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ABSTRACT
�is is a survey paper which discusses the impact of large cardinals on provability
of the Continuum Hypothesis (CH). It was Gödel who �rst suggested that perhaps
“strong axioms of in�nity” (large cardinals) could decide interesting set-theoretical
statements independent over ZFC, such as CH.�is hope proved largely unfounded
for CH – one can show that virtually all large cardinals de�ned so far do not a�ect
the status of CH. It seems to be an inherent feature of large cardinals that they do not
determine properties of sets low in the cumulative hierarchy if such properties can
be forced to hold or fail by small forcings.
�e paper can also be used as an introductory text on large cardinals as it de�nes all
relevant concepts.
Keywords: large cardinals, forcing.

1. Introduction

�e question regarding the size of the continuum – i.e. the number of the reals – is
probably the most famous question in set theory. Its appeal comes from the fact that,
apparently, everyone knows what a real number is and so the question concerning their
quantity seems easy to understand. While there is much to say about this apparent sim-
plicity, wewill not discuss this issue in this paper. Wewill content ourselves by stating that
the usual axioms of set theory (ZFC) do not decide the size of the continuum, except for
some rather trivial restrictions.1 Hence it is consistent, assuming the consistency of ZFC,
that the number of reals is the least possible, i.e. the cardinal ℵ1, but it can be something
much larger, e.g. ℵℵ1 .

�e statement that the number of reals is the least possible is known as the Continuum
Hypothesis, CH, for short:

CH: ∣R∣ = 2ℵ0 = ℵ1 .
CH was made famous by David Hilbert who included this problem as the �rst one on his
list of mathematical problems for the 20th century (see for instance [5]).

Since ZFC does not decide CH, are there any natural candidates for axioms which do?
�at is, is there a statement φ without apparent connection to CH which decides CH one
way or the other? In fact there are many of these, such asMA or PFA,2 but we will require

1 �e co�nality of the size of the continuum must be uncountable.
2 See footnote 27.
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φ to be one of a more special kind. In 1946, that is well before the development of forcing,
Gödel entertained the idea of so called stronger axioms of in�nity deciding CH (and other
independent statements as well):3

It is not impossible that [. . . ] some completeness theorem would hold
which would say that every proposition expressible in set theory is decid-
able from the present axioms plus some true assertion about the largeness
of the universe of all sets ([1]).

A natural way to arrive to “true assertions” about largeness of the universe of sets is to
take up analogies with natural numbers. When we compare the theory of arithmetics
such as PA with the theory of sets such as ZFC, we can show that the only important
strengthening of ZFC over PA is the addition of the axiom of in�nity. �e axiom can be
formulated in many ways, but for our purposes we adopt the following de�nition:

(*) Axiom of In�nity: �ere is an ordinal ω which is the domain of a model for the
formalization of PA.

Because of this axiom, ZFC can not only prove some logical arithmetical statements
which PA itself cannot prove (unless it is inconsistent), such as Con(PA), but also some
purely number-theoretical statements as well (such as Goodstein’s theorem, see for in-
stance [17]). Gödel suggested that perhaps by adding a stronger axiom of in�nity to ZFC,
this new theory might decide new statements interesting to set theoreticians.4 Can we
�nd such an axiom, perhaps similar to (**) or (***) below, which will decide CH?

(**) A strongAxiom of In�nity:�ere is a regular cardinal κ such that ⟨Vκ , ∈⟩ is amodel
of the formalization of ZFC.

or
(***) A still stronger Axiom of In�nity: �ere is a regular cardinal κ such that ⟨Vκ , ∈⟩

is a model of the formalization of ZFC + (**).
WhereVκ is an initial part of the universe of sets (seeDe�nition 2.1) and is the analogue

of ω for sets.
Remark. �is paper is in a sense a continuation of [6] which contains an introduction

to the axioms of set theory, discusses the basic set-theoretical notions and not so brie�y
reviews basics of forcing. Of course, any of the standard texts such as [7] or [10] contains
all the prerequisites to this article. A standard reference book for large cardinals is [8]
where an interested reader can �nd more details.

2. How to find large cardinals

In this section we survey large cardinals which can be considered as candidates for the
stronger axioms of in�nity. �e selection is rather arbitrary, but does attempt to do justice
to the most important concepts.

3 As regards the intuitive “truth” of such axioms, or why they should be preferable to other types of axioms,
see a discussion for instance in [2].

4 Such extensionswill always decide new statement, such asCon(ZFC), but these are considered too “logical”
and not properly set-theoretical.
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2.1 Inaccessible cardinals

In the presence of the Axiom of Foundation,5 the universe V is equal to the union
V = ⋃α∈ORD Vα , where the initial segments Vα are de�ned by recursion along the ordinal
numbers ORD as follows:

De�nition 2.1.

V0 = ∅,
Vα+1 = P(Vα),
Vλ = ⋃α<λ Vα , for λ limit ordinal,
V = ⋃α∈ORD Vα .

If κ satis�es (**) above, we say that Vκ is a “natural model” of set theory. To obtain
such a model in set theory, we must transgress the power of the plain ZFC theory – this
is a consequence of the second Gödel theorem.

What are the properties of a cardinal κ such thatVκ satis�es (**) above? We postulated
that it must be regular (we will later see that we cannot avoid this assumption), but what
else?

De�nition 2.2. We say that a cardinal µ is strong limit if for all ν < µ, 2ν < µ.

Notice that every strong limit cardinal is also limit (i.e. does not have an immediate
cardinal predecessor).

Lemma 2.3. Assume κ satis�es (**). �en κ is strong limit.

Proof. Assume µ < κ is given. ZFCproves that there is a cardinal ν ≥ µ+ and a bijection
f ∶ ν →P(µ). Since ⟨Vκ , ∈⟩ is a model of ZFC, we have

⟨Vκ , ∈⟩ ⊧ “�ere is a bijection between P(µ) and some ν ≥ µ+”.

Since Vκ is transitive, and P(µ) = (P(µ))Vκ ,6 any such bijection in Vκ is really (in V )
a bijection between P(µ) and some ordinal ν in Vκ . As ν < κ, 2µ < κ. �

Notice that for a regular κ, if µ < κ, then P(µ) ∈ κ (see Footnote 6); however, this
does not generally imply that κ is strong limit because the existence of a bijection between
P(µ) and some ν in Vκ depends on the truth of the Replacement schema in Vκ . In fact,
we state without a proof that if κ is a regular cardinal, then all axioms of ZFC, except
possibly some instances of the Schema of Replacement, are true in ⟨Vκ , ∈⟩.

Lemma 2.3 motivates the following de�nitions:

De�nition 2.4. We say that a cardinal κ > ω is weakly inaccessible if it is regular and
limit.

De�nition 2.5. We say that a cardinal κ > ω is strongly inaccessible if it is regular and
strongly limit.

5 �is axioms states that sets are “well-behaved”; for instance sets x such as x ∈ x are prohibited by this axiom.
6 (P(µ))Vκ is the powerset of µ in the sense of ⟨Vκ , ∈⟩. Note that for every limit ordinal α, if β < α, then
(P(β))Vα =P(β) because P(β) ⊆ Vβ+1 , and so P(β) ∈ Vβ+2 ⊆ Vα .
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�eorem 2.6. (i) Every cardinal satisfying (**) is strongly inaccessible.
(ii) Every strongly inaccessible cardinal satis�es (**).

Proof. Ad (i) Obvious from the de�nitions and Lemma 2.3.
Ad (ii) (Sketch). For every regular κ, ⟨Vκ , ∈⟩ is a model of ZFC without Schema of

Replacement (this is easy to check). Strong limitness is used to ensure that Replacement
holds as well. �

Although it may not be immediately apparent, the weakly inaccessible cardinal is
not weaker in terms of consistency strength than the strongly inaccessible cardinal. Let
∃κ ψw(κ) denote the sentence “there exists a weakly inaccessible cardinal”, and similarly
for the strongly inaccessible ∃κ ψs(κ).

Lemma 2.7.
Con(ZFC + ∃κ ψw(κ)) ↔ Con(ZFC + ∃κ ψs(κ)).

Proof. �emore di�cult direction is from le� to right. Assume κ is weakly inaccessi-
ble. Let L be the universe of constructible set, de�ned by Gödel. We know that L satis�es
ZFC and also GCH.7 It is immediate to see that in L, κ is strongly inaccessible because
being a limit cardinal together with GCH implies the desired property of strong limit-
ness. �

�erefore by Gödel’s theorem and Lemma 2.7 and�eorem 2.6(ii):

Corollary 2.8. If ZFC is consistent, it does not prove the existence of a weakly inacces-
sible cardinal.

One can also show that if ZFC is consistent, so is the theory ZFC+ “there is no strongly
inaccessible cardinal”, and that ZFC does not prove the implication CON(ZFC) →
→ CON(ZFC+ “there is a strongly inaccessible cardinals”).

Usually, whenwe talk about an inaccessible cardinal, wemean the strongly inaccessible,
and assumption of existence of such a cardinal number is taken to be the �rst step in
de�ning strong axioms of in�nity. �us we can reformulate:

(**)r : (Strong Axiom of In�nity) �ere is a (strongly) inaccessible cardinal.

Remark 2.9. Onemight wonder if we can remove the assumption of regularity in (**)
and have an equivalent notion. We cannot: if κ is strongly inaccessible, we can use the
standard Löwenheim-Skolem argument to obtain an elementary substructure ⟨Vα , ∈⟩ ≺
≺ ⟨Vκ , ∈⟩with α > ω, and cf(α) = ω. �us ⟨Vα , ∈⟩ is a model of ZFC, but α is not regular.8
�at is why we need to explicitly postulate the regularity of κ in (**).

What about (***)? Well, it is not di�cult to see that if κ < κ′ are two strongly inacces-
sible cardinals, then ⟨Vκ′ , ∈⟩ is the desired model for (***). �is is the case because

⟨Vκ′ , ∈⟩ ⊧ “κ is a strongly inaccessible cardinal”.
�us we may reformulate:

(***)r : (Still strongerAxiomof In�nity)�ere are two (strongly) inaccessible cardinals.

7 �e Generalized Continuum Hypothesis which states that for every cardinal µ, 2µ = µ+.
8 But it is a singular strong limit cardinal.
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We could repeat this argument many times over, obtaining stronger and stronger ax-
ioms of in�nity, in the hope of deciding more and more sentences. However, there is a
limit to this recursion – so called Mahlo cardinals (see the next section).

2.2 Mahlo cardinals

We include this cardinal only because it is in a sense a limit to the process of arriving to
a large cardinal by a process “from below”. Recall that above we have considered one, two,
three, and so on inaccessible cardinals. What if we considerℵ0 orℵ1 many of them? Dowe
get something yet stronger? Wedo, but there is a natural limit to this type of strengthening
of the notion of a strong axiom of in�nity. Consider an inaccessible cardinal κ such that
κ is the κ-th inaccessible cardinal – clearly, it is a limit of the process of taking more and
more inaccessible cardinals as far as their number is concerned. AMahlo cardinal is even
stronger (although it may not be apparent without amore detailed look which we will not
provide here):

De�nition 2.10. A cardinal κ is a Mahlo cardinal if the set of inaccessible cardinals
smaller than κ is stationary in κ.9

2.3 Analogies with ω

We said above that Mahlo cardinals are a limit to arriving to larger cardinals “from
below” by repeating certain continuous processes applied to inaccessible cardinals. But
what other options do we have? Mathematicians found out that it is useful to consider
the usual properties of ω and try to generalize them in a suitable fashion. In fact, inacces-
sible cardinals can be regarded in this way – either as a generalization of the concept of a
“model” for a given theory (see above in (**) and (***)), or combinatorially – notice thatω
itself is regular and strong limit, i.e. no �nite subset of ω is co�nal in ω and∀n < ω 2n < ω.
We generalize10 three other properties of ω:11

(C) ω is compact in the sense of the compactness theorem for the �rst-order predicate
logic.

(M) �ere is a two-valued non-trivial measure on ω, i.e. a non-principal ultra�lter
on ω. �is measure is ω-complete: for every �nite number of elements in the
ultra�lter, their intersection is still in the ultra�lter.

(R) �e Ramsey property holds for ω: ω → (ω)rk , for r, k < ω.
Compactness (C).�eclassical predicate calculus satis�es compactness: for every lan-

guage and for every set of formulas A (of arbitrary size) in that language if every �nite
subset B ⊆ A has a model, so does A. In order to generalize this property, we consider an
extension of the classical logic denoted as Lκ ,κ , where κ is a regular cardinal, as follows. A

9 We will not de�ne the notion of a stationary set here; any standard set-theoretical textbook contains this
de�nition. Roughly speaking, a set is stationary in κ if it intersects every continuous enumeration of un-
boundedly many elements below κ. In particular, every stationary subset of a regular cardinal κ has size κ.

10 We assume AC, the Axiom of Choice, in formulating these generalizations.
11 Note that a priori there is no guarantee that we get anything like a large cardinal in this fashion; the general-

ization may turn out to be mathematically trivial and uninteresting. �e fact that we do get large cardinals
seems to indicate that these generalizations are mathematically relevant.
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language in Lκ ,κ can have up to κmany variables and an unlimited number of non-logical
symbols (functions, constants, predicates). We also allow conjunctions and disjunctions
of length < κ and quanti�cations over < κ many variables.12 �e classical logic can be
denoted as Lω ,ω under this notation. Now we can formulate the generalization of the
compactness theorem in two ways:
(wC) κ > ω is called weakly compact i� whenever A is any collection of sentences in

Lκ ,κ with at most κ many non-logical symbols if every B ⊆ A of size < κ has a
model, so does A.

(sC) κ > ω is called strongly compact i� whenever A is any collection of sentences in
Lκ ,κ if every B ⊆ A of size < κ has a model, so does A.

We will discuss the relationship between (wC) and (sC) later in the text.
Measure (M).One can �nd a non-principal ultra�lter on ω, i.e. a setU ⊆P(ω) such

that for all A, B subsets of ω:
(i) If A ∈ U and A ⊆ B, then B ∈ U .
(ii) If A, B ∈ U , then A∩ B ∈ U .
(iii) For no n < ω, {n} ∈ U .
(iv) For all A, either A ∈ U or ω ∖ A ∈ U .
Note that by induction, (ii) implies that if A0, . . . ,An are sets in U for n < ω, then their
intersection is inU – this property can be called ω-completeness to emphasize the analogy
with κ-completeness for a cardinal κ > ω introduced below. U is non-principal because
it is not generated by a single number (property (iii)); (iii) together with other properties
implies that every set A ∈ U is in�nite.

(M) κ > ω is called measurable i� there is a κ-complete non-principal ultra�lter U
on κ:
(i) If A ∈ U and A ⊆ B, then B ∈ U .
(ii) If µ < κ, and {Aξ ∣ ξ < µ} are sets in U , then ⋂ξ<µ Aξ is in U .
(iii) For no ξ < κ, {ξ} ∈ U .
(iv) For all A, either A ∈ U or κ ∖ A ∈ U .

Such an ultra�lterU is o�en called ameasure because it “measures” subsets of κ by a two-
valued κ-complete measure: if A ∈ U , then measure of A is 1, if A /∈ U , then its measure
is 0.

Ramsey partitions (R). Let f be a function from [ω]r to k, where [ω]r denotes the
set of all subsets of ω with exactly r elements, and k = {0, . . . , k− 1} is a set of size k (r ≥ 1
and k ≥ 2 to avoid trivialities).

De�nition 2.11. We say that A ⊆ ω is homogeneous for f ∶ [ω]r → k if

∣rng( f ↾[A]r)∣ = 1.

Ramsey proved in 1930 that for any such f there is an in�nite homogeneous subset, in
the arrow notation:

ω → (ω)rk , for r, k < ω.
�e argument is by induction on r, and the nontrivial step is to show

ω → (ω)22 .

12 For instance “∃β<αxβφ”, α < κ, quanti�es over α-many variables in φ.
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�is we read that for any partition of two-element subsets of ω to two sets we can �nd an
in�nite homogeneous set. We therefore attempt to generalize:
(wR) A cardinal κ > ω is called weakly Ramsey if κ → (κ)22, i.e. for every partition of

two-element subsets of κ to two sets we can �nd a homogeneous set of size κ.
We later learn that this generalization is not getting us a new concept, so we will need to
strengthen it. �at is why we call this property (wR) and not (R). See the next section for
the now standard de�nition of the Ramsey cardinal.

2.4 Compact, measurable, and Ramsey cardinals

As wementioned above, there is a priori no guarantee that the cardinals de�ned above
under (wC), (sC), (M), and (wR) are even inaccessible. However, as it turns out, they are
not only inaccessible but even Mahlo. By way of illustration, we show that a measurable
cardinal κ is inaccessible.

�eorem 2.12. Every measurable cardinal is inaccessible.
Proof. Let U be a non-pricipal κ-complete ultra�lter witnessing measurability of κ.

First notice that by κ-completeness and non-principality ofU , all elements inU have size
κ. κ is clearly regular, otherwise if {ξα ∣ α < cf(κ)} is co�nal in κ for cf(κ) < κ, then
while for each α < cf(κ), ξα /∈ U , ⋃α<cf(κ) ξα = κ ∈ U , contradicting the κ-completeness
ofU .13 As regards strong limitness of κ, assume for contradiction that for some λ < κ, we
have 2λ ≥ κ, and let f ∶ κ → P(λ) be an injection. For a �xed α < λ, we can consider
two subsets of κ given by f : Xα

0 = {ξ < κ ∣ α ∈ f (ξ)} and Xα
1 = {ξ < κ ∣ α /∈ f (ξ)}. For

each α < λ, exactly one of the two sets Xα
0 and Xα

1 is in U ; let us denote this set as Xα .
By κ-completeness of U , X = ⋂α<λ Xα must be in U . However X can have at most one
element since f is an injection – if ξ ≠ ζ are in X, then f (ξ) ≠ f (ζ) and hence at some
α < λ, ξmust be in Xα

0 and ζ in Xα
1 (or conversely). �is contradicts the non-principality

of U . It follows that κ is strong limit, and hence inaccessible. �

With nice combinatorial arguments, not always trivial ones, one can show that every
strongly compact cardinal is measurable, every measurable is weakly compact, and every
weakly compact is Mahlo, and every Mahlo is inaccessible. �us disparate combinatorial
notions gave rise to a linearly ordered scale of cardinals.

What about the weakly Ramsey cardinal? With a little work, it can be shown that
the de�nition (wR) is in fact equivalent to (wC). And so the classes of weakly compact
cardinals and weakly Ramsey cardinals are the same. However, there is a way how to
generalize the Ramsey property and obtain something stronger than a weakly compact
cardinal:

(R) A cardinal κ > ω is called Ramsey if κ → (κ)<ω2 , i.e. for every partition of all �nite
subsets of κ to two sets we can �nd a homogeneous set A of size κ.14

Many questions concerning these cardinals are quite di�cult. For instance, it has long
been open (from 1930s to 1960s) whether the least inaccessible cardinal can be measur-
able. By a new method using elementary embeddings and ultrapowers developed by

13 Notice that κ-completeness can be equivalently expressed as follows: whenever µ < κ and {Xα ∣ α < µ} are
sets not in U , the the union⋃α<µ Xα is not in U , either.

14 For every n < ω, ∣rng( f ↾[A]n)∣ = 1.
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Scott, it was proved in the 1960s that measurable cardinals are quite large – they can never
by the least inaccessible, or the least weakly compact cardinal. In fact if κ is measurable,
then it is the κ-th weakly inaccessible cardinal, and more. We will touch brie�y on the
method of elementary embeddings in Section 3.4.

Finally, let us note that measurable cardinals were �rst used – before the introduction
of the Cohen’s method of forcing – to argue for the consistency of the statement V ≠ L,
i.e. that there exists a non-constructible set. It was Scott [15] who showed in 1961 that
if there exists a measurable cardinal, then V ≠ L. Nowadays large cardinal which imply
thatV ≠ L are called “large” large cardinals, while others are called “small” large cardinals.
Inaccessible, Mahlo, andweakly compact cardinals are “small”, while Ramsey, measurable
and strongly compact are “large”.

2.5 Motivation

We showed that by a natural attempt to generalize properties which hold for ω, we
arrive to interesting notions in set theorywhich form a linear scale, as regards the strength
of the notions. �is is o�en taken as a heuristical point in favour of the naturalness of the
de�nitions. Not least because by the linearity, no two large cardinals are inconsistent
together – so far, no large cardinal was found that prohibits the existence of some other
large cardinals. �e properties which can be generalized range from purely logical (such
as the inaccessible cardinal witnessing (**), or (wC) and (sC)), to combinatorial (wR), (R)
and measure-theoretic (M).

On the downside, all these notions substantially increase the consistency strength of
the relevant theories, thus increasing the risk of introducing a contradiction. It is con-
ceivable, but not considered probable now, that ZFC is consistent, while ZFC + “there is
an inaccessible” is not. Or that ZFC + “there is a weakly compact cardinal” is consistent
while ZFC + “there is a measurable cardinals” is not. See Section 4 for more discussion
on consistency strength.

Such discussion are not of logical interest only. It can be shown for instance that a
certain weakening of the GCH, denoted as SCH,15 is provable in ZFC if ZFC refutes the
existence of inaccessible cardinals.16 However, with some large cardinals around, SCH
cannot be proved, and is therefore independent over the theory ZFC + certain large car-
dinals.17

3. Large cardinals and CH

As wementioned earlier, Gödel expressed his hopes that perhaps large cardinals could
provide a natural extension of ZFC with interesting set-theoretical consequences such as
determining the truth or falsity of CH. However, with the development of forcing on the
way, Levy and Solovay in 1967 [11] came with arguments which are almost universal and

15 GCH, the Generalized Continuum Hypothesis, states that for all cardinals κ, 2κ = κ+. SCH, the Singular
Cardinal Hypothesis, states that for all singular cardinals κ, 2κ = max(2cf(κ) , κ+).

16 �is is true for larger cardinals than just inaccessibles.
17 For instance if ZFC + (sC) is consistent, so is ZFC + ¬SCH.
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show that truth or falsity of CH is una�ected by large cardinals. In the following sections,
we assume some basic understanding of forcing on the reader’s part.

3.1 How to force CH and ¬CH

A standard forcing notion to force CH, which we will denote as PCH, is composed of
functions f ∶ ω1 → 2 with the domain of f being at most countable. �e extension is by
reverse inclusion. PCH adds a new subset of ω1, and collapses 2ω to ω1 in the process.18
PCH is called the Cohen forcing for adding a subset of ω1.

To force ¬CH, we will use ω2 copies of the Cohen forcing which adds a new subset of
ω. Formally, a condition in P¬CH is a function with �nite domain from ω2 to 2. One can
show that P¬CH preserves cardinals and forces 2ω = ω2.

For our purposes notice that ∣PCH∣ = 2ω and ∣P¬CH∣ = ω2, i.e. both forcings are quite
small, certainly smaller than the �rst inaccessible.

3.2 Inaccessible and Mahlo cardinals and CH

We have de�ned above two “small” forcings which can force CH and ¬CH, PCH and
P¬CH, respectively. As it turns out, for the preservation of large cardinals, it su�ces to
assume that the forcing in question has size < κ.

�eorem 3.1. Let P be a forcing of size < κ and let G be a P-generic �lter. Assume
κ is inaccessible or Mahlo in V, then κ is inaccessible or Mahlo, respectively, in V[G]. In
particular, these large cardinals do not decide CH.

Proof. First notice that the theorem really implies that these large cardinals do not de-
cide CH. Suppose for contradiction that one of these cardinals decides CH; for example
let us assume that ZFC + “there is an inaccessible” proves CH. Assume there is an inac-
cessible and force with P¬CH; we obtain a generic extension where ¬CH holds and there
is still an inaccessible. �is a contradiction.

Let us now turn to the proof of the rest of the theorem. By standard forcing technique,
if λ < κ is given, then there are just 2∣P∣λ-many nice names for subsets of λ in V[G]. Since
µ = 2∣P∣λ < κ by inaccessibility of κ, we haveV[G] ⊧ 2λ ≤ µ < κ, i.e. κ remain inaccessible
in V[G].19

To argue for preservation of Mahloness, we show as a lemma that forcings with κ-cc
preserve stationarity of subsets of κ.

Lemma 3.2. Assume Q is a forcing notion. If Q is κ-cc, then it preserves stationary
subsets of κ.

Proof. Let V[E] be a Q-generic extension and S stationary subset. We wish to show
that S is still stationary in V[E]: that is, we need to show that if C ∈ V[E] is closed

18 Notice that for every X ⊆ ω inV , it is dense inPCH that there exists some α < ω1 and p such that p restricted
to [α, α+ω) is a characteristic function of X. �e function de�ned in a generic extension which takes every
α < ω1 to a subset of ω given by the restriction of the generic �lter to [α, α + ω) is therefore onto (2ω)V . It
follows that 2ω of V is collapsed to ω1 .

19 Note also that all cardinals ≥ ∣P∣+, and hence also µ, remain cardinals in V[G].
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unbounded, then S ∩ C ≠ ∅. Fix a closed unbounded C and let p ∈ E force this:

p ⊩ Ċ is a closed unbounded subset of κ̌.

Denote
D = {ξ < κ ∣ p ⊩ ξ̌ ∈ Ċ}.

Note that D ⊆ C and D ∈ V . We prove that D is a closed unbounded subset of κ. Now
the claim follows because D ∈ V , and so D ∩ S ≠ ∅. To prove D is closed unbounded, it
su�ces to argue that it is unbounded (closure is easy). Let α < κ be given. By induction
construct for each n < ω a maximal antichain An = ⟨qξn ∣ ξ < αn⟩ of elements below p and
an increasing sequence of ordinals ⟨βξ

n ∣ ξ < αn⟩, where αn < κ (this is possible by κ-cc),
such that:
(a) β00 ≥ α;
(b) for each n, ⟨βξ

n ∣ ξ < αn⟩ is strictly increasing;
(c) if m < n then all elements in the βn-sequence are above the βm-sequence;
(d) qξn ⊩ β̌ξ

n ∈ Ċ.
Since for every n < ω, αn < κ, ⋃n<ω{β

ξ
n ∣ ξ < αn} is bounded in κ.

We show that δ = sup{βξ
n ∣ n < ω, ξ < αn} is in D, that is p ⊩ δ̌ ∈ Ċ. By forcing

theorems, it su�ces to show that whenever F is a Q-generic and p ∈ F, then δ ∈ ĊF .
Since each An is maximal below p, F ∩ An is non-empty for each n < ω. It follows that
there is a sequence ⟨qn ∣ n < ω⟩ of conditions in F which force that elements of Ċ are
unbounded below δ. Hence δ ∈ ĊF as required. �

Since our forcing P has size < κ, it certainly has the κ-cc, and therefore the set of
regular cardinals below κ is still stationary in V[G]. �at is κ is still Mahlo in V[G]. �

3.3 Weakly compact and measurable cardinals and CH

By way of example, we show that if P has size < κ, then κ is still weakly compact
or measurable in V[G] if it was weakly compact or measurable, respectively, in V . In
�eorems 3.3 and 3.4 we will give direct arguments, while in Section 3.4 we will put large
cardinals into a more general picture so that we can formulate a uniform approach to
preservation of large cardinals.

�eorem 3.3. Assume κ is weakly compact in V and P has size < κ, and G is P-generic.
�en κ is weakly compact in V[G].

Proof. As a fact we state that κ is weakly compact i�

(3.1) κ → (κ)nλ , for every n < ω, λ < κ.

Let us �x in V[G] a function f ∶ [κ]2 → 2; it su�ces to �nd in V[G] a homogeneous
set X ⊆ κ of size κ. By Forcing theorem, there is p ∈ P such that

p ⊩ ḟ ∶ [κ]2 → 2.

De�ne back in V ,
h ∶ [κ]2 →P(P × 2)
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by
h(s) = {⟨q, i⟩ ∣ q ≤ p & q ⊩ ḟ (š) = i}.

Since ∣P(P × 2)∣ < κ, we can apply (3.1) and �nd a homogeneous set X ⊆ κ for the
function h. We claim that

p ⊩ X̌ is homogeneous for ḟ ,

or equivalently
X is homogeneous for f in V[G].

�e homogeneity of X for h means that for all s ∈ [X]2, h(s) is equal to some �xed set of
the form A = {⟨q, i⟩ ∣ q ≤ p & q ⊩ ḟ (š0) = i}, for some s0 ∈ [κ]2. Notice that because p
forces that ḟ is a function, there can be no “contradictory pairs” ⟨q, 0⟩ and ⟨q, 1⟩ in A; that
is for each q ≤ p occurring at the �rst coordinate of a pair in A there is unique i(q) such
that ⟨q, i(q)⟩ is in A. Assume F is any P-generic with p ∈ F. For each s ∈ [X]2, there is
some q(s) ∈ F such that ⟨q(s), i(q(s))⟩ is in A. If s1 , s2 are in [X]2, then q(s1) and q(s2)
are compatible in F by some r which thus decides both ḟ (š1) and ḟ (š2); furthermore,
there is a unique i(r) such that ⟨r, i(r)⟩ is in A and so i(q(s1)) = i(q(s2)) = i(r). �is
proves that p forces that X is homogeneous for ḟ . �

�eorem 3.4. Assume κ is measurable in V and P has size < κ. �en κ is measurable
in VP.

Proof. Let G be a P-generic �lter, and let U be a κ-complete non-principal ultra�lter
on κ in V . We will show that

W = {A ⊆ κ ∣ ∃B ∈ U B ⊆ A}

is a κ-complete non-principal ultra�lter in V[G]; we say that W is generated by U . It is
easy to show that W is non-principal, closed upwards, and κ-complete – that is that is a
κ-complete non-principal �lter:
(i) Non-principality. Since U is non-principal and every element of W is above an

element of U , the argument follows.
(ii) κ-completeness. Fix in V[G] a sequence ⟨Aξ ∣ ξ < λ⟩, λ < κ of sets inW . By de�ni-

tion ofW , there is p ∈ G such that

(3.2) p ⊩ “�ere exists a sequence ⟨Ḃξ ∣ ξ < λ⟩ of sets in U such that

for every ξ < λ, Ḃξ ⊆ Ȧξ .”

By ∣P∣ < κ, there is for each ξ and Ḃξ a family Bξ of size < κ of sets in U such that

p ⊩ Ḃξ ∈ B̌ξ .

By κ-completeness of U , for every ξ, bξ = ⋂Bξ is in U . �e sequence ⟨bξ ∣ ξ < λ⟩
exists in V , and therefore by κ-completeness of U in V , ⋂ξ<λ bξ is in U . It follows

p ⊩ b̌ξ ⊆ Ȧξ for every ξ < λ and p ⊩ ⋂
ξ<λ

b̌ξ ⊆ ⋂
ξ<λ

Ȧξ ,

and hence ⋂ξ<λ Aξ is inW .
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It remains to show thatW is an ultra�lter. Let Ẋ be a name for a subset of κ. For each
p ∈ P, let

Ap = {α < κ ∣ p decides if α̌ ∈ Ẋ}.
Notice that

D = {p ∈ P ∣Ap ∈ U} is dense in P.
�is is because for each q ∈ P,

⋃
p≤q

Ap = κ

and by κ-completeness of U and the fact that ∣P∣ < κ, there must be some p ≤ q such that
Ap ∈ U . Let r be in D ∩ G – then Ar ∈ U where Ar can be written as a disjoint union of
A0 = {α < κ ∣ r ⊩ α̌ ∈ Ẋ} and A1 = {α < κ ∣ r ⊩ α̌ /∈ Ẋ}. If A0 ∈ U , then ẊG ∈ W , and if
A1 ∈ U , then κ ∖ ẊG ∈W . �

3.4 A uniform approach

So farwe have argued that inaccessible,Mahlo, andmeasurable cardinals do not decide
CH. �is, per se, is not an argument that other large cardinals cannot behave di�erently
in this respect – a�er all, every argument we gave was unique to a given large cardinal
concept, and not directly generalizable to other large cardinals. As it turns out, how-
ever, many large cardinals can be formulated in terms of elementary embeddings, and
there is a uniform approach which shows that such cardinals do not a�ect CH. Among
the cardinals with de�nitions through elementary embeddings are weakly compact car-
dinals, measurable cardinals, strongly compact cardinals, supercompact cardinals and
many others.

De�nition 3.5. Let M and N be two transitive classes. We say that j ∶ M → N is an
elementary embedding if for every formula and every n-tuple m0, . . . ,mn of elements in M,
if φM(m0, . . . ,mn), then φN( j(m0), . . . , j(mn)).

�enotation φM is de�ned recursively and subsists in replacing every occurrence of an
unbounded quanti�er Qx with Qx ∈ M. Note that M ,N and jmay be proper classes.20

We say that κ is a critical point of j ∶ M → N if for all α < κ, j(α) = α, and j(κ) > κ.
One can show that if j is not the identity it has a critical point which is always a regular
uncountable cardinal in M.

�eorem 3.6. �e following are equivalent for a cardinal κ > ω:
(i) κ is measurable.
(ii) �ere is an elementary embedding j ∶ V → M with critical point κ, where M is some

transitive class.

20 �ere are some logical issues here because ZFC does not formalize satis�cation for proper classes, and hence
one should be careful in saying that some φ holds in M, or that j is elementary. �e relativation φM solves
the issue to a certain extent, but it is not entirely optimal (for instance the property “ j is elementary” is a
schema of in�nitely many sentences). Luckily, as always with issues like these, there are ways to make these
concepts completely correct from the formal point of view. See for instance [4] for a nice discussion of
approaches to formalizing large cardinal concepts which refer to elementary embeddings.
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Proof. Ad (i)→(ii). (Sketch) A generalization due to Scott [15] of the ultrapower con-
struction can be used to form the ultrapower of the whole universe V via a κ-complete
ultra�lter U witnessing the measurability of κ. One can show that this construction is
well de�ned and yields a proper class ultrapower model, denoted as UltU(V). Since the
U is ω1-complete, one can further show that that the ultrapower is well-founded and can
therefore be collapsed using theMostowski collapsing function. �us there is an elemen-
tary embedding

j ∶ V → UltU(V) ≅ M

to a transitive isomorphic image of UltU(V). κ-completeness of U is invoked to prove
that j is the identity below κ, and j(κ) > κ+.

Ad (ii)→(i). Let j ∶ V → M be elementary with critical point κ. Let us de�ne

U = {X ⊆ κ ∣ κ ∈ j(X)}.

We will show thatU is a κ-complete non-principal ultra�lter. It is non-principal because
for every α < κ, j({α}) = {α} and therefore {α} /∈ U . κ-completeness follows by the
following argument: if {Aξ ∣ ξ < µ} are sets in U for µ < κ, then

j({Aξ ∣ ξ < µ}) = { j(Aξ) ∣ ξ < µ}

because j(µ) = µ and therefore the j-image of the system {Aξ ∣ ξ < µ} is just the system
of the j-images of the individual sets. �erefore

κ ∈ ⋂
ξ<µ

j(Aξ)

and hence

⋂
ξ<µ

Aξ ∈ U .

�us U is a κ-complete non-principal �lter. It remains to show that U is an ultra�lter –
but this is easy: if X ⊆ κ is given, then κ = X ∪ (κ ∖ X), and so

κ ∈ j(κ) = j(X) ∪ j(κ ∖ X)

by elementarity. Hence κ ∈ j(X) or κ ∈ j(κ ∖ X).
Notice that U is generated by a single element – κ. But it is not principal because κ

is not in the range of j. If ξ is in the range of j, then any attempt to de�ne an ultra�lter
as we did ends up with a principal ultra�lter because the singleton of j−1(ξ) would be in
the �lter. Conversely, if we de�ned our U with any other ξ in the interval [κ, j(κ)), we
would get a non-principal κ-complete ultra�lter by an identical argument.

�e importance of U , as generated by κ, is that U is normal, but this goes beyond the
scope of this paper. �

�eabove theoremprovides a new tool to show that ameasurable cardinal is preserved
by forcing. It su�ces to show that in a generic extensionV[G], there exists an elementary
embedding with critical point κ. �e following lemma is very useful for �nding elemen-
tary embeddings in the generic extensions.
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Lemma 3.7 (Silver). Assume j ∶ M → N is an elementary embedding between transitive
classes M ,N. Let P ∈ M be a forcing notion and let G be P-generic over M.21 Assume further
that H is j(P)-generic over N such that

(3.3) { j(p) ∣ p ∈ G} ⊆ H.
�en there exists elementary embedding j∗ ∶ M[G] → N[H] such that:
(i) j∗ restricted to M is equal to j,
(ii) j∗(G) = H.
We call j∗ a li�ing of j to M[G].

Proof. We �rst show how to de�ne j∗. Let x be an element of M[G] and let ẋ be a
name for x so that ẋG = x. We set

j∗(ẋG) = ( j(ẋ))H .
�is de�nition is correct because by elementarity j(ẋ) is a j(P)-name; further if ẏ is
another name for x, ẏG = ẋG = x, then there is some p ∈ G such that p ⊩ ẏ = ẋ. By
elementarity,

j(p) ⊩ j(ẋ) = j( ẏ).
By (3.3), j(p) ∈ H and therefore ( j(ẋ))H = ( j( ẏ))H .

j∗ is elementary by the following implications:

(3.4) φM[G]
(x , . . .) → ∃p ∈ G p ⊩ φ(ẋ , . . .) → ∃p ∈ G j(p) ⊩ φ( j(ẋ), . . .) →

φN[H]
( j∗(x), . . .),

where the last implication follows by (3.3).
Ad (i). For x ∈ M, j∗(x) = ( j(x̌))H = j(x), by the properties of the canonical name x̌.
Ad (ii). Let ġ be a canonical name for the generic �lter, i.e. a name which always

interprets by the generic �lter. �en ġG = G, and j∗(G) = ( j(ġ))H = H. �

Silver’s “li�ing lemma” allows us to reprove �eorem 3.4 in a more straightforward
way:

�eorem 3.8. Assume κ is measurable in V, P has size < κ and G is P-generic. �en κ
is measurable in V[G].

Proof. By �eorem 3.6, there is an embedding j ∶ V → M with critical point κ (this
embedding exists, i.e. is de�nable, in V ). Since j is the identity below κ, one can easily
show that Vκ+1 = (Vκ+1)M and j(x) = x for every x ∈ Vκ . In particular

j(P) = P

because ∣P∣ < κ implies that we can assume P ∈ Vκ .22 It follows by Silver’s lemma, when
we substitute G for H, that there exists a li�ing

j∗ ∶ V[G] → M[G],
where j∗(G) = G. Since j∗ is de�nable in V[G], it shows by �eorem 3.6 that κ is still
measurable in V[G]. �

21 �is means that G meets every dense open set which is an element of M.
22 If ∣P∣ < κ, then there is an isomorphic copy of P which is in Vκ .
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3.5 Other large cardinals

Many large cardinals can be formulated in terms of elementary embeddings and hence
the proof in �eorem 3.8 can be straightforwardly generalized to argue that these cardi-
nals do not decide CH. Here is a list of some more known large cardinals de�ned using
elementary embeddings satisfying certain properties, where κ > ω:

● κ is weakly compact i� κ is inaccessible and for every transitive model M of ZF
without the powerset axiom such that κ ∈ M, M is closed under < κ-sequences
and ∣M∣ = κ, there is an elementary embedding j ∶ M → N , N transitive, with
critical point κ.
● κ is strongly compact i� for every γ > κ there is an elementary embedding j ∶ V →
→ M with critical point κ, j(κ) > γ, and for any X ⊆ M with ∣X∣ ≤ γ, there is a
Y ∈ M such that Y ⊇ X and (∣Y ∣ < j(κ))M .
● κ is supercompact i� for every γ > κ there is an elementary embedding j ∶ V → M
with critical point κ, j(κ) > γ, and γM ⊆ M.23
● κ is strong i� for every γ > κ there is an elementary embedding j ∶ V → M with
critical point κ, j(κ) > γ, and Vγ ⊆ M.

Even Ramsey cardinals can be formulated in terms of elementary embeddings, see
for instance [13]. All the cardinals considered so far are linearly ordered in terms of
strength: for instance every supercompact is strongly compact, and every strongly com-
pact is strong.

Note that by a celebrated result by Kunen [9], there can be, in ZFC, no cardinal κ such
that there exists an elementary embedding j ∶ V → V with critial point κ. �is sets an
upper bound on the large cardinal concept which we can consider.24

4. On the consistency strength

Large cardinals are interesting set-theoretical objects with beautiful combinatorics and
surprising connections among themselves; for instance many of these can be de�ned in
apparently disparate ways – using elementary embedding, satisfaction in various struc-
tures, or by partition properties. However, this does not fully explain the willingness with
which large cardinals are almost universally accepted by the set theoreticians. To expli-
cate the wider role of large cardinals we need to introduce the notion of a consistency
strength over ZFC.

De�nition 4.1. A statement σ in the language of set theory is stronger in terms of con-
sistency then another statement σ ′ if

CON(ZFC + σ) → CON(ZFC + σ ′).

We denote here this relation by
σ ′ ≤c σ .

23 γM ⊆ M is true if for every sequence of length γ of elements in M, the whole sequence is in M. �is a
non-trivial requirement because the sequence itself is in general only in V , and not in M.

24 Rather surprisingly, it is still open whether this limiting result holds in ZF.
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Statements are called equiconsistent if

CON(ZFC + σ) ↔ CON(ZFC + σ ′).

For instance, GCH ≡c ¬CH ≡c V = L ≡c V ≠ L ≡c ◇ ≡c “�ere are no ω1-Souslin
trees”.25 Moreover we have

(4.5) CON(ZF − Axiom of Foundation ) → CON(ZFC + σ)

for any σ from the class [GCH]≡c .26
Note that the relation of equiconsistency ≡c is an equivalence relation, and the relation

≤c is an ordering on the equivalence classes given by ≡c . What is the structure of this
ordering? In principle, it might be highly non-linear. However, large cardinal concepts
can be used to show that it is in fact mostly linear: for many combinatorial statements σ
and σ ′ considered in practice, we either have σ ≤c σ ′ or σ ′ ≤c σ . �e key here is that large
cardinal concepts themselves are linearly ordered under ≤c , and very o�en one can show
that a statement σ is equiconsistent with a certain large cardinal axiom.

By way of example, considered the following three statements (see [7] for the de�ni-
tions of the concepts mentioned):

(A) (Over ZF) All sets of reals are Lebesgue measurable.
(B) (Over ZFC) Every ω2-tree has a co�nal branch.
(C) (Over ZFC) SCH fails.
A priori, they might be incomparable under ≤c ; however, one can prove:

�eorem 4.2 (Solovay [18], Shelah [16]).

(A) ≡c “there exists an inaccessible cardinal”.

�eorem 4.3 (Mitchell [12]).

(B) ≡c “there exists a weakly compact cardinal”.

�eorem 4.4 (Mitchell [14], Gitik [3]).

(C) ≡c “there exists a measurable cardinal of Mitchell order o(κ) = κ++”.

Corollary 4.5. GCH <c (A) <c (B) <c (C).

�e above theorems are proved using two complementary methods: (i) forcing over a
model with the given large cardinal, and (ii) technique of innermodels to �nd a large car-
dinal (in somemodel of set theory) from the given combinatorial statement. For instance
�eorem 4.3 is proved by iterating a certain forcing notion (such as the Sacks forcing at
ω) along κ, where κ is weakly compact: this gives

(B) ≤c “there exists a weakly compact cardinal”.

Conversely, one can show that if (B) holds, then ω2 of V is a weakly compact cardinal in
L, and hence there is a model with weakly compact cardinal. �is gives:

“there exists a weakly compact cardinal” ≤c (B).

25 �is can be shown using Gödel’s class of constructible sets L, or by forcing.
26 Notice that by (4.5), [GCH]≡c is equal to [ν]≡c for any ν such that ZFC ⊢ ν.
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Problems arise when the large cardinal in question is inconsistent with L (such as a mea-
surable cardinal), then to obtain the consistence of the large cardinals, a generalization of
Lmust be de�ned which allows large cardinals. �is is the �eld of inner model theory. So
far, inner models were devised for in�nitely many Woodin cardinals (Woodin cardinals
are much stronger than measurable cardinals in terms of consistency strength), but not –
crucially – for strongly compact or supercompact cardinals. �is inability to �nd suitable
inner models for such large cardinals is one of the most pressing problems in current set
theory. Because of this, the following is still open for a certain important combinatorial
statement denoted as PFA (Proper Forcing Axiom):27

Open question. We know: PFA ≤c “there exists a supercompact cardinal”. Does the
converse hold as well, i.e. is PFA equiconsistent with a supercompact cardinal?

�ere is a general agreement that this is the case, but we cannot prove it.28
�e following is also long open, probably for the similar reason as the case of PFA:
Open question. By de�nition, every supercompact cardinal is strongly compact. We

also know that κ can be measurable + strongly compact but not supercompact. How-
ever, we do not know, but consider probable: Are strongly compact and supercompact
cardinals equiconsistent?

5. Conslusion

Large cardinals considered in this article do not decide CH one way or another. In
fact no commonly considered large cardinals decide CH, which can be shown by similar
methods.29 However, notice that we cannot prove a statement such as “no large cardinal
decides CH” because in this statement we quantify over a vague domain of “large cardi-
nals” and hence such a statement is not in the language of set theory. It may be, but it
is not considered probable, that a new large cardinal will be devised which will be more
susceptible to e�ects of small forcings. At present, no such cardinal is known.
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itself is not a large cardinal axiom in the strict sense. Also, PFA trivially implies 2ω > ω1 the way it is set up,
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complex.
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ABSTRACT
�is paper deals with intuitionistic logic and completeness of Gentzen calculus with
respect to its semantics. We present a rather simple proof for the case where the
language is at most countable but may contain function symbols.
Keywords: completeness, Gentzen calculus, intuitionistic predicate logic, tree proof,
saturated sequent.

1. Introduction

Completeness theorems for intuitionistic predicate logic with respect to Kripke se-
mantics are o�en formulated with an additional assumption that the language is at most
countable or that it contains no function symbols (or both). For example, van Dalen’s
chapter in the Handbook of Philosophical Logic [2] contains a completeness proof of
Hilbert calculus where both the additional conditions are in place. Takeuti’s book [4]
contains a proof for Gentzen calculus for the case where the language has arbitrary car-
dinality, but the absence of function symbols is still assumed.

We will show a completeness proof for the Gentzen calculus which could be seen as
complementary to Takeuti’s. We assume that the language is at most countable, but we
do admit function symbols. Our proof is inspired by ideas in [4] and [2]. However, we
elaborate some details omitted in [2]. In particular, the concept of levels of nodes in a
Kripke model, see below, seems to be helpful. We treat terms more or less like Buss in [1],
where, in the Introduction, a proof of completeness of Gentzen calculus with respect to
semantics of classical logic is given. Our proof is based on the author’s master’s thesis [5]
and uses also some ideas from Section 5.1 in the book [3]. Construction of universes of
nodes of Kripke model and treatment of variables is inspired by [2].

2. Completeness

�e formulas we consider may contain function and predicate symbols from a �xed
countable language L, and variables from a �xed countable set. Formulas of the language
L may contain logical connectives →, &, ∨, ¬ and quanti�ers ∀ and ∃. �e equivalence
connective↔ is not a basic symbol for us. We consider sequent calculus almost the same




