et al. 2012), or yield (Skakun et al. 2019; dos 
Santos Luciano et al. 2021; Dhillon et al. 2023; Zhang 
et al. 2023; Řezník et al. 2020) can be modeled and 
estimated.
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Long-term satellite observations make it possible 
to track changes in LSP over recent decades and place 
them in the context of global change. Studies of global 
trends of LSP parameters, mainly SOS and EOS, based 
on MODIS and the Advanced Very High Resolution 
Radiometer (AVHRR) data showed variances across 
climatic regions over the Northen Hemisphere (Jeong 
et al. 2011; Zhang et al. 2014) and the worldwide 
(Zhang et al. 2014). While the first study points to sig-
nificant shifts in SOS and EOS in Europe, the latter one 
finds the overall trends in Europe, and especially in 
its temperate climate region, generally insignificant. 
Yuan et al. (2024) provide an overview of the impacts 
of global climate change on agricultural production. 
Bartošová et al. (2025) present differences in long-
term GP observations (1961–2021) from Czechia for 
wild plants and agricultural crops across three alti-
tude intervals. They observed some asynchrony in 
phenological shifts, with agricultural crops showing 
more pronounced shifts towards the beginning of 
the season compared to wild plants especially in low 
(0–299 m) and mid altitudes (300–499 m).

The present study uses a Landsat time series span-
ning over 30 years (1986–2020) to investigate long-
term trends in crop development and productivity 
across Czechia. Specifically, we focus on the following 
objectives:
1.	 Extracting selected crop phenological (start-of-

season: SOS, end-of-season: EOS, length-of-season: 
LOS, and day of maximum-of-season: MAX_DOY) 
and productivity characteristics (namely the small 
and large integral of the seasonal curve, SINT and 
LINT, respectively).

2.	 Analysing crop-specific temporal patterns to 
understand how these phenological and produc-
tivity metrics evolve over time for different crop 
types.

3.	 Assessing the role of natural conditions by examin-
ing how the observed trends in crop development 
and productivity vary across agro-climatic regions 
of Czechia.

The innovative element lies in linking long-term 
satellite-derived crop metrics with regional agro-cli-
matic variability, offering new insights into the spatial 
and temporal dynamics of agricultural systems under 
changing environmental conditions. 

Based on GP observations (Bartošová et al. 2025), 
we formulate the following hypotheses:
H1: Significant temporal trends in LSP and produc-

tivity characteristics (SOS, EOS, LOS, MAX_DOY, 
SINT, LINT) are expected over the observed period 
(1986–2020).

H2: Variability in trends will be detectable across 
agro-climatic regions of Czechia, enabled by the 
use of high spatial resolution Landsat data and 
detailed knowledge of crop distribution. 
The following crops (or groups of crops) were 

taken into account for the analysis 1) winter cereals 
(including winter wheat, winter barley, winter rye 
etc.), 2) spring cereals (including spring wheat, spring 
barley, oat, spring rye etc.), 3) winter rapeseed, 4) fod-
der crops (including alfalfa, clover etc.), 5) sugar beet-
root and 6) corn. The reasons for this selection were 
following: 1) the selected crops are the most frequent 
ones in the conditions of Czechia as they represent ca. 
93% of the arable land in the country, and 2) they rep-
resent crops with different requirements for growing 
conditions. For the purpose of the study, the defini-
tions of the Vegetation Phenology and Productivity 
parameters by Copernicus Land Monitoring Service 
is used (HR-VPP: User Manual). The study builds on 
previous work of the authors when a radiative trans-
fer model-based algorithm for retrieval of LAI from 
Sentinel-2 and Landsat data for dominant crop types 
in Czechia was proposed and implemented (Tomíček 
et al. 2021; Tomíček et al. 2022).

2. Study area

The area of interest covers the entire Czechia. We 
used the Czech national agroclimatic regionalization, 

Tab. 1 Characteristics of climatic regions according to decree No. 327/1998 Coll. issued by the Ministry of Agriculture.

Region code Region characteristic Sum of temp. above 10 °C Mean annual temp. Mean annual precipitation

0:VT very warm, dry 2800–3100 9–10 °C 500–600 mm

1:T1 warm, dry 2600–2800 8–9 °C < 500 mm

2:T2 warm, mildly dry 2600–2800 8–9 °C 500–600 mm

3:T3 warm, mildly humid 2500–2800 (7)8–9 °C 550–650 (700) mm

4:MT1 mildly warm, dry 2400–2600 7–8.5 °C 450–550 mm

5:MT2 mildly warm, mildly humid 2200–2500 7–8 °C 550–650 (700) mm

6:MT3 mildly warm (to warm), humid 2500–2700 7.5–8.5 °C 700–900 mm

7:MT4 mildly warm, humid 2200–2400 6–7 °C 650–750 mm

8:MCh mildly cold, humid 2000–2200 5–6 °C 700–800 mm

9:CH cold, humid < 2000 < 5 °C > 800 mm
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as defined by Decree No. 327/1998 Coll. issued by the 
Ministry of Agriculture (Decree No. 327/1998), which 
divides the territory of Czechia into 10 agroclimatic 
zones based on temperature and humidity character-
istics. Table 1 contains the values of the key climatic 
characteristics of individual agroclimatic regions. 

3. Materials and methods

The Landsat series of satellites has been providing 
high-resolution multispectral data for more than 
three decades. For the present study, the Landsat 
time series covered the period from 1986 to 2020. 
The overall methodology and processing workflow is 
depicted in Fig. 1 and described in detail in the follow-
ing subsections 3.1–3.5.

3.1 Landsat imagery preprocessing

The Landsat spectral bands with native spatial reso-
lution of 30 m were used in this study. The raw Level 
1 scenes were processed to Level 2 (top-of-canopy 
reflectance) in the ARCSI (Atmospheric and Radi-
ometric Correction of Satellite Imagery) software 
(ARCSI GitHub). Invalid or defective pixels (such as 
snow, cloud and shadows, saturated pixels, etc.) were 
masked using the FMask algorithm (Zhu and Wood-
cock 2012; Zhu et al. 2015).

3.2 Development of the Leaf Area Index  
retrieval model

3.2.1 Ground-truth LAI measurements
Ground-based LAI measurements were collected in 
Elbeland, a fertile lowland area in central Bohemia 

belonging to agroclimatic region T2 (average annu-
al temperature 8–9 °C, precipitation 500–600 mm; 
Tab. 1). this area is considered one of the most fer-
tile in the Czechia. Reference LAI values were meas-
ured using two methods: (1) with a Delta-T SunScan 
instrument (Webb et al. 2016), and (2) through digital 
hemispherical photography (DHP). At each sampling 
point (an area of approximately 20 × 20 m), either five 
SunScan measurements, eight DHP images, or both 
were collected – depending on site conditions – and 
averaged as reference values. Points where both DHP 
and SunScan LAI measurements were collected simul-
taneously allowed for direct comparison between the 
two methods. To maximize the consistency between 
the two LAI datasets, a simple linear transformation 
was applied to the SunScan-derived LAI values; see 
Tomíček et al. (2021) for more detailed description. In 
total, 432 points were measured on 39 plots in 2017 
and 2018 in Elbeland, central Bohemia (Fig. 2). Ref-
erence data were used to calibrate and validate the 
LAI estimation model (section 3.2.2. for details). The 
campaigns were scheduled to cover key phenological 
phases of the growing season (campaign dates togeth-
er with reference Landsat scenes are listed in Tab. 2).

3.2.2 LAI retrieval approach
The applied approach of LAI retrieval from high res-
olution satellite data was proposed in our previous 
studies (Tomíček et al. 2021; Tomíček et al. 2022). 
The developed algorithm uses crop-optimized PRO-
SAIL radiative transfer model (RTM) to generate a 
database of simulations for training of the regression 
model. Ranges and distribution functions of biophys-
ical, biochemical and structural parameters (the input 
parameters of the PROSAIL RTM) for individual crops 
of interest were derived based on an extensive dataset 

Fig. 1 Methodology and processing workflow comprising Landsat time series pre-processing, ground leaf area index (LAI) measurements, 
LAI retrieval based on the PROSAIL radiative transfer model and an artificial neural network (ANN) regression model, crop classification, 
derivation of crop phenological and productivity characteristics and their analysis over agroclimatic zones.
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Fig. 2 Agricultural parcels where field campaigns took place in 2017 and 2018.

of field measurements and an empirical parametriza-
tion procedure (Tomíček et al. 2021).

We used an artificial neural network (ANN) 
approach as the regression model for LAI quantita-
tive estimation. Despite its “black-box” nature, this 
approach provides the ability to implicitly model 
complex nonlinear relationships between model 
inputs and outputs (Richter et al. 2012). Using the 
TensorFlow python library, a feed-forward neural 
network with one hidden layer was implemented, the 
widely used rectified linear unit (ReLu) was chosen as 
the activation function (Wolanin et al. 2019; Xu et al. 
2022). To evaluate model performance, the training 
dataset were divided into calibration (80%) and val-
idation (20%) subsets, and mean squared error was 
tracked as the loss function within an early stopping 
mechanism (Tomíček et al. 2021).

The accuracy assessment was performed on cloud-
free images with a maximum time delay of 5 days 
from the collection of ground-truth reference data. 
For most crops of interest, RMSE was below 1 (except 
for spring cereals, RMSE = 1.36 and winter rapeseed, 
RMSE = 2.38) and R2 was above or equal to 0.7 (except 
for spring cereals, R2 = 0.48), Tomíček et al. (2022) for 
detailed validation results.

3.3 Generation of yearly crop maps

Since changes in phenological and productivity char-
acteristics are monitored specifically for different 
crops, it was first necessary to know spatial pattern of 
the crops for the considered growing seasons. Unfor-
tunately, a systematic registry of crop type cultivat-
ed on particular agricultural parcels is available only 

Tab. 2 Summary on field sampling dates and the reference Landsat scenes.

Date of field sampling 29.–31. 3. 2017 17.–19. 5. 2017 19.–21. 6. 2017 27.–30. 4. 2018 21. 5. 2018 26. 7. 2018

Reference Landsat scene 1. 4. 2017 19. 5. 2017 20. 6. 2017 28. 4. 2018 22. 5. 2018 25. 7. 2018
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from 2016 onwards; LPIS/GSAA registry data was 
provided by the State Agricultural Intervention Fund. 
Therefore, the spatial patterns of the considered 
crops for the period before 2016 had to be obtained 
by an alternative way – in this case by supervised clas-
sification of Landsat satellite data.

Multitemporal composites were generated first 
from the source imagery using quarterly time step. 
The main aim of such temporal aggregation was to 
cover the entire area of interest by valid data for the 
given period with no (or at least minimum) occur-
rence of “nodata gaps” caused by clouds, shadows 
or snow. The aggregation was based on calculating 
weighted average of the input reflectance values tak-
ing into account 1) spatial distance of the given pixel 
to the nearest cloud/shadow/snow (the further the 
pixel is, the higher weight it gets) and 2) temporal dis-
tance of the given data acquisition to the mid-date of 
the used compositing period (scenes acquired closer 
to the mid-date are preferred over those acquired at 
the beginning or the end of the period).

Support Vector Machine (SVM) classifier was used 
for classification of the crop classes: 1) winter cereals, 
2) spring cereals, 3) winter rapeseed, 4) fodder crops, 
5) sugar beetroot, 6) corn and 7) other crops. The two 
input parameters of the SVM classifier (C and gamma) 
were automatically tuned by repeated training to find 
the best performing configuration. Also, two different 
kernels (linear and RBF) of the algorithm were con-
sidered. The described crop classification was applied 
under a cropland mask derived from (a) archival 
LPIS data (available from 2004 onwards) and (b) an 
internal land cover classification, which accounts for 
cropland areas not included in the 2004 LPIS dataset. 
The crop classification procedure then resulted in a 
thematic raster layer (crop map) and a pixel-based 
probability layer. The last step was postprocessing, 

including thematic filtering (pixels with a probabili-
ty below 70% were reassigned to the “other crops” 
class) and spatial filtering using a sieve filter (the min-
imum mapping unit was set at 10 pixels).

Reference data used for training the SVM classifier 
as well as for validation of the output crop classifica-
tion maps were obtained by visual interpretation of 
Landsat images. The visual interpretation was per-
formed using false-colour RGB combination of NIR, 
SWIR-1 and SWIR-2 bands, which was found to be the 
most suitable spectral combination for identification 
of the different crop types. Plots for this visual inter-
pretation were selected randomly across the entire 
Czechia, with particular attention given to cases where 
there was high certainty regarding the assigned/
interpreted crop type. In addition, independent val-
idation dataset was created as well. However, as the 
visual interpretation of crop types was highly time 
demanding, validation data were interpreted only for 
some years (1986, 1993, 2000, 2002, 2011, 2012). 
Selection of the reference years took into account two 
different aspect: 1) quality of the input imagery used 
for visual interpretation and 2) main phases of the 
economic development of Czechia (1986: late phase 
of the socialistic regime, 1993: beginning of economic 
transformation, restitutions and privatization of agri-
cultural land, 2000 and 2002: preparation for the EU 
membership, 2011, 2012: EU membership). For each 
validation year, between 400 and 500 parcels were 
analysed.

3.4 LAI time series generation

Successful determination of phenological and pro-
ductivity parameters from remote sensing imagery 
requires a relatively dense time series of observations. 
However, for the vast majority of the period of interest 

Fig. 3 Landsat tiles covering the territory of Czechia together with agroclimatic regions.
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between 1986 and 2020, only Landsat data are avail-
able, with a revisit time of 16 days. To overcome this 
problem, Landsat-derived LAI products were spatially 
aggregated based on agroclimatic regions (described 
in section 2), where each of the regions spans two or 
more Landsat tiles (Fig. 3). The key assumption was 
that climatic conditions play a fundamental role in the 
timing of the phenological cycle of vegetation.

Zonal median of LAI was calculated for each sin-
gle acquisition date of the source imagery and for all 
existing combination of agroclimatic region and crop. 
The number of dates for which aggregated LAI values 
are available is then considerably higher compared to 
the situation when LAI is considered locally (e.g. on 
parcel or point level).

3.5 Determination of crop phenological and 
productivity characteristics

Annual time series of the LAI values were filtered by 
the Savitzky-Golay filter as a first step to suppress 
influence of noise in the source data. In the next step, 
a radial basis function (RBF) was fitted to interpolate 
the LAI seasonal profile within a 1-day step. A ‘thresh-
old approach’ was then applied to extract phenologi-
cal (SOS, EOS, LOS, MAX_DOY) and productivity (SINT, 
LINT) parameters. The threshold approach uses a cer-
tain percentage of the annual LAI amplitude (i.e., the 
difference between the annual maximum and mini-
mum LAI) as a threshold to determine the timing of 
phenological phases.

In the case of our study, 25% of the LAI annual 
amplitude was set as the threshold value. Date, when 
LAI first reaches such threshold is then considered as 
the SOS date, whereas EOS date is then considered as 
the day when LAI drops below the threshold. The date 
of reaching the annual LAI maximum is MAX_DOY, the 

period between SOS and EOS is then considered as 
LOS. Smoothed and interpolated LAI profiles were 
also used for extraction of vegetation productivity 
indicators (small integral, SINT and large integral, 
LINT). Both of these indicators represent area under 
the LAI temporal curve. The difference is that the 
LINT takes into account full area under curve (i.e. 
above LAI = 0), whereas the SINT indicator takes into 
account only the area under curve above the baseline 
defined as the annual LAI minimum. The principle of 
determining phenological and productivity parame-
ters is shown in the diagram in Fig. 4. The described 
approach is used for example in case of TIMESAT soft-
ware (Eklundh and Jönsson 2015) which is applied 
for production of the High Resolution Vegetation Phe-
nology and Productivity (HR-VPP) products under 
the Copernicus Land Monitoring Service (CLMS). The 
SINT and LINT indicators show a strong correlation 
specifically with the SPROD (seasonal productivity) 
and TPROD (total productivity) parameters produced 
in the HR-VPP dataset.

The 35-year evolution of phenological and pro-
ductivity parameters was then examined using lin-
ear least squares regression. For each combination 
of a) climatic region, b) crop and c) phenological or 
productivity parameter, the slope of the regression 
line was calculated. The statistical significance of the 
trend was verified using the Wald test with the t-dis-
tribution of the test statistic. The Wald statistic results 
from dividing the regression coefficient by its corre-
sponding standard error; the null hypothesis states 
that the slope is equal to zero.

In order to compare the influence of the agrocli-
matic regions, the differences in slope values between 
regions were calculated for each LSP, productivity 
parameter and crop individually. To ensure consisten-
cy in the sign of the differences, the slope value corre-
sponding to the colder agroclimatic region was always 
subtracted from that corresponding to the warmer 
region. A Wilcoxon signed-rank test was used to test 
the null hypothesis that the median of  differences in 
slope values equals zero for six crops and six param-
eters (36 cases in total). Rejecting the null hypothesis 
indicated a systematic shift in the slope of the given 
combination of parameters and crops across the agro-
climatic regions.

4. Results

4.1 Crop classification accuracy assessment

Two raster layers (thematic crop map and probability 
map) were obtained for each year of the 1986–2015 
period as the output of the SVM classification mod-
el. These layers were further the subject of quality 
assessment based on a standardized validation work-
flow calculating class-related accuracy indicators 
(user’s and producer’s accuracy and F-1 score) as 

Fig. 4 Diagram illustrating the principle used to determine 
phenological and productivity parameters.
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well as the overall accuracy. For all validation years, 
the overall accuracy was higher than 80%. We expect 
similar accuracy characteristics for the rest of the 
years since the same crop classification workflow was 
applied there. The results of the crop classification 
accuracy assessment are shown in Tab. 3.

4.2 Aggregated LAI time series

The set of six plots in Fig. 5 shows examples of sea-
sonal time series for six crops of interest: 1) winter 
cereals, 2) spring cereals, 3) winter rapeseed, 4) fod-
der crops, 5) sugar beetroot and 6) corn derived by 
spatial aggregation of the original LAI layers within 
the extent of agro-climatic regions (data for the year 
2018 and agro-climatic region MT1 were used here). 
The original LAI values derived from the spectral 
information of the Landsat data (hollow circles) were 
smoothed using the Savitzky-golay filter (solid black 
dots) and, as a final step, interpolated with a 1-day 
step using the RBF function (black line). The quali-
ty of the created seasonal LAI time series is crucial 
for the correct determination of the phenological and 
productivity characteristics of the stand.

4.3 35-year development of phenology  
and productivity

Fig. 6 shows an example of the 35-year evolution of 
the six phenological and productivity parameters 

of interest (SOS, EOS, LOS, MAX_DOY, SINT and LINT) 
for winter cereals and climate region VT. Values for 
individual years were fitted with a regression line 
determined by the method of least squares for trend 
evaluation. The p-value determines the significance of 
the observed trend (in this case, the trend is signifi-
cant for parameters EOS and MAX_DOY).

The magnitude of the trend (slope of the regres-
sion line) of the 35-year evolution of the phenological 
and productivity parameters of interest is visualized 
in Fig. 7. The exact values together with their signif-
icance are then summarized in Appendix 1. Only a 
few significant trends were documented in the case 
of the phenological parameters SOS and LOS. Moreo-
ver, the variability of slope values was relatively high 
across crops and climatic regions. However, a signif-
icant negative trend occurred in the case of EOS and 
MAX-DOY phenological parameters in most climat-
ic regions of crops: winter cereals, spring cereals, 
winter rapeseed and fodder crops, i.e. all crops with 
the exception of the so-called summer crops (sugar 
beetroot and corn). Specifically, for EOS, a significant 
trend was demonstrated for winter cereals in 10, 
spring cereals in 7, winter rapeseed in 8 and fodder 
crops in 7 climate regions out of 10; for MAX-DOY 
there were 10 occurrences for winter cereals, 8 for 
spring cereals, 7 for winter rapeseed and 6 for fodder 
crops. The slope of the regression line (the magnitude 
of the trend) for the parameter MAX-DOY was in the 
range of −0.4 and −0.7 in 90% of significant cases. In 

Tab. 3 Crop classification accuracy assessment metrics (W.C. = winter cereals, S.C. = spring cereals, W.R. = winter rapeseed, F.C. = fodder crops, 
S.B. = sugar beetroot, C. = corn, OA = overall accuracy, UA = user’s accuracy, PA = producer’s accuracy, F1 = F-1 score).

Parameter W.C. S.C. W.R. F.C. S.B. C. OA

1986

UA 86.6 40.7 96.0 92.5 93.4 78.5
80.1

(n = 433)
PA 56.9 68.6 95.1 86.0 91.9 86.4

F1 68.6 51.1 95.6 89.1 92.7 82.3

1993

UA 96.2 92.3 100.0 100.0 75.9 97.2
93.3

(n = 434)
PA 100.0 96.0 98.1 100.0 96.9 60.3

F1 98.0 94.1 99.0 100.0 85.1 74.5

2000

UA 100.0 77.3 100.0 100.0 96.4 94.8
95.3

(n = 424)
PA 91.0 98.1 97.1 93.0 96.4 98.2

F1 95.3 86.4 98.5 96.4 96.4 96.5

2002

UA 96.7 72.9 97.4 100.0 87.8 94.1
92.2

(n = 503)
PA 87.3 94.4 99.1 93.8 93.5 84.2

F1 91.8 82.3 98.2 96.8 90.6 88.9

2011

UA 93.3 73.8 100.0 100.0 98.2 100.0
94.4

(n = 430)
PA 95.1 86.5 97.1 100.0 100.0 85.5

F1 94.2 79.6 98.5 100.0 99.1 92.2

2012

UA 75.4 96.7 96.7 97.5 97.4 69.7
85.4

(n = 397)
PA 98.0 56.9 89.0 92.9 67.9 95.8

F1 85.2 71.6 92.7 95.1 80.0 80.7
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Fig. 5 Example of the aggregated LAI time series for six crops of interest. The original retrieval value is shown by the hollow circles, the solid 
black dots represent the filtered values, and the values interpolated by the RBF function to a 1-day step are symbolized by the black line.

contrast, slope values varied more between crops in 
the EOS case. While for winter cereals, spring cereals 
and winter rapeseed, the slope was between −0.3 and 
−0.5 in 92% of significant cases, for the fodder crops 
the slope was between −0.7 and −1.6 in all significant 
cases.

In the case of productivity parameters, a signif-
icant trend in more than half of the climate regions 
occurred only for spring cereals and sugar beetroot 
SINT (8 and 6 occurrences out of 10, respectively).

Fig. 8 shows boxplots depicting the mean and dis-
persion statistics of the differences in LSP and pro-
ductivity parameter slope values between agroclimat-
ic regions for each crop. The null hypothesis revealed 

that the median difference was significant in 15 out of 
36 cases: six of these were positive and nine were neg-
ative. In the majority of cases, the slope values them-
selves were consistently either positive or negative 
for a given crop type and observed parameter (Fig. 7 
and Appendix 1). Therefore, a positive median differ-
ence indicates that the slope value decreases when 
moving from warmer to colder regions. This implies 
that shifts in the LSP and productivity parameters 
were more pronounced in warmer regions during the 
observed period, provided the slope values were both 
positive. Conversely, when both slopes were negative, 
stronger shifts in the observed parameters occurred 
in the colder regions.
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Fig. 6 Example for the 35-year evolution of SOS, EOS, LOS, MAX-DOY, SINT a LINT for winter cereals and climate region VT.

5. Discussion

5.1 Retrieval of LSP parameters

Different vegetation spectral indices such as NDVI or 
EVI are used for LSP due to their ease of calculation 
(Misra et al. 2020; Zhang et al. 2023). In accordance 
with (Lu et al. 2025), the choice of LAI can be sup-
ported by its biophysical relevance. By measuring 
the total leaf area per unit ground area, LAI directly 
reflects vegetation structure and function. It is closely 
linked to photosynthesis, transpiration, and carbon 
fluxes, making it a more meaningful physiological 

indicator than purely spectral indices. Moreover, LAI 
is more sensitive than NDVI to canopy development 
and senescence, particularly in areas with high veg-
etation. It provides a quantitative measure of vegeta-
tion growth stages, which is crucial for modeling eco-
system processes. Furthermore, significant progress 
has been made in recent years in retrieving LAI based 
on machine learning and radiative transfer models 
(Tomíček at al. 2021; Qin et al. 2024).

The accuracy of derived LAI with RMSE = 1.36 for 
spring cereals, RMSE = 2.38 for winter rapeseed, and 
RMSE < 1 for other crops (Tomíček et al. 2022) is 
comparable with other models. (Mourad et al. 2020) 
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Fig. 7 Slope of individual phenological and productivity parameters derived over all combinations of climatic regions and crops (W.C. = winter 
cereals, S.C. = spring cereals, W.R. = winter rapeseed, F.C. = fodder crops, S.B. = sugar beetroot, C. = corn).

evaluated empirical models for LAI derivation from 
NDVI, EVI2, and soil adjusted vegetation index (SAVI) 
as well as a biophysical model based on ANN embed-
ded to the ESA Sentinel Application Platform (SNAP) 
software applied on Snetinel-2 and HLS product. After 
comparison to in-situ measurement, the best models 
revealed RMSE between 0.65 and 0.89 for corns (bar-
ley and wheat). Similarly to our approach, Dhakar et 
al. (2021) conducted retrieval of wheat LAI by LUT-
based inversion of PROSAIL-5B model using atmos-
pherically corrected Landsat-8 OLI reflectance. They 
achieved a good agreement with the in-situ observed 
LAI having RMSE of 0.70.

Two main methods are often used to determine 
Land Surface Phenology (LPS) metrics from satel-
lite data: the threshold method (used for example 
in Timesat tool; Jönsson and Eklundh 2004) and 

the derivative method (used for example in HANTS 
workflow; Zhou et al. 2015). The threshold method 
determines phenological events (such as SOS or EOS) 
based on crossing a fixed level of the used variable 
(e.g. LAI) typically corresponding to a certain percent-
age of its seasonal maximum or seasonal amplitude. 
The threshold method is simple, intuitive and easy 
to implement. It is also more tolerant to presence of 
moderate noise in the input data if the thresholds are 
chosen properly. Another advantage can be also seen 
in its flexibility since the thresholds can be adjusted 
independently for different types of vegetation. On 
the contrary, the biggest disadvantages of this meth-
od include primarily its sensitivity to the thresh-
old choice when there is generally no exact clue on 
what percentage of the season maximum (or ampli-
tude) is appropriate to be considered as start/end of 
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Fig. 8 Statistics of differences in LSP and productivity parameters slope values between agroclimatic regions calculated  
for each crop. Significant cases are highlighted in bold.

the season (e.g. Huang et al. 2019). In addition, the 
threshold method is not very suitable for such case 
typical for flat phenological profiles (i.e. low seasonal 
amplitudes). It may also miss the full shape and com-
plexity of the phenological curve (this happen espe-
cially in cases where multiple growing season are 
present at the given place). In summary, the threshold 

method seems to be ideal for rapid applications or in 
cases when lower-quality of the data is expected on 
the input. The derivative method identifies phenolog-
ical events based on the rate of change in the input 
variable (e.g. LAI) typically by finding the inflection 
points using first derivative. Thus, there is no need to 
define any thresholds and the condition for detection 
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of the main phenological events (such as SOS and 
EOS) are there clearly defined. It is also better cap-
turing full dynamics of the phenological profile and 
thus it is more suitable in in cases typical for rapid LAI 
transitions (i.e. as a spring “green-up”). On the other 
hand, performance of the derivative method is high-
ly sensitive to noise in the input data and thus needs 
high quality and well-smoothed inputs (e.g. de Beurs 
and Henebry 2009). From implementation perspec-
tive, it is more complex (taking into account all the fit-
ting and smoothing steps before applying derivative) 
and maybe less intuitive compared to the threshold 
method.

5.2 Crop types classification and its accuracy

Knowledge of crop types and their spatial distribu-
tion was a crucial to the present study. As the infor-
mation from the LPIS/GSAA registry was unavailable 
before 2016, supervised classification based on quar-
terly cloud free mosaics of Landsat imagery was car-
ried out instead. A comparative study performed by 
(Pluto-Kossakowska 2021) showed that there are no 
significant differences in accuracy when utilizing dif-
ferent machine learning (ML) algorithms for the mul-
titemporal classification of satellite images for crop 
and arable land recognition. According to their find-
ings, the ANN classifiers perform just a few percent 
better than ML. Among ML algorithms, SVM and Ran-
dom Forest (RF) are commonly used. User’s accuracy 
achieved by our approach based on SVM algorithm is 
comparable to or outperforms the results collected by 
(Pluto-Kossakowska 2021) as shown in Tab. 4. (Van 
Tricht et al. 2023) developed an open-source system 
for global-scale, seasonal, and reproducible crop and 
irrigation mapping. Their classification approach is 
based on decision trees and Landsat and Sentinel-2 
imagery. They claim user’s (and producer’s) accura-
cy of 94 and 86 (78 and 76)% for cereals and corn, 
respectively. (Huang et al. 2022) focused on winter 
cereals in Europe between 2016 and 2020. They 
combined Landsat and Sentinel-2 imagery with Senti-
nel-1 SAR data in order to discriminate between win-
ter cereals and winter rapeseed. They implemented 
a time-weighted dynamic time warping (TWDTW) 
method, based on the comparison of seasonal chang-
es in NDVI with standard seasonal changes, as well 
as RF classification, achieving overall accuracies of 
91 and 81%, respectively. Specifically, in Czechia, 
they reached equal user’s and producer’s accuracies 
of 87% in discriminating winter cereals. Thus, the 

classification accuracy based on the SVM algorithm as 
applied in our study is among the best achieved using 
comparable methods on Landsat imagery.

5.3 Phenological and productivity trends and their 
relation to the crop types and climate regions

5.3.1 General trends of LSP and productivity 
parameters
Over the last 40 years, LSP has undergone changes 
that vary by climate region and fluctuate over time. 
Jeong et al. (2011) observed an increase in LOS of 
temperate vegetation in the Northern Hemisphere 
between 1982 and 2008. They based their results on 
analyzing NDVI derived from AVHRR and tempera-
tures. However, the SOS advance of 5.2 and 0.2 days 
and the EOS delay of 4.3 and 2.3 days differed between 
the 1982–1999 and 2000–2008 periods, respectively. 
Specifically in Europe, the delayed EOS of 8.2 days was 
more significant than the advanced SOS of 3.2 days 
in the latter period. Global LSP based on AVHRR and 
MODIS data from 1982 to 2010 was also studied by 
(Zhang et al. 2014). The seasonal vegetative trajec-
tory was derived from daily EVI across Köppen’s cli-
mate regions. The analysis showed that SOS generally 
shifted early in temperate, cold and polar climates in 
the Northern Hemisphere. However, areas with a sig-
nificantly earlier SOS decreased in number between 
2000 and 2010 compared to the period between 1982 
and 1999, and LOS also increased. Notably, the overall 
trends in Europe were generally insignificant. 

In our study, we calculated and analyzed trends 
in the six LSP and productivity characteristics of 
six crops over ten agroclimatic regions of Czechia 
between 1986 and 2020. Overall, there was no signif-
icant trend of SOS for the studied agricultural crops 
except for winter rapeseed in regions T3 and MCh. 
Nevertheless, there was a general trend towards ear-
lier SOS for most crops except for sugar beetroot and 
corn. On average, the shift was 1.1 day per decade for 
winter and spring cereals, and 2.1 day for winter rape-
seed and fodder crops. Similar SOS behavior of rainfed 
and irrigated crops was observed in Spain (Michavila 
et al. 2024). The later occurrence of SOS of corn, which 
has a later emergence, is in accordance with study 
carried out the Midwest of the United States (Zhang 
et al. 2019). The EOS trend was significant in a great-
er number of crops and agroclimatic regions, with an 
average shift of 5.6 days per decade for the four most 
significant crops. Contrary to the findings of (Jeong et 
al. 2011) but in accordance with those of (Michavila et 

Tab. 4 Average user’s accuracy (UA) achieved by SVM classification of Landsat images compared to accuracies reported for the same crops by 
(Pluto-Kossakowska, 2021). In the case of rapeseed and sugar beetroot only RF classification results were available in the reference literature.

Winter cereals Spring cereals Rapeseed Sugar beetroot Corn

UA our study % 91 76 98 92 89

UA P-K % 72 53 96 79 90
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al. 2024), this shift is negative, i.e. towards an earlier 
DOY. It should be noted that both Jeong et al. (2011) 
and Zhang et al. (2014) focused on vegetation in gen-
eral. The LSP parameters of agricultural crops are spe-
cific because, in addition to natural processes such as 
temperature, day length or precipitation, they are also 
determined by human management decisions such as 
the actual planting and harvest days, irrigation, ferti-
lization and pests and weed control (Bartošová et al. 
2025). Moreover, in the case of agricultural crops, the 
EOS does not represent the biological termination of 
the vegetation curve, as it does for natural vegetation. 
Instead, the senescence phase of the curve is artifi-
cially shortened by harvesting, with the harvest date 
primarily depending on the timing of crop maturity. 
Therefore, they are not fully comparable. Even when 
only agricultural plots are considered, the coarser res-
olution of MODIS or AVHRR causes slight changes to 
SOS and EOS trends due to the surrounding natural 
vegetation mixing with crops in the fragmented agri-
cultural landscape (Sisheber et al. 2023). 

In general, the significance of the LOS trend was 
low in our study. On average, it tended towards a 
shortening of 3.5 days per decade which is again con-
trary to the findings of Jeong et al. (2011). The short-
ening of LOS is mainly caused by the advance of EOS. 
The LAI maximum (MAX_DOY) trends show similar 
patterns of significance to those of EOS (Appendix 1). 
Also, its average advance of 5.5 days per decade for 
the four most significant crops is almost equal to the 
shift in EOS. On the other hand, the negative trends 
of the four LSP parameters discussed are in accord-
ance with predictions of changes in the time of sow-
ing, flowering and maturity of cereals in Europe due 
to climate change (Olesen et al. 2012)but also affect-
ed by day length and potential physiological stresses. 
Responses may vary between species and varieties. 
Climate change will affect the timing of cereal crop 
development, but exact changes will also depend on 
changes in varieties as affected by plant breeding and 
variety choices. This study aimed to assess chang-
es in timing of major phenological stages of cereal 
crops in Northern and Central Europe under climate 
change. Records on dates of sowing, flowering, and 
maturity of wheat, oats and maize were collected 
from field experiments conducted during the period 
1985–2009. Data for spring wheat and spring oats 
covered latitudes from 46 to 64°N, winter wheat from 
46 to 61°N, and maize from 47 to 58°N. The number of 
observations (site-year-variety combinations, given 
an average temperature increase of 0.35°C per decade 
in Czechia (Crhová et al. 2022.

Examining crop types, most significant trends in 
LSP parameters relate to winter and spring cereals, 
winter rapeseed, and fodder crops. All these crops 
show a trend of EOS and MAX_DOY advancement but 
they do not differ considerably across the agroclimatic 
regions except for fodder crops that exhibit the most 
pronounced trend, as well as greatest variability in 

EOS (Fig. 7). Fodder crops are harvested at least twice 
during the season (Springer and Aiken, 2015)theoret-
ical ethanol yield, crude protein (CP. The timing and 
frequency are determined by natural conditions, such 
as soil type, temperature and precipitation. However, 
they mainly depend on whether the crop is harvest-
ed for forage or seed. Thus, increasing temperatures 
might explain the advance in harvest and different 
management practices the higher variability.

The productivity parameters vary in terms of their 
signs and values. A significant increase in the SINT 
can be observed for spring cereals and for sugar beet-
root in 9 and 6 of the agroclimatic regions, respec-
tively. An opposite trend, though significant only in 
two warmest regions, is evident for fodder crops and 
winter cereals (with no significant cases). For the 
LINT parameter, significant trends appear mostly for 
non-cereals in warmer regions. Again, LINT trends 
are not significant for winter cereals, but they have an 
opposite sign, which can be interpreted as an increase 
in total LAI while the area above the seasonal baseline 
was decreasing (Fig. 4).

5.3.2 Relation of LSP and production parameters  
to agroclimatic regions
Evaluating the differences in the slopes of the LSP 
parameters between the agroclimatic regions 
revealed a significant dependence in one-third of the 
24 cases (i.e. four parameters times six crops), but 
this did not apply to cereals. The significant positive 
median slope differences in SOS and MAX_DOY for 
winter rapeseed indicate that the advance of SOS and 
MAX_DOY was higher in the colder regions, of around 
0.5 days per decade for both parameters. The other 
significant shifts (fodder crops – EOS and LOS; corn – 
EOS, LOS, and MAX_DOY; and winter rapeseed – LOS) 
exhibited negative median differences. These obser-
vations suggest that during the observed period, the 
advancement of the harvesting of fodder crops and 
corn and the shortening of the production season 
were larger in warmer regions than in colder ones. 
When interpreting the negative median difference in 
the MAX_DOY parameter for corn, the sign of the slope 
must be considered. While it shows slight advance-
ment in warmer regions, there is a trend towards later 
DOY in colder regions. This is consistent with the idea 
of using colder regions to grow crops that were previ-
ously only suitable for warmer regions, as discussed 
in relation to northern Europe, for example (Unc et 
al. 2021).

Bartošová et al. (2025) examined the relationship 
between elevation and the phenological phases of 
winter wheat. They analyzed in-situ observations of 
registered winter wheat cultivars at 17 experimen-
tal stations in Czechia between 1961 and 2021. The 
three stages evaluated were: i) jointing (first node 
at least 1 cm above the node); ii) heading (begin-
ning of heading); and iii) ripening (fully ripe, hard-
ened grains). The observations were grouped into 
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three elevation categories: 0–299 m, 300–499 m, and 
500–750 m above mean sea level (a.m.s.l.). The agro-
climatic regions used in our study cover a variety of 
elevations, as can be seen in Fig. 9. 

For purposes of comparison, we aggregated the 
agroclimatic regions and used the most suited slope 
values for winter cereals, since winter wheat domi-
nates this category. If the SOS is neglected, as it did 
not demonstrate a significant trend in our study, the 
MAX_DOY parameter exhibits a steeper negative slope 
of approximately 2.5 days per decade in the two lower 
elevation intervals and 1 day per decade in the highest 
interval, as shown in Table 5. The EOS shows a good 
fit with ripening, except in the high elevation interval 
where it indicates an advance to an earlier DOY of 1.7 
days per decade. Despite these slight differences, both 

types of observation indicate the same trend direction 
and magnitude. The reasons for these differences are: 
i) the parameters are defined differently, although 
they are closely related; ii) winter cereals also include 
other crops (e.g. winter barley and winter rye); iii) the 
start and therefore the length of the time series differ 
(1961–2021 vs. 1986–2020). Nevertheless, the over-
lap between the two studies is the greatest among 
existing literature in terms of research objectives, 
covered territory and crop type.

Regarding the productivity parameters, the sig-
nificant positive median slope differences in SINT 
for spring cereals and in LINT for winter and spring 
cereals indicate that these parameters increased 
more in warmer regions than in colder regions dur-
ing the observed period. Conversely, the significant 

Fig. 9 Median, minimum, and maximum elevation calculated within the agroclimatic regions.

Tab. 5 Comparison of trends in selected phenological parameters of winter cereals (winter wheat) in relation to elevation above mean sea 
level (a.m.s.l.). All parameters exhibited a significant trend, except SOS (in italics).

Elevation interval a.m.s.l.
AGC regions

Results Bartošová et al. (2025) LSP observations

Days per decade Days per decade

0–299 m
VT, T1–T3, MT3

jointing −4.5 SOS −0.8

heading −3.3 MAX_DOY −5.6

ripening −4.4 EOS −4.5

300–499 m
MT1, MT2, MT4

jointing −6.9 SOS −0.8

heading −3.6 MAX_DOY −6.2

ripening −4.8 EOS −4.2

> 500 m
MCH, CH

jointing −5.7 SOS −1.8

heading −4.0 MAX_DOY −5.1

ripening −3.3 EOS −5.0
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negative median for both SINT and LINT for fodder 
crops shows that productivity loss is smaller in colder 
regions during the observed period (as the slope is 
negative in the majority of agroclimatic regions).

Our first hypothesis was formulated as follows: 
“There are significant trends in LSP and productivity 
characteristics over the observed period.” The results 
of the present analysis partially confirmed this. EOS 
and MAX_DOY were the only two parameters with 
a significant negative trend; however, this was only 
observed for cereals, rapeseed and fodder crops. Our 
study thus confirmed the existence of LSP trends and 
their direction over the observed 35-year period. At 
the same time, however, it showed that despite a sig-
nificant trend in some LSP characteristics, the pro-
ductivity parameters revealed negligible significance. 
The LSP of agricultural crops differs and should be 
considered in regional studies on crop productivity 
(Lobell and Gourdji 2012), land use and land cover 
changes (Zhang et al. 2019), and the impacts of glob-
al change on agriculture (Brown et al. 2012; Yuan et 
al. 2024) and vice LSP feedback to global change (Liu 
et al. 2017). 

The results of the discussion also proved the valid-
ity of the second hypothesis: “Using high spatial reso-
lution Landsat data and knowledge of the distribution 
of specific crops will enable us to observe differences 
in LSP and productivity trends between agroclimatic 
regions”. Significant differences in trends in the LSP 
and productivity parameters were observed between 
the agroclimatic regions in 15 out of the 36 studied 
cases.

6. Conclusions

This study demonstrates the potential of long-term, 
high-resolution optical satellite data series for mon-
itoring and analyzing trends in crop phenology and 
productivity at a regional scale. Using a 35-year 
Landsat time series, we evaluated four key phenolog-
ical (SOS, EOS, LOS, MAX_DOY) and two productivi-
ty (SINT, LINT) parameters for six major crop types 
(winter cereals, spring cereals, winter rapeseed, fod-
der crops, sugar beetroot, and corn) in ten agro-cli-
matic regions in Czechia. The methodology combined 
robust ground-based LAI measurements, advanced 
radiative transfer modeling (PROSAIL), machine 
learning-based LAI retrieval, and supervised crop 
classification to calculate dense LAI time series for 
each climatic region and crop. The annual LAI time 
series were then smoothed using a Savitzky-Golay fil-
ter and interpolated with RBF to produce daily pro-
files, from which phenological (SOS, EOS, LOS, MAX_
DOY) and productivity (SINT, LINT) parameters were 
extracted using a threshold approach based on 25% 
of the annual LAI amplitude.

Accurate knowledge of crop types and their spatial 
distribution was essential for this study. Supervised 

classification of Landsat images using the SVM 
algorithm provided results with an overall accura-
cy of higher than 80% for all validated years. The 
achieved accuracy is comparable or better than other 
approaches in recent regional studies based on Land-
sat data. The phenology and productivity parameters 
in Czechia have shown different trends over the last 
four decades across climatic regions and crop types. 
While global vegetation studies often find a lengthen-
ing of the growing season due to earlier spring and lat-
er autumn, our analysis of six key crop types between 
1986 and 2020 in Czechia tends to show only a signif-
icant negative shift of EOS and MAX-DOY – especially 
for winter and spring cereals, winter rapeseed (up to 
−0.7 days/year) and fodder crops (up to −1.6 days/
year). For agricultural crops in general, EOS reflects 
the harvest date rather than natural senescence and is 
thus strongly related to MAX-DOY because the grow-
ing season is artificially terminated by harvest as the 
crop matures. Productivity trends varied by crop and 
climatic region, with SINT increasing significantly for 
spring cereals and sugar beetroot, while significant 
LINT trends were observed mainly for non-cereals 
in warmer regions. Approximately 40% of the crop 
and phenological/productivity parameter combina-
tions show significant differences in trends between 
agro-climatic regions, with the shift in SOS and MAX_
DOY for winter rapeseed occurring more rapidly in 
colder regions, while the shift in harvest dates and 
shortening of the season for corn and fodder crops 
is more pronounced in warmer regions. Compari-
son with phenological study based on altitude (Bar-
tošová et al. 2025) confirmed similar directions and 
magnitudes of trends for winter cereals. Productivi-
ty parameters (SINT and LINT) for cereals increased 
more in warmer regions, while losses in fodder crops 
productivity were less pronounced in colder regions.

The study was based entirely on satellite data, and, 
to the authors’ knowledge, it is unique in the level of 
detail of the performed analysis. In order to elaborate 
on differences in LSP and productivity trends between 
agroclimatic regions, detailed meteorological obser-
vations such as temperature and precipitation on a 
monthly or quarterly basis are necessary.
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Appendix 1 Trend slope values for individual phenological and productivity parameters derived over all combinations of climatic regions and 
crops of interest (W.C. = winter cereals, S.C. = spring cereals, W.R. = winter rapeseed, F.C. = fodder crops, S.B. = sugar beetroot, C. = corn). The 
slopes for SINT and LINT were calculated for values scaled by 0.0001. 

Crop 0:VT 1:T1 2:T2 3:T3 4:MT1 5:MT2 6:MT3 7:MT4 8:MT 9:MCH

Phenological parameters

SOS

W.C. −0.200 −0.100 −0.100 −0.100 −0.010 −0.068 0.040 −0.150 −0.190 −0.160

S.C. −0.300 −0.000 0.000 −0.100 −0.130 −0.500 −0.132 −0.053 0.020 −0.024

W.R. −0.200 −0.000 −0.300 −0.300 −0.100 −0.384 −0.175 −0.203 −0.320 −0.228

F.C. −0.200 0.030 −0.200 −0.300 −0.280 0.032 −0.056 −0.462 −0.210 −0.272

S.B. 0.060 0.100 0.000 −0.200 −0.170 −0.029 0.104 0.128 −0.030 0.016

C. 0.160 0.340 0.180 0.170 −0.090 0.298 0.293 0.242 0.396 0.114

EOS

W.C. −0.460 −0.370 −0.430 −0.600 −0.480 −0.410 −0.380 −0.370 −0.440 −0.550

S.C. −0.440 −0.350 −0.410 −0.420 −0.400 −0.280 −0.350 −0.480 −0.440 −0.270

W.R. −0.410 −0.270 −0.350 −0.480 −0.440 −0.440 −0.490 −0.380 −0.380 −0.250

F.C. −1.190 −1.630 −1.190 −0.750 −1.050 −0.740 −1.280 −0.810 −0.200 −1.140

S.B. 0.120 −0.570 −0.140 0.100 −0.150 0.040 −0.040 0.170 −0.300 0.030

C. −0.400 −0.650 −0.340 −0.210 −0.430 −0.130 0.080 −0.020 −0.190 −0.340

LOS

W.C. −0.300 −0.300 −0.300 −0.500 −0.480 −0.338 −0.422 −0.220 −0.240 −0.392

S.C. −0.200 −0.300 −0.400 −0.300 −0.270 0.220 −0.220 −0.425 −0.460 −0.248

W.R. −0.300 −0.200 −0.100 −0.100 −0.340 −0.053 −0.316 −0.180 −0.060 −0.026

F.C. −1.000 −1.700 −1.000 −0.400 −0.770 −0.770 −1.227 −0.346 0.008 −0.865

S.B. 0.060 −0.700 −0.100 0.280 0.025 0.069 −0.142 0.045 −0.270 0.017

C. −0.600 −1.000 −0.500 −0.400 −0.340 −0.425 −0.212 −0.266 −0.590 −0.450

MAX-DOY

W.C. −0.500 −0.500 −0.700 −0.700 −0.790 −0.599 −0.466 −0.457 −0.480 −0.536

S.C. −0.700 −0.600 −0.600 −0.400 −0.200 −0.669 −0.441 −0.525 −0.620 −0.624

W.R. −0.200 −0.600 −0.500 −0.500 −0.460 −0.595 −0.664 −0.659 −0.520 −0.515

F.C. −0.600 −0.800 −0.700 −0.400 −0.610 −0.563 −0.342 −0.610 −0.340 −0.860

S.B. −0.500 −0.300 −0.300 −0.400 −0.480 −0.765 −0.019 −0.357 −0.090 −0.272

C. −0.200 0.090 −0.400 −0.200 0.181 0.491 0.044 0.677 0.732 0.414

Productivity parameters

SINT

W.C. −0.129 −0.103 −0.169 −0.151 −0.160 −0.156 −0.174 −0.117 −0.163 −0.152

S.C. 0.273 0.295 0.304 0.316 0.304 0.297 0.236 0.167 0.152 0.254

W.R. −0.064 −0.006 0.091 0.050 −0.012 0.008 0.077 −0.039 −0.003 0.190

F.C. −0.379 −0.419 −0.299 −0.131 −0.236 −0.226 −0.185 −0.008 0.094 −0.165

S.B. 0.133 0.170 0.290 0.484 0.465 0.469 0.262 0.191 0.115 0.241

C. 0.041 0.050 0.056 0.036 0.153 0.092 0.077 0.101 −0.044 0.063

LINT

W.C. 0.123 0.172 0.101 0.160 0.158 0.071 0.084 0.102 0.033 0.018

S.C. 0.133 0.083 0.060 0.103 0.123 0.059 0.196 0.095 0.005 0.006

W.R. 0.205 0.272 0.246 0.297 0.259 0.110 0.133 0.145 0.070 0.162

F.C. −0.419 −0.511 −0.361 −0.369 −0.141 −0.306 −0.191 −0.299 −0.042 0.065

S.B. 0.016 −0.053 0.078 0.120 0.281 0.142 0.229 0.125 0.087 −0.053

C. −0.108 −0.237 −0.136 −0.125 −0.054 −0.118 −0.082 −0.068 −0.066 −0.163
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