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ABSTRACT
�is paper deals with intuitionistic logic and completeness of Gentzen calculus with
respect to its semantics. We present a rather simple proof for the case where the
language is at most countable but may contain function symbols.
Keywords: completeness, Gentzen calculus, intuitionistic predicate logic, tree proof,
saturated sequent.

1. Introduction

Completeness theorems for intuitionistic predicate logic with respect to Kripke se-
mantics are o�en formulated with an additional assumption that the language is at most
countable or that it contains no function symbols (or both). For example, van Dalen’s
chapter in the Handbook of Philosophical Logic [2] contains a completeness proof of
Hilbert calculus where both the additional conditions are in place. Takeuti’s book [4]
contains a proof for Gentzen calculus for the case where the language has arbitrary car-
dinality, but the absence of function symbols is still assumed.

We will show a completeness proof for the Gentzen calculus which could be seen as
complementary to Takeuti’s. We assume that the language is at most countable, but we
do admit function symbols. Our proof is inspired by ideas in [4] and [2]. However, we
elaborate some details omitted in [2]. In particular, the concept of levels of nodes in a
Kripke model, see below, seems to be helpful. We treat terms more or less like Buss in [1],
where, in the Introduction, a proof of completeness of Gentzen calculus with respect to
semantics of classical logic is given. Our proof is based on the author’s master’s thesis [5]
and uses also some ideas from Section 5.1 in the book [3]. Construction of universes of
nodes of Kripke model and treatment of variables is inspired by [2].

2. Completeness

�e formulas we consider may contain function and predicate symbols from a �xed
countable language L, and variables from a �xed countable set. Formulas of the language
L may contain logical connectives →, &, ∨, ¬ and quanti�ers ∀ and ∃. �e equivalence
connective↔ is not a basic symbol for us. We consider sequent calculus almost the same
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as in [4]. It is a multi-succedent calculus where succedents can contain more than one
formula, but the rules for introducing→,¬ and∀ to succedent do not allow side formulas.
So a�er using any of these rules the succedent contains exactly one formula.�e rest of the
rules can have side formulas.�e sequent is a pair of �nite sets of formulas, not sequences
in contrast to Takeuti, thus we do have the weakening rule, but there are no contractions
and exchanges. We start with a �nite sequent ⟨Σ⇒ Ω⟩, which is not provable in a theory
T , and proceed to a semantic counter-example. Wewant to construct a semantic counter-
example to provability of the sequent ⟨Σ⇒ Ω⟩ in T , which means a Kripke model and
its node is such that, in that node, some evaluation of variables satis�es all formulas in
Σ∪T , but violates all formulas in Ω. Without loss of generality, we assume that no variable
simultaneously has free and bound occurrences in Σ ∪Ω and T . �e set T contains only
sentences and can be in�nite. We �x a countable set of variables Var0 which contains all
free variables from Σ ∪ Ω and contains in�nitelymany other variables which are not used
anywhere. Moreover the set Var0 does not contain bound variables from Σ∪Ω and T . As
common in completeness proofs, we build a semantic counter-example from syntactical
objects we deal with. We need in�nite sequents in the construction and thus we have to
extend the de�nition of provability to in�nite sequents. Our proof does not use Henkin
constants and our language L never varies. What varies, however is the set of admissible
(free) variables. So we will have to be careful about which variables are allowed at which
stage of the construction.

De�nition 1. A sequent ⟨Γ⇒ ∆⟩ is provable in in�nite sense if there are Γ′ ⊆ Γ and
∆′ ⊆ ∆ such that Γ′ and ∆′ are �nite and the sequent ⟨Γ′ ⇒ ∆′⟩ is provable in intuitionistic
logic.

Note that, by this de�nition, the sequent ⟨Σ, T ⇒ Ω⟩ is unprovable. At �rst we de�ne
the notion of saturated sequent. We say that t is a term over a set Var if all variables of t
are in Var. Similarly, we say that φ is a formula over a set Var if all free variables of φ are
in Var. We have no other bound variables than those that appear in Σ ∪Ω and T .

De�nition 2. An (in�nite) sequent ⟨Γ⇒ ∆⟩ is saturated with respect to a set Var if
all formulas in Γ and ∆ are formulas over the set Var and the following conditions are
satis�ed:

● if φ&ψ ∈ Γ then φ ∈ Γ and ψ ∈ Γ,
● if φ ∨ ψ ∈ ∆ then φ ∈ ∆ and ψ ∈ ∆,
● if φ ∨ ψ ∈ Γ then φ ∈ Γ or ψ ∈ Γ,
● if φ&ψ ∈ ∆ then φ ∈ ∆ or ψ ∈ ∆,
● if φ → ψ ∈ Γ then ψ ∈ Γ or φ ∈ ∆,
● if ¬ψ ∈ Γ then ψ ∈ ∆,
● if ∃xψ ∈ Γ then there exists a variable y ∈ Var which is not free in Γ and ∆ and
such that ψx(y) ∈ Γ,
● if ∃xψ ∈ ∆ then ψx(t) ∈ ∆ for all terms t over the set Var,
● if ∀xψ ∈ Γ then ψx(t) ∈ Γ for all terms t over the set Var.

Remark 1. Nothing is stated about→,¬,∀ in ∆.
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Remark 2. Whenever we apply this de�nition, the set Var will contain no variable
bound in Γ ∪ ∆. �en it will be guaranteed that the term t and the variable y in the last
three conditions are substitutable for x in φ.

Lemma 1. Let a sequent ⟨Γ⇒ ∆⟩ (potentially in�nite) be unprovable and the set Var
contain all free variables in ⟨Γ⇒ ∆⟩ and no bound variable from ⟨Γ⇒ ∆⟩. Var contain
in�nitely many variables which do not occur in Γ ∪ ∆. �en there exists an unprovable
sequent ⟨Π⇒ Λ⟩ which is saturated with respect to the set Var and such that Γ ⊆ Π and
∆ ⊆ Λ and Π and Λ are created only from substitutional instances of subformulas of the
formulas in Γ and ∆.

Proof. Let [φ i , t j] be an enumeration of all pairs where φ i is a formula over the lan-
guage L with all free variables over the set Var and t j is a term over the set L with all free
variables over the setVar. Likewise, we enumerate all terms over the setVar as t0, t1 , t2 , . . ..
We enumerate all pairs [φ i , t j] by a diagonal enumeration such that every pair is in�n-
itely repeated. In each stage of the construction we consider one such pair. We proceed
in stages and construct sets Γn and ∆n . At the beginning we put Γ0 = Γ, ∆0 = ∆. In stage
n we already have Γn and ∆n . Treat the n-th pair [φ i , t j] and construct the sets Γn+1 and
∆n+1. Note that, by unprovability of ⟨Γ⇒ ∆⟩, φ i cannot be both in Γn and in ∆n because
of the property of unprovability of sequent ⟨Γn ⇒ ∆n⟩.

For φ i ∉ Γn ∪ ∆n we put Γn+1 = Γn and ∆n+1 = ∆n .
For φ i ∈ Γn we do:
● if φ i = ψ&χ then Γn+1 = Γn ∪ {ψ, χ} and ∆n+1 = ∆n ,
● if φ i = ψ ∨ χ then

Γn+1 =
⎧⎪⎪
⎨
⎪⎪⎩

Γn ∪ {ψ} if ⟨Γn ,ψ⇒ ∆n⟩ is unprovable
Γn ∪ {χ} otherwise

and ∆n+1 = ∆n . Recall, that Γn ∪ {ψ} or Γn ∪ {χ}must preserve the property of
unprovability. We know that if the sequent ⟨Γn ,ψ ∨ χ⇒ ∆n⟩ is unprovable, then
one of the sequents ⟨Γn ,ψ⇒ ∆n⟩, ⟨Γn , χ⇒ ∆n⟩ will have to be unprovable from
the de�nition,
● if φ i = ψ → χ then
⎧⎪⎪
⎨
⎪⎪⎩

Γn+1 = Γn ∪ {χ}, ∆n+1 = ∆n if ⟨Γn , χ⇒ ∆n⟩ is unprovable
∆n+1 = ∆n ∪ {ψ} , Γn+1 = Γn otherwise

● if φ i = ¬ψ then ∆n+1 = ∆n ∪ {ψ} and Γn+1 = Γn ,
● if φ i = ∃xψ then Γn+1 = Γn ∪ {ψx(y)}, where y ∈ Var is chosen so that y is not
free in ∆n and Γn , and ∆n+1 = ∆n ,
● if φ i = ∀xψ then Γn+1 = Γn ∪ {ψx(t j)} for term t j and ∆n+1 = ∆n .

For φ i ∈ ∆n we do:
● if φ i = ψ&χ then

∆n+1 =

⎧⎪⎪
⎨
⎪⎪⎩

∆n ∪ {ψ} if ⟨Γn ⇒ ∆n ,ψ⟩ is unprovable
∆n ∪ {χ} otherwise

and Γn+1 = Γn ,
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● if φ i = ψ ∨ χ then ∆n+1 = ∆n ∪ {ψ, χ} and Γn+1 = Γn ,
● if φ i = ∃xψ then ∆n+1 = ∆n ∪ {ψx(t j)} for term t j and Γn+1 = Γn ,
● if φ i is an implication, negation or a universally quanti�ed formula, we put Γn+1 =
= Γn and ∆n+1 = ∆n .

Π =
∞
⋃
n=0

Γn and Λ =
∞
⋃
n=0

∆n .

�e sequent ⟨Π⇒ Λ⟩ is unprovable and saturated with respect to the set Var due
to the construction.

�

Now, we construct the desired Kripke model and we show that the model has the
required properties. �e idea of the model is the same as in [1]. First we de�ne sets
Vari . Recall, that the set Var0 is an in�nite countable set of variables. It contains all
free variables from Γ and ∆, but does not contain bound variables from Γ, ∆ and T and
contains in�nitely many other variables. Vark , Var j are �xed as in�nite countable sets
disjoint with Var0 which do not contain any bound variables from Γ, ∆ and T and ∀k, j ∈
∈ N, k ≠ j Var j and Vark are disjoint.

We take unprovable saturated sequents with respect to the set⋃i
k=0 Vark on the level i.

�ose sequents we write [⟨Γ⇒ ∆⟩ , i] and these pairs are worlds (nodes) in constructed
Kripke model. We construct [⟨Π⇒ Λ⟩ , 0] an unprovable saturated sequent to the se-
quent ⟨Γ, T ⇒ ∆⟩ according to the Lemma 1. Kripke model is not empty because we
have a sequent ⟨Π⇒ Λ⟩ on the level 0, which is saturated with respect to the set Var0
and this sequent is over the set ⟨Γ, T ⇒ ∆⟩. �e model is denoted by K = ⟨W , ≤, ρ⟩,
where ρ assigns elements ofW structures. �e accessibility relation is de�ned as follows:

[⟨Γ⇒ ∆⟩ , i] ≤ [⟨Γ1 ⇒ ∆1⟩ , j]⇔ Γ ⊆ Γ1&i ≤ j.

�is relation is quasi ordering. �e accessible universe is always bigger or equal to
the starting universe due to the condition i ≤ j. Realization of function symbols in the
structureD on the level i is de�ned: FD(t1 , . . . , tn) is the term F(t1 , . . . , tn).�e universe
on the level i+1 is potentially bigger than the universe on the level i, hence the realization
which was inD on the level i is preserved. We de�ne the realization of predicate symbols
in the structureD on the level i belongs to the node [⟨Γ⇒ ∆⟩ , i]:

PD = {[t1 , . . . , tn] ; t1 , . . . , tn terms over ⋃i
k=0 Vark and P(t1 , . . . , tn) ∈ Γ } .

Lemma 2. Let s be a term, D be a structure on the level i and terms t1 , . . . , tn be built
from variables over the set ⋃i

k=0 Vark . �en sD [t1 , . . . , tn] = s (t1 , . . . , tn).

Proof. �e prove is the induction on the complexity of the term. Square brackets des-
ignate valuation of variables and round brackets designate substitution. If s is a variable,
then sD[t1 , . . . , tn] = (t1 , . . . , tn)(s) = t j which is the same that we appoint t j instead of
x j . �e �rst equality is from Tarski’s de�nition. If s is F (s1 , . . . , sk), then

(F(s1 , . . . , sk))D[t1 , . . . , tn] = r(F)(sD1 [t1 , . . . , tn], . . . , s
D
k [t1 , . . . , tn]).

�e function r is de�ned for the structureD in the L such that r(F) is an n-ary oper-
ation on the set D (function from Dn to the D), hence the element r(F) is realization of
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function F in the structureD. We will give terms t j to separately terms what is the same
as give terms at the same time (due to the induction assumption), hence we will obtain:

r(F)(sD1 [t1 , . . . , tn], . . . , s
D
k [t1 , . . . , tn]) = F (s1(t1 , . . . , tn), . . . , sk(t1 , . . . , tn)) .

�

Lemma 3. For all levels i, for all evaluations e on this level such that t1 , . . . , tn are
values of the evaluation e of the variables x1 , . . . , xn, for all formulas φ (x1 , . . . , xn) and for
all nodes [⟨Γ⇒ ∆⟩ , i] is valid:

[⟨Γ⇒ ∆⟩ , i] ⊩ φ(x1 , . . . , xn)[e], if φx1 , . . . ,xn(t1 , . . . , tn) ∈ Γ,
[⟨Γ⇒ ∆⟩ , i] ⊮ φ(x1 , . . . , xn)[e], if φx1 , . . . ,xn(t1 , . . . , tn) ∈ ∆.

Proof. �e prove is the induction on the complexity of the formula φ. Let φ be an
atom P(s1(x), . . . , sk(x)) where x means n-tuples. Let α be a node of Kripke model
[⟨Γ⇒ ∆⟩ , i]. �en the following holds:

α ⊩ P(s1 , . . . , sk) [e]⇔ P(s1(x), . . . , sk(x))(t1 , . . . , tn) ∈ Γ,
which is equivalent to P(s1(t), . . . , sk(t)) ∈ Γ. We obtain the last equivalence due to

the Lemma 2. We have [sD1 [e], . . . , sDk [e]] ∈ P
D , hence we have [s1(t), . . . , sk(t)] ∈ PD ,

thus according to the de�nition of the realization of predicate symbols in the structureD
we have for the atomic formula φ α ⊩ φ [e]⇔ φ ∈ Γ.

Let φ = ψ&χ and φ ∈ Γ.We haveψ ∈ Γ and χ ∈ Γ due to saturatedness, hence we obtain
[⟨Γ⇒ ∆⟩ , i] ⊩ ψ and [⟨Γ⇒ ∆⟩ , i] ⊩ χ by the induction assumption, so [⟨Γ⇒ ∆⟩ , i] ⊩
⊩ φ.

Let φ ∈ ∆. We have to show φ is not valid in the corresponding nodes. We have ψ ∈ ∆
or χ ∈ ∆ due to saturatedness of the sequent. According to the de�nition of saturated
sequent, the conjunct which is not valid is in the set ∆, hence we have [⟨Γ⇒ ∆⟩ , i] ⊮ φ
by the induction assumption.

Let φ = ψ ∨ χ and φ ∈ Γ. We have ψ ∈ Γ or χ ∈ Γ due to saturatedness of Γ. We have
[⟨Γ⇒ ∆⟩ , i] ⊩ ψ or [⟨Γ⇒ ∆⟩ , i] ⊩ χ by the induction assumption, so [⟨Γ⇒ ∆⟩ , i] ⊩
⊩ φ.

Let φ ∈ ∆, hence ψ ∈ ∆ and χ ∈ ∆, since we gain [⟨Γ⇒ ∆⟩ , i] ⊮ ψ and [⟨Γ⇒ ∆⟩ , i] ⊮
⊮ χ by the induction assumption, hence [⟨Γ⇒ ∆⟩ , i] ⊮ φ.

Let φ = ψ → χ and φ ∈ Γ. We can consider the sequent [⟨Γ′ ⇒ ∆′⟩ , j] which is
accessible from the node [⟨Γ⇒ ∆⟩ , i] . �en ψ → χ ∈ Γ′ because Γ ⊆ Γ′, hence from the
saturatedness χ ∈ Γ′ orψ ∈ ∆′. Let [⟨Γ′ ⇒ ∆′⟩ , j] ⊩ ψ. We check that [⟨Γ′ ⇒ ∆′⟩ , j] ⊩ χ.
If χ ∈ Γ′, then is valid [⟨Γ′ ⇒ ∆′⟩ , j] ⊩ ψ → χ by the induction assumption. If ψ ∈ ∆′,
then the induction assumption gives that formula ψ is not valid, but we assumed, that ψ
is valid, hence this case will not happen. Hence we have [⟨Γ⇒ ∆⟩ , i] ⊩ ψ → χ.

Let φ ∈ ∆. We can consider the sequent [⟨Γ,ψ⇒ χ⟩ , i]. We expand this sequent to
the saturated sequent with respect to the set ⋃ j

k=0 Vark where j = i + 1. So we obtain the
sequent [⟨Γ′ ,ψ⇒ χ, ∆′⟩ , j] which is accessible from the node [⟨Γ⇒ ∆⟩ , i]. Γ′ contains
subformulas of ψ and ∆′ includes subformulas of χ. We have [⟨Γ′ ,ψ⇒ χ, ∆′⟩ , j] ⊩ ψ
and [⟨Γ′ ,ψ⇒ χ, ∆′⟩ , j] ⊮ χ by the induction assumption, hence there is an accessible
world where the assumption of implication is valid and the conclusion is not valid, so
[⟨Γ⇒ ∆⟩ , i] ⊮ φ.
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Letφ = ¬ψ andφ ∈ Γ. We can consider any accessible saturated sequent [⟨Γ′ ⇒ ∆′⟩ , j],
Γ ⊆ Γ′, hence ¬ψ ∈ Γ′. We obtain ψ ∈ ∆′ from the saturatedness, thus by the induction
assumption [⟨Γ′ ⇒ ∆′⟩ , j] ⊮ ψ, hence ψ is not valid in any accessible world, therefore
[⟨Γ⇒ ∆⟩ , i] ⊩ φ.

Let φ ∈ ∆. We can consider the sequent [⟨Γ,ψ⇒ ¬ψ⟩ , j]whichwe can complete to the
saturated sequent [⟨Γ′ ,ψ⇒ ¬ψ, ∆′⟩ , j] and j = i + 1. We have [⟨Γ′ ,ψ⇒ ¬ψ, ∆′⟩ , j] ⊩ ψ
and this sequent is accessible from the sequent [⟨Γ⇒ ∆⟩ , i], hence there is an accessible
sequent where ψ is valid, therefore [⟨Γ⇒ ∆⟩ , i] ⊮ φ.

Let φ = ∃xψ and φ ∈ Γ.�e sequent [⟨Γ⇒ ∆⟩ , i] is saturated, sowe have that for some
y ∈⋃i

k=0 Vark , ψ(y) ∈ Γ. We have [⟨Γ⇒ ∆⟩ , i] ⊩ ψ(y) by the induction assumption, so
[⟨Γ⇒ ∆⟩ , i] ⊩ φ.

Let φ ∈ ∆. �e sequent [⟨Γ⇒ ∆⟩ , i] is saturated, thus we have [⟨Γ⇒ ∆⟩ , i] ⊮ ψx(t)
for all terms on this level, hence [⟨Γ⇒ ∆⟩ , i] ⊮ φ.

Let φ = ∀xψ and φ ∈ Γ. We can consider any sequent [⟨Γ′ ⇒ ∆′⟩ , j] which is ac-
cessible from the sequent [⟨Γ⇒ ∆⟩ , i]. We have ∀xψ ∈ Γ′ because Γ ⊆ Γ′. We obtain
[⟨Γ′ ⇒ ∆′⟩ , j] ⊩ ψx(t) for all terms on this level due to saturatedness and the induction
assumption, hence [⟨Γ⇒ ∆⟩ , i] ⊩ φ.

Let φ ∈ ∆. We have the sequent [⟨Γ⇒ ∆⟩ , i] and consider the sequent ⟨Γ⇒ ψx(y)⟩.
We can�nd to this sequent the saturated sequent on the level i+1 [⟨Γ′ ⇒ ψx(y), ∆′⟩ , i + 1].
We have [⟨Γ′ ⇒ ψx(y), ∆′⟩ , i + 1] ⊮ ψx(y) by the induction assumption, thus we have
[⟨Γ⇒ ∆⟩ , i] ⊮ φ. We remark that y is a new variable.

We showed that the constructedmodel has required properties. Anynode [⟨Γ⇒ ∆⟩ , i]
in model K satis�es all formulas from the antecedent and does not satisfy any formula
from the succedent of the sequent ⟨Γ, T ⇒ ∆⟩. �

Recall, that ⟨Σ⇒ Ω⟩ is an unprovable sequent in theory T , thus according to the
Lemma 1 we can extend the sequent ⟨Σ, T ⇒ Ω⟩ to the saturated with respect to the ap-
propriate levels. We obtain the saturated sequent [⟨Γ⇒ ∆⟩ , i] such that Σ ∪ T ⊆ Γ and
Ω ⊆ ∆. We construct the modelK = ⟨W , ≤, ρ⟩where all formulas from the antecedent of
the sequent ⟨Σ, T ⇒ Ω⟩ are valid and all formulas from the succedent are not valid due
to the Lemma 3. Now, we summarize the statement in the�eorem 1.

�eorem 1. (About strong completeness of Gentzen calculus with respect to Kripke se-
mantics)

Let ⟨Σ⇒ Ω⟩ be a sequent which is valid in all Kripke structures for intuitionistic logic
where all axioms of a theory T are valid in all nodes. Hence the sequent ⟨Σ⇒ Ω⟩ is provable
by cut-free proof in the theory T in intuitionistic logic, so Gentzen calculus is complete with
respect to Kripke semantics.

3. Conclusion

We have proved the completeness of Gentzen calculus for intuitionistic logic, as de-
�ned in [4] with respect to Kripke semantics. We have elaborated all details of the proof
using the notion of a saturated sequent.
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Note that while the de�nition of Kripke semantics allows an accessibility relation of
any order type (and of any cardinality), our construction yields a Kripke structure whose
accessibility relation is well-founded. In fact, every linear set of nodes in the structure we
constructed is �nite or its order type is ω. We �nd this fact quite interesting.
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