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ABSTRACT

Earth-surface processes research is increasingly using the SfM-MVS (Structure from Motion and Multiple-View Stereophotogram-
metry) method to model land surface change over time at a very fine-scale. However, the role of topographic change on the error
calculated from “stable and fixed” Ground Control Points is under-documented and as far as the authors are aware, it has not been
evaluated as yet. Therefore, the present study is an analysis of the variability inherent to the SfM-MVS method used for 3D terrain
modeling, in a semi-controlled environment, comparing repeats of measurements, and repeats including topographic change in
the laboratory scene, in order to assess the role of elevation change in the scene on the space that remains unchanged. The meth-
odological framework involves varying the terrain morphology by adding 50 and 100 ml of sand to an originally horizontal sandbox,
creating a mount in the centre. Then, the authors compared the different experimental surfaces and their repeats acquired by
SfM-MVS, and using Gaussian Kernel Density Estimation (KDE). Results demonstrated that under stable and uniform flat surface
conditions, the SfM method yields relatively consistent results (standard deviation variety less than 0.027 mm). However, when the
experiments included the 50 ml and 100 ml mount of sand, the variability between repeats increased, even for location where no
topographic change had occurred. The authors argue that the topographic variability is spreading the error, increasing it compared
to the flat experiment. By extension, this consideration is essential, especially for research investigating topographic change such as
landslide and other erosion and deposition processes, because the error propagation varies with the surface change, and relating
erosion/deposition to topographic change needs to be done carefully.
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1. Introduction

Within a decade or so (Fonstad et al. 2013; Gomez
2012, 2013; James and Robson 2012; Westoby et
al. 2012), SfM-MVS (Structure from Motion - Mul-
tiple View Stereophotogrammetry) has deeply
transformed the fields of geo-sciences interested in
constructing “precise objects’ morphology” for a “low-
cost”, as it offers high spatial density measurement for
potentially extensive areas.

The SfM-MVS method enables the reconstruction
of three-dimensional spatial models from a series of
overlapping two-dimensional images (Szeliski 2010).
This technique has been widely applied to various
fields outside geosciences as well: e.g. archaeology
(de Reu et al. 2013, 2014; Verhoeven 2011), terrain
surveying, and robotic navigation (Hixon et al. 2018;
Deliry and Avdan 2021; Saputra et al. 2018). In com-
bination with the rapid advancement of Unmanned
Aerial Vehicle (UAV) technology, SfM-MVS has been
particularly instrumental in geosciences for the pro-
duction of DEMs (Digital Elevation Models) and DSMs
(Digital Surface Models). Furthermore, UAVs also
allow the access to previously difficult or unreachable
areas (e.g. Gomez 2023; Hayakawa et al. 2020). Con-
sequently, SfM-MVS has been applied to a wide range
of environment from the bottom of the ocean to the
mountain tops: submarine morphology (Lockhead
and Hedley 2022; Qiao et al. 2019), coastal morphol-
ogy (e.g. Clark et al. 2021; Gomez et al. 2023; Hayak-
awa et al. 2020), floodplain analysis (e.g. Bakker et al.
2017), mountainous terrains (e.g. Bi et al. 2023), and
volcanic landscapes (Gomez 2014; Gomez et al. 2022),
including the reconstruction of vegetation and trees
(Morgenstern and Gomez 2014).

Tab. 1 Accuracy Evaluation Studies in UAV Photogrammetry and SfM.

Because of its low cost and versatility, the meth-
od has also been extensively employed to depict top-
ographic variations over time, in order to quantify
fast-evolving landscapes. Among other examples,
SfM-MVS has been particularly useful to quantify the
dynamic of mountain landslides (Mauri et al. 2021;
Peppa et al. 2018) and coastal landslides (Esposito
et al. 2017), coastal dunes’ erosion and deposition
(Mestre-Runge et al. 2023), as well as gully erosion
and deposition where seasonal to yearly change are
important (Tsunetaka et al. 2021; Gomez et al. 2021).
The comparisons between the different time-steps
are either been done at the pointcloud level (Lague et
al. 2013; Esposito et al. 2017) or at the DEM level (e.g.
Mauri etal. 2021), using vertical matching of the data.

To work across spatial scales and repeated surveys,
error analysis is essential, and so is the georeferenc-
ing against ground control points (GCPs), especially
for repeated surveys (Forlani et al. 2018). But, even
with GCPs’ constraints, Liu et al. (2022) noted a varia-
bility in the produced point-clouds even under identi-
cal conditions. One of the challenges is due to the mul-
tiple sources of error. It includes influences from the
terrain itself, inaccuracies due to the camera or the
lens characteristics, as well as computational errors
(Westoby et al. 2012; Deliry et al. 2021). Notably,
many studies tend to investigate error as a bundled
dataset, while there is still a need to separate the influ-
ence of different parameters on the error. This is of
particular importance, because the use of StM-MVS is
often motivated by its potential high-precision (Ihea-
turu et al. 2020; Panagiotidis et al. 2016). Accordingly,
geoscientists have developed several methods to test
the precision of different models, notably with the
increased use of UAVs for DEMs’ construction (Tab. 1).

m Evaluation Criteria Error or Conclusion Reference

Sandy coastal topography via UAV

Vertical accuracy, compared with GCPs

0.09-0.11m Long et al. (2016)

Riverbed topography with GCPs

Mean error/standard deviation, compared

0.016-0.089 m / 0.065-0.085 Woodget et al. (2015)

Snow depth RMSEs

RMSE of depth of snow on rocks/grass,
compared to manual probe measurements

Bihler et al. ; Gindraux

0.07-0.15m /0.3m et al. (2016/2017)

Landslide monitoring RMSEs

with UAVs GCPs

Horizontal/vertical RMSE compared with

0.07 m, 0.06 m Lucieer et al. (2014)

Terrain models in moraines (UAV) RMSE, compared with GCPs

0.2 m, 0.59 m in dense vegetation Tonkin et al. (2014)

UAV-SFM accuracy test

in flat areas with GCPs

MSE in X, Y and Z coordinates, compared

20.93 mm, 18.48 mm and 46.05 mm lheaturu et al. (2020)

UAV-SfM in fluvial channels ) . .
with terrestrial laser scanning

Sediment volume estimation, compared

Effective for sediment changes Tsunetaka et al. (2020)

UAS-SfM accuracy
vs traditional methods

Factors impacting UAS-SfM accuracy

Accuracy mainly depends on sensor
resolution, flight height, image
overlaps, and the number, distribution,
and accuracy of GCPs

Deliry et al. (2021)

Accuracy of UAV-SFM
on farmland with vegetation

Vertical RMSE, compared with GCPs

approximately 10cm Peppa et al. (2016)
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Despite these advances, the inherent error due to
the repeat of topographic modelling using SfM-MVS
still needs further research (Zhao et al. 2021).

Therefore, out of a broad set of potential issues
(lighting, seasonality, reflectance and color of the
target, position of the camera, etc.), in this contribu-
tion the authors propose to investigate (1) the varia-
bility among repeats and (2) the role of topographic
variation on the error generated by repeats, notably
because the spatial error propagation is a well-known
phenomenon in photogrammetry, which is arguably
affecting the results of multiple SfM-MVS models.

2. Methodology

The authors propose to reach the goal mentioned
above, by using a controlled environment (sin-
gle-color sand, controlled lighting) in order to derive
a model of precision (the accuracy component of the
error is difficult to reach, as for most SfM-MVS models
in geomorphology, because the real shape measured
is not perfectly known), as for complex targets found
in the natural environment, it is difficult to define
a benchmark measure of object, and error can be

a. Make sand table

l

b. Take photos
(x15)

l

c.
Generate point cloud
(x15)

L]

d. Cut point cloud

'

e. Statistical
z-value distribution

l

g.
Calculate evaluation
parameters

f Change terrain

Fig. 1 Point cloud generation and analysis process.

approached from the variability of precision between
the repetition of the same measure.

The methodology of the present contribution
is based on the repeated SfM-MVS measurements
(Fig. 1) of an unvarying surface based on the following
experimental procedure, to which two generations of
sand mount were added to produce three generations
of experiments.

2.1 Material, data acquisition
and 3D model construction

For the present research, a sandbox model was crafted
using acrylic plates and double-sided tape on which a
single layer of calibrated 0.5 mm yellow color silicates
covers the surface. This allows the experimental setup
to have a regular roughness and surface height. The
experiments include (a) one set of experiments using
the flat surface, then (b) a set of experiments with a
conical mount made of 50 ml of sand poured in the
center of the experimental model, and finally (c) a set
of experiments with a sand cone of 100 ml in the cen-
tre. Each set of experiments is made of 15 repetitions
of the same measure, and each of the 15 repetitions
was captured using 45 to 50 photographs using a
Ricoh camera (Tab. 2).

Each set of photographs was then processed using
the SfM-MVS algorithm in Metashape-Pro® (Agi-
soft@©) to generate the point cloud data (e.g. Tinkham
et al. 2021; Catala-Roman et al. 2024). The process-
ing started from a sparse point-cloud reconstruction
and then a dense point-cloud reconstruction, and the
registration of the pointcloud was done using the tar-
gets that can be automatically recognized (cf. Tab. 3).

Tab. 2 The equipment and software used in the experiment.

Sand Base Acrylic Board + Double-sided Tape
Table Sand 0~100 ml Yellow Sand
GCP 18 Marks from Metashape
Main Body RICOH WG-7
Camera Lens RICOH DW-5 171930"
Pixel 5184 x 3888
CPU 12th Gen Intel(R)
Core(TM)i7-12700H 2.30Ghz
(o] [ VI8 DELL G15 5520 GPU NVIDIA GeForce RTX 3060
Laptop 8G
RAM | 16GB 4800Mhz
oty | etsor
Processing Python
Camera Shooting height | 45 + 3cm

Position Tilt < 10% taken as Nadir

* Additional lenses to eliminate distortion caused by camera lenses
(Wang et al. 2008; Wang et al. 2022).
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Tab. 3 Examples of point clouds generated from different volumes of sand.

0oml

50 ml

100 ml

After cropping all the points outside the experi-
mental table covered with yellow sand, the number
of points generated for each experiment is on aver-
age ~800,000 points, with a maximum of 1,012,235
points and a minimum of 710,705 points generated
for the experiments using the flat surface only. For the
experiments with a sand cone of 50ml, the number of
points is on average of 930,000 points, with a maxi-
mum of 1,139,308 points and a minimum of 794,791
points. Finally, the pointclouds for the experiments
with the 100 ml sand cone displays an average points’
numbers of 1,000,000 points, with a maximum of
1,265,351 points and a minimum of 874,874 points.

2.2 Data Analysis and statistical simulation

Subsequently, Python was employed to segment the
point cloud data, perform counts, and compute the
different statistical parameters to assess variability.
For this purpose, the point cloud data was then divid-
ed into a 5 x 8 grid cells, so that the Z-values in each
grid cell was handled as statistical populations, for
which distribution functions were created to compare
the different locations on the cell (Fig. 2).

Then for each grid cell, the authors calculated
distribution of the Z-value and determine the distri-
bution function using the distribution peak and its

300
1|6 ([11(16(21 26|31 |36
217 32 | 37
o
L1 3 8 33| 38
419 34|39
5110 20125130 35]40
Unit:mm Conical boundary (100ml)

[ Conical boundary {50ml)

Fig. 2 Grid cells division of sand table (in the result section, the cell
number refer to the numbers in this table).
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position (peak-z), the left and right tails (labelled
Min-z and Max-z), the full width at half-maximum
(FWHM), and the interquartile spacing (IQR). The dis-
tribution of the Z-values was then computed using the
Gaussian Kernel Density Estimation (KDE) method
(Zaman et al. 2017). KDE is a non-parametric meth-
od employed for estimating the Probability Density
Functions (PDF):

fO) =3 K (5 (1)

where f(x) represents the estimated density at point
x,and X4, X, ..., X, are the sample points, K is the kernel
function, and is the bandwidth. This method has been
used to analyze the spatial distribution characteristics
of point cloud data for 3D modeling, 3D object recog-
nition, and 3D model registration (Zhang et al. 2021),
especially when datasets have varying resolutions and
qualities (King et al. 2016; Vestal et al. 2021), which
was estimated to be one of the working assumption
for the present study as the average number of points
varied between the different types of experiments.

Because the objective of the present study is to
investigate the spatial variability of the error in seem-
ingly unchanging surface, the distribution function of
each grid-cell was analysed separately. To provide
a synthetic view of the points, the peak horizontal
coordinate (Peak-z), the minimum Z-value (Min-z),
the maximum Z-value (Max-z), the Full Width at Half
Maximum (FWHM), and the Interquartile Range
(IQR) were used as statistical markers (cf. summary
Tab. 4).

Tab. 4 Evaluation parameters.

parameter Calculation
Method

3. Results

Using the same acquisition method on the same
surface several times is showing an expected varia-
bility in the elevation. Furthermore, on a seamlessly
homogeneous surface, this variability shows spatial
dependence. The results of the experiments show
the greatest variations for experiments Y0-1 to Y0-15
using the flat 10 mm thick plate (Tab. 5), the peak val-
ues of Z ranged over 0.117 mm, averaging between
10.84 mm and 10.96 mm, with the greatest difference
observed in grid cell 1 (detailed results for each cell
of each experiment are provided in the appendix).The
difference in the maximum values varied between
0.072 mm and 0.341 mm in 15 replicates. The dif-
ference in Min-z values ranged from 0.068 mm to
0.206 mm, with an outlier value of 9.627 mm in grid
cell 21 removed, and the average min-z value for the
same grid cell was 10.574. The Max-z values ranged
between 10.813 mm and 11.154 mm, with grid cell 35
showing the greatest variation. FWHM values extend-
ed from 0.19 to 0.286, and grid cell 27 displayed the
largest variability. The IQR spanned from 0.102 to
0.148, with grid cell 27 also exhibiting the most dis-
tinct differences. The extent of variability across these
measurements is evidence in the statistical indicators
of Peak-z, Min-z, Max-z, FWHM, and IQR (Tab. 5).

For the experiments where the surface is “flat”, the
changes of Peak-z, FWHM and IQR were not signifi-
cant. (Tab. 5). However, within each experiment, the
variability of the minimum and maximum value can
vary by about 10% (e.g. YO-8 in Tab. 5).

Tab. 5 Z-value distribution of point cloud with the cells where the
largest variability was observed for the flat environment (i.e. no
extra-sand added).

Cell-1 Cell-21 Cell-35 Cell-27 Cell-27

Peak-z _ The horizontal coordinate of the vertex
in the z-value distribution function. Y0-1 10.584 10.970
Represents the lowest value in the Y0-2 10.933 10.601 10.892 0.227 0.122
Min-z - distribution, indicating the lower limit YO-3 10.565 0.239 0.126
of Z-values.
Y0-4 10.897 10.544 10.904 0.230 0.119
Represents the highest value in the Y05 nenn e . . T
Max-z - distribution, indicating the upper limit ) . . . § ¥
of Z-values. Y0-6 10.940 10.525 0.238 0.128
Describes the width of the distribution Y0-7 10.919 10.490 10.876 0.237 0.126
deﬁnt.ad as the width at which Fhe YO8 10.939 0.238 0.125
function value reaches half of its
FWHM FWHM =x, - X, mammlfm value. Her.e X, X, are Y0-9 10.953 0.217 0.115
the horizontal coordinates on the Y0-10 10.936 10.617 10.978
distribution curve where the function - : : :
value reaches half of the maximum on Y0-11 10.921 10.885 0.254 0.131
the right and left sides, respectively.
Y0-12 10.915 10.603 11.061 0.264 0.138
A statistical measure describing the Y0-13 10919 | 10542 | 10.952
dispersion of a distribution representing
the range of the middle 50% of the Y0-14 10.893 10.577 10.957 0.231 0.119
1aR QR =G5~ Qy data. Where Qs is the third quartile
(75th percentile), and Q, is the first Y0-15 10.916 10.530 10.895 0.227 0.120
quartile (25th percentile). Difference 0.117 1.019 0.341 0.096 0.047
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Overall, the precision is decreasing when the
topography becomes more complex (i.e. with the
central conic pile of sand). For the scenario where 50
ml of sand was added, the Peak-z values for Y50-1 to
Y50-15 ranged from 18.783 to 19.494, with grid cell-1
showing the most significant differences. Min-z values
oscillated between 10.094 and 10.673, with the larg-
est variations in grid cell-36. Max-z exhibited a range
from 18.553 to 18.833, with grid cell-35 displaying
the most noticeable variability. FWHM varied from
12.411 to 12.950, with grid cell-27 having the most
pronounced differences. The IQR extended from 7.063
to 7.223, with the greatest variability again observed
in grid cell-27. These data points highlight the impact
of added sand on the variability of the measurements
(Tab. 6).

The second set of experiments revealed a signif-
icant increase in the variability of the SfM method,
particularly in the Peak-z parameter, which exhibit-
ed the most notable variability. The Peak-z variabil-
ity substantially increased, showing a deviation of
0.711 mm. This heightened variability may be attrib-
uted to changes in the surface morphology of the
sandbox, resulting in greater uncertainty in the SfM
method when measuring similar features. While the
variability in FWHM and IQR is lower compared to
the experiments without added sand, it still shows
some increase. Furthermore, the variability of Min-Z
increased, but the variability of Max-Z decreased
slightly. In this scenario, a change in the Peak-z of the
distribution function is observed, while the shape of
the curve displays smaller variations.

Tab. 6 Z-value distribution of point cloud and the cell of the largest
difference: 50 ml.

- Cell-29 Cell-6 Cell-20 Cell-28 Cell-25

Upon adding 100 ml of sand (Tab. 7), the dataset
(Y100-1 to Y100-15) showed Peak-z values ranging
from 22.959 to 23.451, with grid cell-1 exhibiting the
most variability. Min-z ranged from 10.495 to 10.727,
with the most significant differences in grid cell-36.
Max-z values varied between 19.305 and 19.628, with
grid cell-35 showing the greatest range of variability.
FWHM was observed to range from 16.870 to 17.351,
with the largest differences in grid cell-27. The IQR
varied from 5.472 to 5.619, with the most variability
again noted in grid cell-27.

With the addition of 100 ml of sand, the variability
in Peak-z remains relatively high but is reduced com-
pared to the 50 ml sand addition. Despite the increased
volume of sand, the complexity of the surface shape
does not increase correspondingly. This may suggest
that the SfM method can achieve more stable results
for larger targets. The continued low variability in
FWHM and IQR also indicates that the shape of the
distribution function undergoes minimal change.

Even for the grid cells that do not display any signif-
icant change, the variability of the Z values is changing
in between experiments. The presence of the 50 ml
and then 100 ml sand cone is impacting the variability
of grid cells where the sand cone is not located (Fig. 3).
The cells the further away from the cone are grid cells
cell-1, cell-5, cell-36 and cell-40, and the spread of the
z-values as well as the position (mean, minimum and
maximum) are all changing significantly (Fig. 3). The
peak value of cell 1 first increases and then decreases,
from experiments YO to Y50 to Y100, while the spread
of the measurements decreases. The peak position of

Tab. 7 Z-value distribution of point cloud and the cell of the largest
difference: 100 ml.

- Cell-19 Cell-37 Cell-27 Cell-18 Cell-20

Y50-1 19.110 10.614 18.741 7.134 Y100-1 23.257 10.677 19.383

Y50-2 19.144 10.647 18.754 12.606 Y100-2 10.624 19.420

Y50-3 19.072 10.591 18.697 12.579 7.117 Y100-3 23.152 10.575 19.461

Y50-4 18.945 10.630 18.742 12.508 Y100-4 23.159 10.643 19.445 16.992

Y50-5 19.131 18.685 12.602 7.161 Y100-5 23.168 10.603 19.511 17.084 5.577
Y50-6 19.343 10.612 18.661 12.728 Y100-6 23.084 5.503
Y50-7 19.037 10.629 12.617 7.145 Y100-7 23.327 10.590 19.476 5.576
Y50-8 19.126 10.550 18.751 12.570 7.139 Y100-8 23.110 10.637 19.373

Y50-9 19.022 10.545 18.726 12.577 7.170 Y100-9 23.114 10.645 19.583

Y50-10 10.576 7.139 Y100-10 23.092 10.685 19.463 17.037 5.552
Y50-11 18.715 12.641 7.163 Y100-11 23.034 10.623 19.440 17.019 5.524
Y50-12 19.012 10.601 18.704 12.681 7.185 Y100-12 10.641 19.495

Y50-13 19.339 10.576 18.684 12.698 7.159 Y100-13 23.097 10.625 19.417 17.032 5.541
Y50-14 19.228 10.439 12.813 7.141 Y100-14 23.230 17.099 5.524
Y50-15 10.526 18.671 12.571 7.119 Y100-15 23.105 10.632 19.437 17.142

Difference 0.711 0.578 0.280 0.539 0.160 Difference 0.492 0.232 0.322 0.484 0.147
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cell-5 increases, and the dispersion first increases and
then decreases. The peak value of grid 36 is larger,
but the dispersion is basically unchanged. Finally, the
peak of the cell 40 grid decreases slightly and instead
becomes more dispersed (Fig. 3).

For the same cell, the mean fluctuates somewhat,
but the degree of dispersion is basically the same
(Fig. 4). The mean decreased in Cell-1, and slight-
ly increased in Cell-5 in Y-100, and their degree of
dispersion remained basically unchanged. Cell-40
is stable, but the dispersion of Cell-36 increases
significantly.

When the spatial distribution and repeated meas-
urements are displayed together, the differences
between cells can be significantly observed. Calculate
the standard deviation of the remaining cells after
removing the area that the sand will cover. In Fig. 5-3,
cell-1, cell-2, and cell-6 show large standard devia-
tions, and several positions in the 8th measurement
show large standard deviations. After the addition
of 50 ml sand, the standard deviation of each cell
decreased, but cell-1 and cell-2 were still significantly
higher than other positions (Fig. 5-b). When 100 ml
of sand was added, higher standard deviations were
observed for cell-1, cell-2, and cell-26 (Fig. 5-c). In
general, the change of terrain does lead to different
degrees of variation in the standard deviation of each
location. From this representation of the data, one can
see that the standard deviation of the points in each
cell can vary, and so within a single set of experiments,
with two corner locations showing consistently the
highest standard deviation. Moreover, the increased
in standard deviation does not seem to be related to
the repeats themselves, as the variability is moving in
space rather than just in between repeats.

4. Discussion
4.1 Summary of the main findings

In the present contribution, the authors have add-
ed to the already known issue of error in SEM-MVS
measurement of the land surface a spatial dimension,
showing that the error can be location dependent.
This finding is consistent with previous studies that
have reported spatial variability in SEM-MVS accu-
racy (James and Robson 2012; Fonstad et al. 2013;
Smith and Vericat 2015). Furthermore, the steeper
the terrain, the larger the error. This phenomenon is
already notably known, with problems such as dom-
ing effects and increase of the topographic maxima
(James and Robson 2014; Javernick et al. 2014; Elt-
ner et al. 2016). However, the novelty of the present
contribution shows that flat surfaces close to areas
with high topographic variability also experience an
increased error. In previous work, Gomez et al. (2015)
found that the SfM measurement over forested can-
opy was in the range of 10 m at the landscape scale,

but the author did not consider the spatial diffusion
of this error to other areas, and it is most likely that
this error diffused in other areas, as a function of the
elevation variability as shown in the present results.

4.2 Importance of the results for repeated
measurements

This “tele-connection” of surrounding features on the
error on “flat surfaces” is particularly important for
research involving the repetition of measurements
over time, in order to measure land deformation (Cuc-
chiaro et al. 2020; Hemmelder et al. 2021). Indeed,
it cannot be expected that the error will remain the
same at a control point, event if it is known to be sta-
ble as long as other parts of the landscape are chang-
ing. It is thus important to reconsider this point for
the measure of for instance: from coastal erosion (e.g.
Fabris et al. 2021; Terefenko et al. 2018) and coastal
sand-dune evolution (e.g. Gomez et al. 2024) to the
evolution of volcanic gullies at mid- (e.g. Tsunetaka
et al. 2021) to longer-term (e.g. Gomez et al. 2014),
including the built-environment (e.g. Wei et al. 2021
for urban surface displacement). This observation
can be further extended when surveying is conducted
at different periods of the years (e.g. Micheletti et al.
2015; Groos et al. 2019; Niederheiser et al. 2021), as
the vegetation growth and geometry change will mod-
ify the whole geometry of the scene.

4.3 Error “tele-connection” and surrounding
morphology

The present experimental work has been investigat-
ing the variability in measured vertical values (topog-
raphy for instance), using a regular flat surface, made
of only one grain-size and one color, and two other
surfaces with a central sand cone. As expected, the
error varies from one repeat to another almost ran-
domly, but the most important result is the “tele-con-
nection” of the error when a spatially disconnected
morphology change. In other words, surrounding
geometries can influence a surrounding flat sur-
face. In term of geomorphology a volcanic structure
growing, or a landslide moving over a terrain has the
potential to modify the error at target locations that
are not subject to movement or any change.

Similar observations were made by Dr. Tsune-
taka when he was preparing one of manuscript on
Unzen Volcano (Tsunetaka et al. 2021). He stated that
Ground Control Points were leading to different spa-
tial spread of the error depending on the position of
the Ground Control Point, especially in relation with
the surrounding topography (private communica-
tion). In other words, topographic variability in the
vicinity of one or a set of control points can lead to
a change in the error at the control points, showing
a similar “teleconnection” between surrounding fea-
tures and the points on a flat area.
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Fig. 5 Spatial Variability of the altitude (Z) standard deviation; (a) no extra sand, (b) 50 ml of sand added, and (c) 100 ml of sand
added. The cells used for comparison are the one on the periphery of the experimental box, where no topographic change
occurred over all the experiments. Each repeat of the experiment is displayed as a vertical level. The views on the left and right
for each experiments a, b and c show the data from a different angle for easier reading.

4.4 Comparison with Geomorphological
structures

In order to apply the error analysis to the actual ter-
rain, based on the experimental results of this study,
the error index is calculated according to formula 2.

E, = Z’”hﬂ x 100% (2)
Where E,, is the range of elevation fluctuation. Z .,

and Z,,;, are the maximum and minimum values of
the average elevation of the midpoint in the grid cell,

respectively. is the average elevation of the grid cell.
The calculation results are shown in the Tab. 8, and
there is the lowest elevation without adding sand, that
is, the thickness of the acrylic sheet, which is about
10.723 mm. The variability error at this point is about
0.431% to 0.959%. After adding 50 ml of sand, the
elevation reaches about 29.868 mm, and the error
decreases, ranging from 0.312 to 0.763%. After add-
ing 100 ml of sand, the elevation is 37.535 mm, and
the error range becomes larger at this time, rising to
0.256~1.226%.
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Tab. 8 Relationship between height and error range.

Sand volume (ml) | Height of sand table (mm)

0 =10.723 0.431~0.959%
50 =29.868 0.312~0.763%
100 =37.535 0.256~1.226%

For flat cells that do not undergo topographic
changes throughout, their variability will also be
affected by changes in the central topography. In the
absence of additional sand, the variability in these
areas ranges from 0.0058 to 0.1047 mm, with a mean
of 0.075 (e.g. Fig. 6). When the microtopography of
the central area fluctuates, the variability decreas-
es significantly, ranging from 0.0421 to 0.0719, and
the variability becomes relatively evenly distribut-
ed, concentrated around the average value of 0.0609
(e.g. Fig. 6). Considering the micro-topography with
a 100 ml of sand, the measured vertical variability
increaed, with variability ranging from 0.0608 and
0.1333. The change range was far greater than the
previous two cases (e.g. Fig. 6). This suggests that
even in areas where no terrain change has occurred,
the error will be affected by the surrounding terrain.
However, the error range measured in the present
set of experiments is inferior to the grain-size height
(0.5 mm) by almost a factor of 5, even for the high-
est recorded values. As the authors have used a rig-
id acrylic sheet, which can be taken as perfectly flat,

the total error of the model can be represented as a
combination of the measured precision (0.1333 mm)
and the variability induced by the particles over the
acrylic sheet (with values between 0 and 0.5 mm, or
half the particle height if one only considers the upper
half of the particles).

4.5 Comparison with error arising
from topographic change

Common sources of error linked to topographic
change when using SfM-MVS are linked to at least four
important sources: (1) perspective distortion: Steep
topography can cause perspective distortion in the
captured images. This distortion affects the accuracy
of the feature matching and triangulation processes
in SfM. The perspective projection equation, which
relates 3D world coordinates to 2D image coordi-
nates, is sensitive to large depth variations (Hartley
and Zisserman 2004); (2) depth uncertainty: In areas
of steep topographic changes, the depth estimation
from triangulation becomes less reliable, because
the depth uncertainty is inversely proportional to the
baseline (distance between camera positions) and
directly proportional to the depth (Gallup et al. 2007).
Steep surfaces often have larger depths relative to the
baseline, leading to higher depth uncertainty; from
1 and 2, then (3) occlusions and visibility will increase
the error (e.g. Furukawa and Ponce 2010). Finally, (4),
steep topographic changes can make it challenging
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Fig. 6 Changes in flat cell variability. The error range < sand grain-size, potentially suggesting that maximum grain-size
on an outdoor surface may be a good indicator of precision variability under similar conditions.



Tele-effect of geomorphological change

13

to accurately estimate surface normals, as the local
neighborhood around a point may have significant
depth variations (Kazhdan and Hoppe 2013). In the
present case however, the topographic change are all
resulting from a regular dome-shaped controlled by
the sand internal-friction angle, and the source of var-
iability is thus different, however the increased error
at the corners (Fig. 5) may be related to a difficulty to
estimate the normal, due to the immediate location
at the edge of the acrylic sheet, but it remains insuffi-
cient in explaining the variability between the differ-
ent types of experiments.

The present contribution confirms the recognized
diffusion of error across a measured scene, but it
newly demonstrates that the “tele-connection” of
errors are driven by the topographic variability, and
that repeated measurements need to be considered
in order to address inherent error due to measure-
ments. It also demonstrates that the relation between
topographic height and variability in the recorded
values is not linear, and according to the existing lit-
erature on steep slopes and SfM-MVS error, the error
is likely to increase with the slope of the topographic
feature. Interestingly, the experiments were all con-
ducted with the same lighting and homogeneous sin-
gle color sand surface, but yet spatial variability in the
error was also apparent showing the need to mitigate
both precision problems linked to the method and the
target (as three sets of vertical variability were test-
ed). This is particularly important when attempting
to measure erosion and other surface changes over
time, and the variability observed in the present set of
experiments may be exacerbated or multiplied under
the influence of other factors.
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