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ABSTRACT
We give a combinatorial condition which is necessary for a �lter F to admit injec-
tive F-convergent sequences in βω. We also show that no analytic �lter F admits
an injective F-convergent sequence in βω. �is answers a question of T. Banakh,
V. Mychaylyuk and L. Zdomskyy.
Keywords: analytic �lter, meager �lter, �lter convergence, Rudin-Keisler ordering.

Introduction

It is well known that βω, the Čech-Stone compacti�cation of the natural numbers,
cannot contain convergent sequences.

On the other hand, if we generalize the notion of convergence to convergence with
respect to a �lter1, we have the following easy observation.

Observation. If X is a compact space and U is an ultra�lter, then any sequence in X
converges with respect to U .

Ultra�lters are very far from the Fréchet �lter which corresponds to the standard con-
vergence, so the above observation is not very surprising. What is surprising, however, is
that one can get very close — in the sense of category — to having convergent sequences
in every compact space. More precisely, the following (see [2]) is true:

�eorem (Banakh, Mychaylyuk, Zdomskyy). Any in�nite compact space contains an
injective sequence which converges with respect to some meager �lter.

In the cited paper the authors ask about the borderline between �lters F , which ad-
mit an injective F-convergent sequence in βω and those that don’t. In particular, they
ask, whether there is some analytic �lter and an injective sequence in βω which would
converge with respect to this �lter. Below we give a necessary condition for a �lter F to
admit an injectiveF-convergent sequence in βω. As a corollary we give a negative answer
to the above mentioned question by showing that no analytic �lter admits a convergent
sequence in βω.

1 Unfamiliar concepts used in this introduction will be de�ned below.
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1. Definitions

In this section we recall some basic de�nitions and facts. We �rst start by generalizing
the notion of a convergent sequence.

1.1 De�nition. If x̄ = ⟨xn ∶ n < ω⟩ ⊆ X is a sequence, we say that it is injective,
provided xn ≠ xk for n ≠ k. Given a �lter F on ω and x ∈ X we write

x = F − lim x̄

if for every neighbourhood U of x the set

{n ∶ xn ∈ U}
is an element of F . We say that x is an F-limit of the sequence x̄. If some injective
sequence x̄ ⊆ X has an F-limit in X, we say that F admits an F-convergent sequence
in X.

�e notion of a �lter limit in the case whenF is an ultra�lter was introduced in [3] in
the context of nonstandard analysis, the same notion for �lters was considered in [6, 1]
in the context of dynamical systems. See also [5].

1.2 Observation. If x = F − lim x̄ and A ⊆ ω is a positive (with respect to F ) set of
indices, i.e. A ∈ F+ = {X ⊆ ω ∶ ω ∖ X /∈ F}, then x ∈ {xn ∶ n ∈ A}.

We now turn to �lters (and ultra�lters) on ω.

1.3 De�nition. Recall, that a �lter on ω can be identi�ed with a subset of the Cantor
space P(ω). We thus say that a �lter is closed, meager, Fσ or analytic if it is such under
this identi�cation.

1.4De�nition ([7, 4] for ultra�lters). Given �ltersF ,Hwe say thatF isRudin-Keisler
above H if there is a function f ∶ ω → ω such that H = f∗(F) = {A ∶ f −1[A] ∈ F}. In
this case we write F ≥RK H.

1.5 Proposition. No analytic �lter is RK-above a nonprincipal ultra�lter.

Proof. First notice that if f ∶ ω → ω is a function, then the function f̄ ∶ 2ω → 2ω given
by f̄ (A) = f −1[A] is continuous. Now suppose F is analytic and that F is RK-above
some ultra�lter U as witnessed by f . �en, by de�nition, U = {A ∶ f̄ (A) ∈ F} = f̄ −1[F]
so U is a continuous preimage of an analytic set and hence is also analytic. Since analytic
sets have the Baire property (see e.g. [8], �eorem 29.5) while nonprinciple ultra�lters
cannot have the Baire property (see e.g. [8], Exercise 8.50), this implies thatU is principle.

�

We will also need the following de�nition/fact about βω

1.6 De�nition. �e space βω can be identi�ed with the set of ultra�lters on natural
numbers. �e base for the topology consists of (clopen) sets of the form Â for A ⊆ ω
where

Â = {p ∈ βω ∶ A ∈ p}.
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2. Main theorem

2.1 �eorem. If F is a �lter such that for any partition ⟨An ∶ n < ω⟩ of ω into sets not
inF there is a B ⊆ ω such that both⋃n∈B An and⋃n/∈B An areF-positive, then no injective
x̄ ⊆ βω has an F-limit.

Proof. Suppose that for each partition An of ω into sets not in F there is a B ⊆ ω so
that both ⋃n∈B An and ⋃n/∈B An are F-positive. Aiming towards a contradiction assume
there is some x̄ and p = F−lim x̄. Without loss of generality p /∈ x̄ Recursively pick yn ∈ x̄
and pairwise disjoint basic clopen neighbourhoods Ĉn of yn , with Cn ⊆ ω, such that no
Ĉn contains p and together they cover the sequence x̄. Let An = {k ∶ xk ∈ Ĉn}. �en
An /∈ F , since p /∈ Ĉn . By assumption we can �nd B ⊆ ω, such that both ⋃n∈B An and
⋃n/∈B An areF-positive. Since p is an ultra�lter it contains either⋃n∈B Cn or⋃n/∈B Cn . In
the former case, this contradicts the fact that set ⋃n/∈B An is F-positive, in the latter case
it contradicts the fact that the set ⋃n∈B An is F-positive. �

2.2 Corollary. No analytic �lter F admits an injective F-convergent sequence in βω.

Proof. Assume F admits an injective F-convergent sequence in βω. By theorem 2.1
there must be a partition ⟨An ∶ n < ω⟩ of ω into sets not in F such that for each B ⊆ ω
either ⋃n∈B An ∈ F or ⋃n/∈B An ∈ F . Let g(k) = min{n ∶ k ∈ An}. �en g shows that
F is RK-above the ultra�lter {B ∶ ⋃n∈B An ∈ F} so, by proposition 1.5, F cannot be
analytic. �

Note. Note that the fact we are talking about βω and not just any space without a
nontrivial convergent sequence is crucial here. �e following construction shows that
there are spaces without nontrivial convergent sequences which contain F-convergent
sequences even for some Fσδ �lters.

2.3 Proposition. If F is a P-�lter properly extending the Fréchet �lter then there is a
compact space X which contains an injective F-convergent sequence but does not contain
convergent sequences.

Proof. Let XF be the quotient space βω/H, for H = (⋂F∈F F
βω) ∖ ω and let z be the

point corresponding to H. �en XF is a compact space. We �rst show that XF contains
no injective convergent sequences. Let ⟨xn ∶ n < ω⟩ be an injective sequence in XF and
without loss of generality assume xn ≠ z. Notice that the sequence cannot converge to
a point in XF ∖ {z} (otherwise it would be a convergent sequence in βω). So, aiming
towards a contradiction, assume z = limn→∞ xn . Since xn /∈ H we can choose An ∈ F
such that An /∈ xn . Since F is a P-�lter, we can �nd a pseudointersection A ∈ F , i.e.
A ⊆∗ An for all n < ω. �en A is a neighbourhood of z which misses each xn — a
contradiction. So it remains to show that z = F − lim n (recall that ω ⊆ XF ), but this is
obvious. �

Note. �is construction only works for P-�lters. Indeed, if ⟨An ∶ n < ω⟩ are in�nite
disjoint subsets of ω and F is the �lter generated by co�nite sets and sets of the form
{B ∶ (∀∞n)(An ⊆ B)}, then in XF any sequence ⟨xn ∶ n < ω⟩ such that An ∈ xn will
converge to z. �is motivates the following question
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2.4 Question. Let F be a �lter properly extending the Fréchet �lter. Can we always
�nd a compact space X containing an injective F-convergent sequence but no convergent
sequence?

A�er reading the proof of theorem 2 in [2] one might well be tempted to ask:

2.5 Question. If F is RK-above a nonprincipal ultra�lter U , does it admit an injec-
tive F-convergent sequence in every compact space? Does it, at least, admit an injective
F-convergent sequence in βω.

We conjecture the answer to this question is yes however all our attempts at proving
this turned out to lead nowhere. Note that since a separable space is embeddable in ω∗ i�
it is extremally disconnected, to give a positive answer to the second question is equivalent
to building an ED topology on ω ∪ {p} such that p = F − lim n in this topology.
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