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ABSTRACT
�e motivation behind axiomatization of Branching continuations is present �rst.
�en semantics of Branching continuations are brie�y explained. �erea�er we give
a short introduction to the axiomatization of temporal logics. At the end we tackle
the question how to axiomatize Branching continuations and present some prelimi-
nary results and observations.
Keywords: branching space-time, branching continuations, axiom, syntax, tempo-
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1. Introduction

Branching continuations (BCont) is a temporal logic introduced by T. Placek in his arti-
cle [6]. It represents a descendant of the Branching time logics of A. Prior and its direct
predecessor is the so called Branching space-time logic (BST) from N. Belnap[1]. Al-
though BST was extensively studied since its introduction, there weren’t presented any
clear axioms of the theory neither in Hilbert-style, nor in Gentzen-style axioms. Every
account of this logic and its relatives is at most accompanied by a de�nition starting with
the words “Amodel of the theory of branching spacetime is a pairW = (W , ⩽) that satis-
�es the following axioms" followed by a list of conditions concerning the structure of the
model. �us some axioms are present but their syntactical form is hidden in plain sight
the same way asWally1 usually is. �is work presents a generally informal attempt to �nd
these hidden axioms of BCont and thereby externalize the debate on this topic from the
‘Prague dynamic group’2.

1 For those who are not familiar with Wally, it is a cartoon �gure used in childrens’ books. He is hidden in
a crowd and one must �nd him, which is not always easy. Although he has a quite unique appearance, the
reader is deceived by similarly dressed false bait. Please look for “Where’sWally?” for additional information
and pictures.

2 Many thanks go to O. Majer, M. Peliš and others that participated in the debates concerning the nature of
BCont and BST. Also my thanks must go to T. Placek and L. Wroński for comments on the paper.
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2. Branching continuations

�ere are two reasons why BCont is used for the �rst attempt to make an axiomatization
of branching spatiotemporalmodels derived fromBranching space-time. �e �rst reason
is that the language of BCont has operators that seem to be (almost) the same as those
encountered in tradictional temporal logics[8]. Belnap in [2] did introduce propositional
temporal language into BST. Hence one could attempt similar work with BST.

However, the second reason is that we want to stay close to the use of temporal no-
tions in natural language. Our everyday communication seems to favour expressions and
concepts closer to l-events from BCont than histories from BST. When speaking about
the future or about contrafactuals, our statements contain some reference events to point
to the context of our statement and then the main claim (as in: “As soon as I push this
button, the doors will open.” or “If I had won the lottery, I would have found true hap-
piness.”). �e maximality of histories in BST3 seems to be less in accord with our use of
language.

For these reasons, although a BST attempt might be easier, we have chosen BCont as
the starting point. Let us introduce the basic notions connected to BCont.

2.1 BCont structure

�e fundament of branching theories is (W , ⩽)whereW is a set of so called point-events
and ⩽ is their partial ordering.

De�nition 1 (Snake-link[6]4).
�e properties and basic de�nitions of snake-links:

(1) ⟨e1 , e2 , . . . , en , ⟩ ⊆W (1 ⩽ n) is a snake-link i�
∀i ∶ 0 < i < n → (ei ⩽ ei+1 ∨ ei+1 ⩽ ei)

(2) A snake-link is above (below) e ∈ W if every element of it is strictly above (below)
e.

(3) Let W ′ ⊆W and x , y ∈W ′. x and y are snake-linked inW ′ i� there is a snake-link
⟨e1 , e2 , . . . , en , ⟩ such that such that x = e1 and y = en and ei ∈ W ′ for every i ∶
0 < i ≤ n.

(4) For x , y ∈ W, x and y are snake-linked above e (x ≈e y), i� there is a snake-link
⟨e1 , e2 , . . . , en , ⟩ above e such that x = e1 and y = en.

Obviously the fourth de�nition is a special case of the third and can be altered for other
relations. �e relation ≈e is re�exive, symmetrical, and transitive, hence an equivalence
relation on the setWe = {e′ ∈W ∣e < e′}.

De�nition 2 (Set of possible continuations[6]).
Set of possible continuations of e (Πe ) is the partition of We induced by the relation ≈e .
∀e < x ∶ Πe ⟨x⟩ is the unique continuation of e to which the given x belongs.

3 �e de�nition of a history in BST is “h is a directed subset of W , and no proper superset of h has this
feature”[1]. May the reader forgive, but we do not have the space to fully introduce BST.

4 �e source of all cited results is placed next to the result’s name.
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De�nition 3 (Set CE of choice events[6]).
For e ∈W, e ∈ CE i� card(Πe) > 1.

De�nition 4 (Consistency[6]).
For e , e′ ∈ W, let there be We ∶= {x ∈ W ∣∀c(c ∈ CE ∧ c < e → c < x)} and a similar
for e′. �en e , e′ are consistent i� they are snake-linked within We ∪We′ . A set A ⊆W is
then consistent if every two elements of A are consistent. A set A is inconsistent i� it is not
consistent.

De�nition 5 (Large events, l-events[6]).
A ⊆W is an l-event i� A ≠ ∅ and A is consistent.

De�nition 6 (Model of BCont[6]).
A model of the theory of BCont is a pairW = (W , ⩽) that satis�es the following axioms:

(1) W is a non-empty set partially ordered by ⩽;
(2) the ordering ⩽ is dense on W;
(3) W has no maximal elements;
(4) every lower bounded chain C ⊆W has an in�mum;
(5) if a chain C ⊆W is upper bounded and C ≤ b, then there is a unique minimum in
{e ∈W ∣C ⩽ e ∧ e ⩽ b};

(6) for every x , y, e ∈W, if e /< x and e /< y, then x and y are snake-linked in the subset
We /⩽ ∶= {e′ ∈W ∣e /⩽ e′} of W;

(7) if x , y ∈ W and W⩽x y ∶= {e ∈W ∣e ⩽ x ∧ e ⩽ y} ≠ ∅, then W⩽x y has a maximal
element;

(8) for every x1 , x2 ∈ W, if ∀c ∶ c ∈ CE → c /< xi , then x1 , x2 are snake-linked in the
subset W/>CE ∶= {e ∈W ∣∀c ∈ CEe /> c} of W.

A large events is a consistent set of events. �is is close to the use of events in natural
language where possible futures are described by a set of events. For example, if we think
about a possible outcome of a sea battle, we can take an l-event A to be the set of sentences
such as { the weather is nice, the general of the red army slept well, the blue army had a
bad breakfast }. �ese sentences point out some possible futures.

As we see, these aren’t the syntactical axioms we are looking for. In search of lost
axioms, we need to address the following points: how do we understand the ‘axioms’ of
BCont, and how do we represent them in the language of BCont. We will compare these
structures with those given by priorean or modal formulae with hopes of �nding suitable
representations of our demands. In order to do so, we need to introduce also the language
of BCont.

2.2 BCont language

As a short reminder of the classical language of temporal logics, let us say that it consists
usually of four temporal operators added to classical propositional logic formulae. �ese
operators are based on themodal◻ and◇ operators. �emain di�erence being that they
are not limited to one direction of the accessibility relation. �us we get the operatorsH
and G being the past and future equivalent of ◻ and F, P as temporal equivalents of the
diamond. �ey are read in the following way:
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Fφ it will be the case that φ
Pφ it was the case that φ
Gφ it always will be that φ
Hφ it always was that φ

�e relation between these classical operators is similar as with their modal counter-
parts, e.g.: ¬H¬φ ≡ Pφ. �erefore we can add just two operators (H,G) to the language
of propositional logic and treat P, F as abbreviations. �ere is no simple relation between
the operators going into opposite directions of time. It is also possible to read the two
necessity operators as incorporating the present moment, e.g.: Hφ would mean ‘it always
was and is now that’ but we do not use this interpretation.

�e BCont language presented in [6], however, consists of the classical logical lan-
guage, the operator Sett ∶, the operator Now ∶, and the temporal operators Px , Fx . In
short, Pxφ means that x units of time in the past φ is true. Similarly for Fx . We see
that these are metric tense operators and thus their behaviour is di�erent from that of
the classical operators. �e operator Sett ∶ φ means that for all possible continuations
φ is true5. �e formula Now ∶ φ means that φ holds at some event contemporary to the
event of evaluation. We see that these operators slightly di�er from the classical temporal
operators.

Only the classical operator Fφ would be equivalent to a formula that is close to an
actual BCont formula, namely ∃xFxφ. We can take Sett ∶ as similar to ◻. We de�ne
Poss ∶ φ ≡ ¬Sett ∶ ¬φ in BCont, in other words it would be equivalent to ◇. �ere
remains Now ∶ φ, which does not have a simple equivalent in classical temporal logic.
We can observe that this exception is not a troubling one as Now ∶ can serve, to some
extent, a little bit as a nominal known from hybrid logic. �ese operators show to some
extent how BCont focuses on natural language phenomena.

�e inverse translation between the classical language of temporal logics and BCont,
however, still remains a challenge. �e language of BCont does not know any operator
that would be equivalent to the classical operators H,G. Even without introducing the
exact de�nition of Fx ,Px we could show that opposed to classical temporal operators
Fx ≡ ¬Gx¬ does not hold without some additional comments. �ese concerns will be
addressed a�er we introduce the de�nitions of BCont semantics.

We present the de�nition of point ful�lling a formula from the original BCont paper.
�at is in the form used for the so called BT+Instants-like semantics of BCont. �is is a
simple but su�cient way of capturing the general idea of our procedure. We recommend
[6] or [8] for more details about BCont semantics.

De�nition 7 (Evaluation points[6]).
LetG = ⟨W , X⟩ be a structure for language L, whereW = ⟨W , ≤, S⟩. �en ⟨e ,A⟩, written
as e/A, is an evaluation point inG for formulas of L i� {e} ∪ A ⊆W and A ≠ ∅.

De�nition 8 (S-t locations[6]).
We say that a model ⟨W , ≤⟩ of BCont has spatio-temporal locations i� there is a partition
S of W such that

5 In the original article the de�nition of Sett ∶ must be a little bit more complicated as it takes into account
the metric indicators of F and P. For our purpose we can omit this point at this moment.
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(1) For each l-event A and each s ∈ S, the intersection A ∩ s contains at most one
element;

(2) S respects the ordering ≤, that is, for all l-events A, B, and all s1 , s2 ∈ S, if all the
intersections A ∩ s1 ,A ∩ s2 , B ∩ s1 and B ∩ s2 are nonempty, and A ∩ s1 = A ∩ s2,
then B ∩ s1 = B ∩ s2;

(3) similarly for the strict ordering;
(4) if e1 ≤ e2 ≤ e3, then for every l-event A such that s (e1)∩A ≠ ∅ and s (e3)∩A ≠ ∅,

there is an l-event A′ such that A ⊆ A′ and s (e2) ∩ A ≠ ∅, where s (ei) stands for
a (unique) s ∈ S such that ei ∈ s;

(5) if L is a chain of choice events in ⟨W , ≤⟩ upper bounded by e0 and such that ∃s ∈
∈ S∀x ∈ L∃e ∈W ∶ (x < e ∧ s (e) = s), then ∃e∗ (e∗ ∈ ⋂x∈L Πx (e0) = s).

S is then called a set of s-t locations for ⟨W , ≤⟩.

De�nition 9 (Ordering of s-t locations[6]).
For s1 , s2 ∈ S, let s1 ≾ s2 i� ∃e1 , e2 (e1 ∈ s1 ∧ e2 ∈ s2 ∧ e1 ≤ e2).

De�nition 10 (Fan of evaluation points[6]).
LetG = ⟨W , X⟩ be a structure for L,W = ⟨W , ≤, S⟩, and e/A be an evaluation point inG
for L.

Two l-events A1 and A2 ofW are isomorphic instant-wise i�
∀e1 ∈ A1 ∃e2 ∈ A2 s(e1) = s(e2) and ∀e2 ∈ A2 ∃e1 ∈ A1 s(e1) = s(e2).

Fan of evaluation points determined by evaluation point e/A is e/A′ ∈ Fe/A, i� e/A’ is
an evaluation point inG and A and A’ are isomorphic instant-wise.

�e last thing we lack is a speci�c event, called the moment of use and denoted eC ,
and the interval relation given for a coordinalization X(both [6]):

int (e1 , e2 , t) i� X (s (e2)) − X (s (e1)) = t

We can now introduce the ful�llment clauses of BCont.

De�nition 11 (Point ful�ls formula [6]).
For given eC , e/Aand the modelM = ⟨G, I⟩, whereG is a given structure, and I is a given
interpretation, we de�ne:

(1) if ψ ∈ Atoms:M, eC , e/A∣≈ ψ i� e ∈ I (ϕ)
(2) if ψ is ¬φ ∶M, eC , e/A∣≈ ψ i� it is not the case thatM, eC , e/A∣≈ φ;
(3) for ∧,∨,→ also in the usual manner;
(4) if ψ is Fxφ for x > 0 ∶ M, eC , e/A∣≈ ψ i� there are e′ ∈ W and e∗ ∈ A such that

e′ ⩽ e∗ and int(e′ , e , x), andM, eC , e′/A∣≈ φ;
(5) if ψ is Pxφ, x > 0 ∶M, eC , e/A∣≈ ψ i� there is e′ ∈W such that

e′ ∪ A ∈ l-events and int(e′ , e , x) andM, eC , e′/A∣≈ φ;
(6) if ψ is Sett ∶ φ ∶M, eC , e/A∣≈ ψ i� for every evaluation point e/A′ from fan Fe/A

andM, eC , e/A′∣≈ φ;
(7) if ψ is Now ∶ φ ∶M, eC , e/A∣≈ ψ i� there is e′ ∈ s(eC) such that

e′ ∪ A ∈ l-events andM, eC , e′/A∣≈ φ.

Hence we see that the negation of any of the two operators does not yield the same re-
sult as the negations of the classical F,P. To some extent this is a desired property because
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the original operators H,G make reference to the whole structure while BCont seman-
tics always work with only localized notions. A simple negation of F,P is not satisfactory
either, because then ¬Fx¬φ ≡ Gxφ would mean that at the point x units in the future φ
holds. We will address this later by changing the operator G to something similar to Fx .

We suggest therefore a di�erent interpretation of the original de�nition. If Fxφ would
be read as “there is a event at most x units far in the future where φ holds”. �is reading
does not change the de�nition of Fx too much but it allows us to de�ne Gx via negation
and read as “there are events up to x units far in the future where φ holds”. �is was the
only operator in need of introduction or altering, so we present the de�nition of altered
ful�llement clauses for these operators in BT+Instants-like semantics of BCont.

De�nition 12 (F, G, P, H in BT+Instants-like semantics). For given eC , e/A and the
modelM = ⟨G, I⟩6 we de�ne:

● if ψ is Fxφ for x > 0 ∶M, eC , e/A∣≈ ψ i� there are e′ ∈W, e∗ ∈ A, and x′ ≤ x such
that e′ ⩽ e∗ and int(e′ , e , x′), andM, eC , e′/A∣≈ φ;
● if ψ is Pxφ, x > 0 ∶M, eC , e/A∣≈ ψ i� there is e′ ∈W and x′ ≤ x such that

e′ ∪ A ∈ l-events and int(e′ , e , x′) andM, eC , e′/A∣≈ φ;
● if ψ is Gxφ for x > 0 ∶M, eC , e/A∣≈ ψ i� for all e′ ∈ W, e∗ ∈ A, and x′ ≤ x such
that e′ ⩽ e∗ and int(e′ , e , x′),M, eC , e′/A∣≈ φ holds;
● if ψ is Hxφ, x > 0 ∶M, eC , e/A∣≈ ψ i� for all e′ ∈W and x′ ≤ x such that

e′ ∪ A ∈ l-events and int(e′ , e , x′),M, eC , e′/A∣≈ φ holds.

At this point we can part from BCont and see what possible tools we could use for
their axiomatization.

3. Time and axioms

�ere are multiple accounts of axioms of temporal logic. Most of them, however, are
concerned with linear temporal logic. �is can be useful to some limited extent also for
our purpose. We mainly use three sources for this part of the debate. Garson in his book
[5] gives a clear and vivid account of modal logics also with regards to temporal notions.
�e second helping hand comes from a source whose name already seems promising –
Axioms for branching time by Reynolds[7]. Although Reynolds focuses, as many others,
on the use of temporal logics in computer science his work remains a useful source of
inspiration. �ird but still of golden value is the account of Burgess[4] describing the
properties of temporal logics from a more philosophical perspective.

�e usual focus of temporal logics treats some form of linear temporal logic for the
purposes of computer science. We can borrow some ideas from these approaches but we
need to focus on branching structures. For this reasonwe introduce also a distinction that
is central to the topic of branching temporal logics. Past is always regarded as a settled
case with given truth values. Valuation of formulae that speak about the future, however,
presents two options. �e so called Ockhamist perspective claims that we need to specify
what possible course of events h we are speaking about and only then we can assign truth

6 As usualG is the structure and I the interpretation of the model.
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values. For a given event e and a course of events h, Fφ is true if sometime in the future
of e in h the sentence φ is true. �e other option is the Peircean view that claims that
we cannot assign truth values to future sentences, the exception being necessarily true
sentences. �e formula Fφ would be read as ‘for all possible h, φ is at some point true
in the future’. �is is a modal notion and one can make the distinction clearly visible by
introducing themodal operator◻ to symbolize this quanti�cation over the set of possible
h. Ockhamist logic can distinquish between the following three: for a given h, e Fφ, ◻Fφ,
◇Fφ. On the other hand it holds that ◻FOckhamistφ ≡ FPe irceanφ and hence Peircean
logic cannot make the same distinction. �is shows how modal notions can be naturally
introduced into temporal logic. We can quote the axioms of Prior’s Ockhamist branching
time logic (OBTL)7:

De�nition 13 (Axioms of OBTL[7]).
Let p, q be propositional atoms, � being a constant for false, φ,ψ formulae of the language
of temporal logics with modal operators, then the axioms are the following.

Inference rules of substitution, modus ponens, temporal and path generalization, and an
IRR-rule:

φ
φ[ψ/q]

φ, φ → ψ
ψ

φ
Gφ

φ
Hφ

φ
◻φ
(p ∧H¬p) → φ

φ
if p does not appear in φ.

�e following axioms:
L0: any propositional tautology
L1: G(φ → ψ) → (Gφ → Gψ) – distributivity
L2: Gφ → GGφ – transitivity
L3: φ → GPφ – converse
L4: Fφ → G(Fφ ∨ φ ∨ Pφ) – branch linearity

and the ’mirror images’ of L1 – L4 that means switching temporal operators for their duals
(e.g.: H with G). Followed by modal axioms of S5:

S1: ◻(φ → ψ) → (◻φ → ◻ψ) – distributivity
S2: ◻φ → ◻◻ φ – transitivity
S3: ◻φ → φ – re�exivity
S4: φ → ◻◇ φ – "B" axiom

and some axioms for the relation between operators:
HN1: p → ◻p – persistence on propositional atoms
HN2: ◻Hφ↔ H ◻ φ – non-branching past
HN3: P ◻ φ → ◻Pφ –
HN4: ◻Gφ → G ◻ φ –
HN5: G� → ◻G� – maximality of branches

�is example is also important because of Reynolds’ observation that the axioms are
soundwith regards to branching trees but they are not complete. He proved completeness
with regards to Kamp frames and bundled trees. It is not our aim to create new semantics
for BCont based on our attempt to �nd the appropriate axioms, hence we take this only
as an indication of the property of these axioms.

7 It is our convention to cite the origin of a given de�nition or theorem next to its name.
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However, the main importance of this example lays in the hybrid approach to branch-
ing time. We have temporal operators mainly capturing the relations in branches (or his-
tories from the BST vocabulary), i.e. capturing temporal relations. On the other hand we
havemodal operators that capture the possibilities or options, i.e. focusing not on tempo-
ral succession but on the consistency of two events. �is is well expressed by Garson[5]:

�e demand for an open future is really a demand for openness in what
is determined by the present, and should not be treated as a condition on the
structure of time. �ose who argue for an open “future” are really interested
in the structure of determination, not the structure of time. (pg. 103–4)

�is quote is worth remembering even out of our current context as it re�ects also
Belnap’s so called “indeterminism without choice” [1], i.e. that future events are deter-
mined also by events that are space-like related to our point of evaluation. Keeping in
mind that branching structures represent such studies of determinism, we can return to
BCont again.

4. BCont axioms

We return to the axioms mentioned in De�nition 6. Explaining some of the axioms is
straightforward. BCont asks for ⩽ to be a partial order. We know formulae that cap-
ture re�exivity ([∗]φ → φ) and transitivity ([∗]φ → [∗][∗]φ), where ∗ stands for some
temporal or modal operator and the brackets indicate if it’s a necessity or possibility op-
erator.8 However, there is no modal formula that would be able to capture antisymmetry.
A glimpse of hope comes from hybrid logic as it is able to describe antisymmetric struc-
tures thanks to its use of nominals[3] with c → ◻(◇c → c). �us our attention turns to
hybrid formulae. Obviously combining only the set of future (F,G) or past (P, H) tem-
poral operators is not su�cient as it would be equivalent to the use of modal operators
and thus futile. �is extends, however, even to the group as a whole. A troubling bisimi-
larity persists even with all six operators from Reynolds. Let us have two structures. �e
�rst is an in�nite line of events, where alternatively φ or ¬φ is true. �e second has two
distinct events with a symmetric accessibility relation between them and φ holds in one
event and ¬φ holds in the other. As one can easily see, these two are bisimilar. We would
need something as nominals from hybrid logic in order to distinguish between those two
structures and we see later that BCont’s language can give us such tools and we attempt
to �nd an axiom capturing antisymmetry later.

�ankfully formulae can quite easily capture density, the second property mentioned
in the De�nition 6. �e formula for density is [∗][∗]φ → [∗]φ.

In order to capture that there is no maximal point we could refer to the negation of
the formula G� → FG�mentioned by Venema[9]. Venema’s formula claims that there is
a maximal point and although it was meant for linear temporal models, we could use it
to describe our “temporal” part. A similar purpose is ful�lled also by the formula G� →

8 We need to substitute the symbol ∗ for operators from the language of BCont in order to investigate the
�nal form of the axioms. At this moment this notation is su�cient.
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→ ◻G� from De�nition 13. Our preference, however, lays with Gφ → Fφ from [4]. �is
formula might be also laden with the burden of being meant for linear �ows of time but
it does not introduce a new symbol into our language.

�e following two axioms, the fourth and ��h, are of a particular nature. �ey speak
about the structure with respect to chains of events. So far we did not manage to �nd a
way how to work with propositional formulae in order to speak about subsets of point
events with speci�c properties nor how these chain properties could be described in the
context of the whole structure.

�e sixth axiom tells us that every event has atmost one antinuation (or in other words
there is no branching towards the past). �is is captured by one of the Reynolds’ formulae,
namely HN2: ◻Hφ↔ H ◻ φ.

Axiomnumber seven uses the notion of a choice point. �at should be a point allowing
to distinquish at least two possible and distinct futures. Although we can capture the
existence of two distinct futures by sentences such as ◇Gφ ∧ ◇G¬φ. However, in this
case we are speaking only about a speci�c type of distinct possibilities and for example
eliminates the possibility of alternating valuations. We postpone further attempts until
we �nd a formal tool capable of handling the idea of choice points.

We see that �nding equivalents to the original BCont axioms encounters some signif-
icant di�culties.

At this pointwe can attempt to formulate the axioms in the language of BCont. �e�rst
axiom of BCont was composed of multiple demands. In the language of BCont re�exivity
would be represented with Sett ∶ φ → φ. In this way we do capture the demanded
re�exivity of the relation without risking re�exive temporal relations.9

Transitivity is already a property common to both views, hence we could use the form
[∗]φ → [∗][∗]φ, where [∗] ∈ {Hx ,Gx , Sett ∶}.10 �is axiom, however, won’t have the
same meaning as in 13 as we use the limited reach temporal operators of BCont. While
the classical operators are not limited in their reach per se, their BCont versions speak
only about a limited part of the structure. We can reformulate the axiom schema for
the temporal operators as [∗]xφ → [∗]y[∗]zφ, where y + z ≤ x. In other words the
antecedent tells us on what scale it “guarantees" that a limited form of transitivity works,
see Example 14.

Example 14. Let H5φ. �is means 5 units or less in the future φ is true. �erefore
sentences like H1H2φ → H3φ or H3H1φ → H4φ are true also. We see that the antecedent
not only sets an upper bound on the sum of the spans of the iterated operators.

Earlier antisymmetry presented a great problem and we promised an attempt to solve
it by using the language of BCont. However, our attempts face similar problems as were
present in the previous section. We could bene�t either from the nature of the BCont
temporal operators or from the new operator Now ∶. �ese operators do not end up being

9 Looking at it from a partly semantic viewpoint, take the De�nition 11 we see that if Sett ∶ φ holds for an
event e/A as we can have a l-event A = e. �erefore also φ would hold in e as every l-event A′ that is
isomorphic instant-wise to A is equal to e. �e use of the Sett ∶ operator allows us not to rely only on
temporal operators like Fx or Px and hence does allow us to elude the risk of a closed time-like curve.

10 In the following parts ∗ ful�lls the same role as earlier. If we use a subscript it merely serves to point out
some limitations for operators with subscripts. For example, [∗]x could be replaced withHx or Gx .
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that helpful as we would hope. Our attempts fail on the fact that all the operators speak
only about relations but cannot �x a world in the same way as nominals do in hybrid
logic. We can see that in the example 15.

Example 15. Let us have the sentence φ → Sett ∶ (Poss ∶ φ → φ) inspired by the hybrid
logic formula for antisymmetry11. �is sentence, however, holds also in the model with two
events e1,e2, which are connected with a symmetric accessibility relation and where φ holds
in both of them and some ψ does hold in one of the events but does not hold in the other. �e
same counterexample applies if we add the Now ∶ operator and try to use Now ∶ φ → Sett ∶
(Poss ∶ φ → φ) and even if we add one more Now ∶ φ → Sett ∶ (Poss ∶ φ → Now ∶ φ).

Density is primarily a property of determination but also of time, therefore [∗][∗]φ →
→ [∗]φ could stay as a schema for this axiom with the addition of BCont operators
[∗]y[∗]xφ → [∗]xφ.

Example 16. Let there be a linear model where GyGxφ → Gxφ holds. We see that
if GyGxφ holds in a event, this claims that in the event itself and in y succeeding events
Gxφ holds also. Similarly as before, Gy represents a kind of “guaranteed" size for the given
sentence.

�e lack of maximal points was captured with the formula Gφ → Fφ. Suddenly the
limited scope of our operators presents a possible obstacle. We cannot useGxφ → Fx+1φ
because thenwewould rule out alternating values of φ. �ankfully we do not need to look
beyond the guarantees ofGx . We can useGxφ → Fxφ. It is ful�lled also in structures with
maximal points when we choose x correctly but it fails for arbitrary x. IfGxφ encounters
the end of a branch, however, this formula still holds but the succedent of the schema
won’t hold because there is no point e′ demanded by De�nition 12. Hence the structure
cannot have maximal points.

Example 17. Let there be a linear model with a maximal point e and let us assume that
the schema holds in it and φ holds in e. For the last, i.e. maximal, point of the model we
clearly see that the sentence G1φ → F1φ does not hold as F1φ demands for a point that is in
the future and is distinct from e (based on the fact that for some point e′ int(e , e′ , 1) should
hold but our model does not have such a point for e).

�e operators Gx and Hx represent in BT+Instants-like semantics chains, hence we
could come up with the idea to use them to interpret the fourth and ��h axiom. �is
property is limited to these semantics, thus axioms based on it would not be complete
with regards to other semantics (for example BCont+generalized �ow of time semantics).
However, unless we start using some �rst-order or probably even second-order language,
supremum or in�mum still remain out of our reach.

�e original sixth axiom translation into logic was Reynolds’ axiom HN2: ◻Hφ ↔
↔ H ◻ φ. Similarly as with the no-maximal points axiom, our BCont operators can
guarantee us only a limited view of the structure. Nonetheless, they can still maintain the
demanded property on this limited �eld of view. �us we can reformulate the axiom as
Sett ∶ Hxφ↔ Hx Sett ∶ φ.

11 �e original formula is @i ◻ (◇i → i)
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We le� the investigation of the seventh axiom hoping to �nd some way how to express
that there is a choice point. BCont does give us some new tools that can describe some
properties important for the characterization of a choice point. For example, Poss ∶ F1φ∧
∧ Poss ∶ F1¬φ brings us one step closer to a choice point as it shows two possible but
distinct futures, but a choice point has to be maximal in the set of common past points of
the two possibilities (which from the perspective of this formula means that the subscript
should be limitely close to zero). Hence we can capture the existence of two distinct
futures but not the fact that there is a choice point between them for similar reasons as
we could not formalize the suprema and in�ma of two previous axioms.

�e �nal form our axiom number eight took was◻Hφ↔ H◻φ → Hp∨PHp. We saw
already the localized version of axiom six and we can actually use a similar localization
for this axiom. �e �nal axiom being Sett ∶ Hxφ↔ Hx Sett ∶ φ → Hx p ∨ PyHx p.

Let us sum up the result with regards to the BCont structure from [6] mentioning all
our �nal ideas.

Summary 18 (Hilbert-style Axioms of BCont).
Axiom L of hybrid temporal logic L BCont
1
Re�exivity [∗]φ → φ Sett ∶ φ → φ
Transitivity [∗]φ → [∗][∗]φ [∗]xφ → [∗]y[∗]zφ with y + z ≤ x

◻φ → ◻◻ φ
Antisymmetry None found None found
2 [∗][∗]φ → [∗]φ ◻ ◻ φ → ◻φ

[∗]y[∗]xφ → [∗]xφ
3 Gφ → Fφ Gxφ → Fxφ
4 None found None found
5 None found None found
6 ◻Hφ↔ H ◻ φ Sett ∶ Hxφ↔ Hx Sett ∶ φ
7 None found None found
8 Ax6→ Hp ∨ PHp Ax6→ Hx p ∨ PyHx p

We see that there are properties we did not manage to capture in our Hilbert-style
axioms. Wemanaged, however, to do some observations concerning the way how BCont
could be axiomatized.

5. Summary

Branching continuations were always presented without any classical axiomatic sys-
tem that would be based on axioms or inference rules. Although there never existed any
explicit reasoning why it is done so, we have shown in this article a few reasons why
it seems reasonable to use the original BCont approach. �e structures demanded for
Branching continuations have some properties that are di�cult to transform into tem-
poral formulae. Namely the structure demands antisymmetry of its accessibility relation,
which is usually a di�cult property tomodel usingmodal logic, some properties demand
notions and concepts not present in the language of the logic, for example references to
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chains or choice events. We managed to translate some of the BCont “axioms” into tem-
poral propositional formulae and we suggested a translation of formulae (and operators)
from classical temporal logic to BCont. We also suggested a new interpretation of the op-
erators Fx ,Px in order to accomodate in BCont a version of the temporal box operators
G,H. However, we did not arrive to a axiomatic system for BCont as we did not man-
age to capture some of the properties demanded of the structure via any propositional
temporal formulae. It remains an open question if those demands can be formalized in
temporal formulae altogether and what will be the properties of the resulting axiomatic
system if there even is one. �is paper also focused only on axioms and has le� the ques-
tion of inference rules aside for a while. It seems that BCont’s Wally axioms remain still
hidden and probably in a group of higher order temporal formulae. However, the trick
to �nd them could be to use di�erent goggles from the original BCont ones. We could
for example take l-events as primitives (keeping in mind that a trivial l-event is a single
point event) and start working with the theory in a similar way as with set theory. �is
switch of perspective could be all that is needed. As mentioned earlier, l-events seem to
re�ect to a great extent how people usually speak about time, where a multitude of events
or circumstances make up the context of evaluation or use. Because BCont pays homage
also to our natural use of temporal language and concepts, this shi� seems as a natural
thing to do.
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