2022 ACTA UNIVERSITATIS CAROLINAE PP. 77-93
PHILOSOPHICA ET HISTORICA 1/ MISCELLANEA LOGICA

A NOTE ON GENERALIZED GENERALIZATION

VITEZSLAV SVEJDAR
Dept. of Logic, School of Arts, Charles University in Prague
vitezslav.svejdar@cuni.cz

ABSTRACT

The generalization rules of sequent calculi allow, under some restrictions, to derive
a formula Jz¢ or Vay from a formula ¢4 (y), i.e. from the formula obtained by
substituting a variable y for all free occurrences of = in . We introduce modified
generalization rules that make it possible to derive Jz¢ or Vzy from o (t) even
in some cases where ¢ is a complex term. These modified rules were invented in
connection with attempts to prove the interpolation theorem for classical predicate
logic without equality but with function symbols. This theorem seems (and remains)
to be an unresolved case in the literature.
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1 Introduction: interpolation theorems

Interpolation theorem, for one or another logic, is easily stated if the list of logical
symbols includes the “nulary connectives” T and L for truth and falsity. Then the in-
terpolation theorem is the claim that if an implication ¢ — 9 is valid (as determined by
the semantics of the logic in question), then there exists a formula p, called interpolant
of ¢ and v, such that ¢ — p and p — 9 are valid and p contains only those extralogical
symbols that simultaneously occur in both ¢ and . In predicate logic we first choose a
language L, and then extralogical symbols, or just symbols, are free variables, and func-
tion and predicate symbols of L. Interpolation makes sense also in various propositional
logics (classical, non-classical, modal). Then extralogical symbols are just atoms. We
will give some examples of different logics later in Section 3.

Let Symb(y) or Symb(T") for a formula ¢ or a set I' of formulas denote the set
of all extralogical symbols in ¢ or in I'. Thus an interpolant p of formulas ¢ and
must satisfy Symb(u) C Symb(p) N Symb(). In propositional logic Symb(. .) is the
set of all atoms in ¢ or in I. In predicate logic with equality Symb(..) is the set of
all free variables, predicate symbols and function symbols that occur in ¢ or in I'. In
this case the symbol = has a fixed realization in any structure. It is not considered an
extralogical symbol and thus it never appears in a set of the form Symb(..). Just like
connectives and quantifiers, it may occur in an interpolant regardless whether it occurs
in the interpolated formulas. In predicate logic without equality the symbol = is an
extralogical binary symbol with no fixed meaning, and it may occur in an interpolant of
 and v only if it is in Symb(¢) N Symb(2)).
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Example 1.1 Let LO be the conjunction of the axioms of strict linear order, i.e. of the
sentences VaVyVz(R(z,y) & R(y, z) = R(z, 2)), VeVy(R(z,y) V v =y V R(y,x))
and Vz—-R(z,x). Let ¢ be LO & VaIyR(z,y) and let ¢ be Jy(z # y) where z # y
is a shorthand for —(z = y). In classical predicate logic with equality Symb(y) is { R}
and Symb(¢) is {z}. The implication ¢ — 1) is logically valid and thus one can seek
an interpolant y satisfying Symb(u) = 0. It is easy to check that u = VxIy(z # y)
is as required. In predicate logic without equality Symb(yp) is {R,=} and Symb(4))
is {z,=}. One can verify that now ¢ — 1) is not logically valid. However, if we de-
note ¢ & YuVu(R(u,v) & u=v — R(u,u)) by x, then xy — # is logically valid. Then
the same formula V23y(z # y) works as an interpolant of x and ).

In logic with equality one can use equivalences like 1. & o = 1 and L V ¢ = ¢ and
verify that every formula p is equivalent to T, or to L, or to a formula v not containing
T and L and satisfying Symb(v) C Symb(p). Thus if T and L are absent, the interpo-
lation theorem reads: if ¢ — 1) is valid, then —¢ is valid, or ¢ is valid, or there exists a
formula v such that ¢ — v and v — 4 are valid and Symb(v) C Symb(¢) N Symb(¢)).
This explains that we do not see our assumption that T and L are present as a restriction.
It just simplifies claims and their proofs. Clearly, T is equivalent to 1. — L and —p is
equivalent to ¢ — L. Thus when discussing logical calculi, we will be able to simplify
their definitions using the assumptions that T and — are defined symbols.

Besides (normal) interpolation one can also consider uniform interpolation. Let ¢
be a formula and let S be a set of variables and predicate or function symbols such
that S C Symb(p). A formula p is a right uniform interpolant of p with respect to S
if ¢ — p is valid (again, as determined by the semantics in question), Symb(u) C S,
and p — 1) is valid for any formula v such that Symb(y) N Symb(¢) C S and ¢ — ¢
is valid. Thus a right uniform interpolant of ¢ with respect to .S can be described as the
strongest formula 1 that is a consequence of ¢ and satisfies Symb(u) C S. Left uniform
interpolant is defined analogously.

Example 1.2 Work in classical predicate logic with equality, let LO be the same con-
junction as in Example 1.1 and let again ¢ be the formula LO & Va3yR(z,y). We
have Symb(¢) = {R}. Consider a right uniform interpolant x of ¢ with respect to §.
Then 1 must be a sentence in the language Ly = 0, i.e. a sentence built up from equal-
ities of variables using connectives and quantifiers. Let m be the number of quantifiers
in p. A structure for Ly is just a nonempty set (the structure has a domain and no re-
alizations of symbols). Clearly, every infinite structure A for Lq has an expansion that
is a model of ¢. Since ¢ — p is logically valid, we see that y is valid in every in-
finite structure 4. However, since p contains only m occurrences of quantifiers, it is
also valid in every structure having at least m elements. This claim is a consequence
of the following lemma, which can be proved by outer induction on n and inner in-
duction on the number of logical symbols in ¢. Let A and B be structures for Ly, let
f+ A — B be one-to-one, let (x4, ..,xy) be a formula containing at most n quanti-
flers, let ay, . ., ay, be elements of A, and assume that A contains at least n elements dif-
ferent from aq, .., aj, and B contains at least n elements different from f(aq), .., f(ax).
Then A = ¢lay, .., ax] ifand only if B = ¢[f(a1), .., f(ar)]. Knowing that 4 is valid
in every structure having at least m elements, we have reached a contradiction: the sen-
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tence Vo .. Vo, Jy(y 21 & .. & y # x,,) is a consequence of ¢, it is not valid in
an m-element structure and thus it is not a consequence of p, which it should be since p
is a right uniform interpolant. Thus we see that a general theorem stating the existence
of right uniform interpolants is not true for classical predicate logic with equality.

First papers about interpolation, containing also some applications, are W. Craig’s
[Cra57a] and [Cra57b]. Then R. C. Lyndon in [Lyn59a] and [Lyn59b] distinguished
positive and negative occurrences of symbols and proved a stronger result: every two
formulas ¢ and v have an interpolant p such that every symbol that appears positively
(negatively) in p also appears positively (negatively) in both ¢ and 7). Various variants of
Craig’s or Lyndon’s theorem are often cited as the Craig—Lyndon interpolation theorem.
Henkin in [Hen63] proved (among other things) that uniform interpolation theorems are
true for classical propositional logic. Example 1.2 above is also taken from [Hen63].
Later interpolation became a well-established field of research. Now there exists numer-
ous literature about normal or uniform interpolation for different nonclassical logics,
and the proofs involve both semantic and proof-theoretic methods. Some idea about this
field can be obtained for example from [Bil07] and from its list of references. Interest-
ing negative results exist as well: [MOU13] show that the interpolation theorem does
not hold for logic of constant domains.

Craig and Lyndon proved the interpolation theorem for classical predicate logic with
equality, and also for classical predicate logic without equality but with the following
additional restriction: there are no function symbols of nonzero arity. Also Takeuti and
Buss in [Tak75] and [Bus98] work under the same assumption about function symbols.
Craig in [Cra57b] says that “most results of this paper do not hold for first-order pred-
icate calculus with function symbols”, but does not give any counterexamples. Thus it
seems that the case of logic without equality but with no restriction on function symbols
is unresolved.

This paper is motivated by this unresolved case, but we will not be able to give
an ultimate answer. In the next section we will mention calculi for classical predicate
logic. We will put emphasis on Gentzen-style calculi, and we will define generalized (or
enhanced) generalization rules that have been invented during attempts to prove an un-
restricted interpolation theorem for classical logic without equality. Since we also want
to provide the reader with some idea of how the interpolation proofs go, in Section 3 we
will survey known proofs for several popular logics. In Section 4 and 5 we will prove
that our generalized rules are not sound in logic with equality, but they are sound in logic
without equality. Thus we perhaps also throw some more light on the role of the equality
symbol in logic. The question of unrestricted interpolation theorem for classical logic
without equality will remain unanswered.

2 Calculi for classical logic, their generalization rules

In Hilbert-style predicate calculi, the generalization rules usually have the following
form:

o= / = and V= [ Y= Vap (1)
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where the variable = has no free occurrences in the formula ). An advantage of this
variant of the generalization rules is that they do not have to be changed when switch-
ing to intuitionistic logic. Hilbert-style calculi also have the instantiation axioms and
possibly the equality axioms, both being again the same in classical and in intuitionis-
tic logic. The propositional part of a classical Hilbert-style calculus makes it possible
to derive every tautology. Here it is good to recall that tautologies are not the same as
logically valid formulas: a predicate formula is a tautology if it can be obtained from
a propositional tautology by substituting predicate formulas for atoms. As much about
Hilbert-style calculi: in the following we will only need Gentzen-style calculi (that is,
sequent calculi).

The rules of a sequent calculus derive sequents, not formulas. We prefer the defini-
tion where sequent is a pair of finite sets (rather than multisets or sequences) of formulas.
If a sequent consists of sets I and A, we write it as (I" = A ) where = is an auxiliary
symbol (not a connective) and the angle brackets just separate the sequent from possible
other sequents. Its meaning is “if all formulas in I" hold, then also some formula in A
holds”. The sets I and A are called antecedent and succedent of the sequent (I" = A).
A rule of a sequent calculus can be binary (if it derives a sequent from a pair of already
proved sequents) or unary (if it derives a sequent from one sequent). A proof in a se-
quent calculus is a tree whose nodes are (labeled by) sequents, every leaf (a node having
no predecessors) is an initial sequent and every other sequent is derived from its pre-
decessor or from its two predecessors using a rule. A sequent (I' = A) is initial if
I'NA # Qorif L €. In fact, initial sequents are nulary rules. A proof is a proof of
its root, i.e. of its endsequent. A proof of a formula ¢ is a proof of the sequent whose
antecedent is empty and whose succedent is {(}. We write this sequent as ( = ¢ ).

Some rules can be classified as structural, i.e. not linked to a logical symbol. The
other rules are logical. One of the structural rules is weakening. It allows adding any
formula to antecedent or to succedent. Another structural rule is the cut rule, which
will be mentioned below. If sequent were defined as a pair of sequences or a pair of
multisets, we could also need contractions and exchanges that make it possible to drop
one of two identical formulas or change the order of formulas. Each logical symbol has
(logical) rules that “add” a formula in which the symbol occurs at the outermost level.
For example, the succedent rules for VV may look as follows:

(I' = Ap) (I' = A) (I' = A p,9) @)
(' = A,pV) (T'= A,pV) (T'= Ao V).

We follow the usual notation: curly braces enclosing individual formulas are omitted,
and commas denote set union, even in expressions like Symb(T, ¢)). The formula that
is “added” by an application of the rule, which in (2) is always ¢ V 1, is called principal
Sformula of the rule. Once again we have used quotes because the union A U {¢ V 1} is
legitimate whether ¢ V 1 is or is not in A, and if it is in A, then nothing is added. The
formulas that are processed by an application of a rule (the formula ¢, the formula v
and the two formulas ¢ and ¢ in the displayed line (2)) are called active formulas. The
remaining formulas, which are just copied to the bottom sequent, are side formulas.
Given a sequent (I' = A, ¢, 1), one can first apply the first rule in (2) and ob-
tain (I' = A, V ¥, ), and then the second rule in (2) yields (I’ = A, V ¥).
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This reasoning demonstrates that the fact that a principal formula may at the same time
be a side formula is very useful, and it also shows that the first two rules, taken together,
simulate the third rule. The converse is also true: the third rule can, using a weakening,
simulate each of the other two rules.

An example of a binary rule is the antecedent rule for implication. Here we can also
opt for one of two variants:

(I'= Ap) (LY = A) (I'= Ap) (Y = A)
(T, I, —vY = AA) (T,p =9 = A).

3)

In both cases a sequent containing an implication ¢ — v is derived from two sequents,
one containing ¢ in the succedent and another containing 1 in the antecedent. The
difference is that in the second rule in (3) the two upper sequents have the same sets (the
sets I and A) of side formulas. It is the context-sensitive variant of the rule, while the
first rule, having four sets I', A, IT and A of side formulas, is context-insensitive. 1t is
clear that the two variants are equivalent (mutually simulable): the context-insensitive
variant admits the case where I' = IT and A = A, and the context-sensitive variant can
simulate the context-insensitive variant with the help of some weakenings.

We do not list the remaining propositional logical rules: the succedent rule for impli-
cation, the antecedent rule for disjunction (here one can again opt for a context-sensitive
or context-insensitive variant) and the rules for conjunction. The reader may guess (de-
sign) them, or they can be found in the literature. Worth mentioning is the cut rule:

(I'= A,p) (o= A)
(III = AJA),

(4)

which makes it possible to drop a formula if it occurs in the succedent of a proved
sequent and in the antecedent of another already proved sequent. A proof not containing
an application of the cut rule is a cut-free proof. Inspection of the rules other than the
cut rule shows that every formula in a cut-free proof is a subformula (in predicate logic,
a substitution instance of a subformula) of some formula in the endsequent. Cut-free
proofs formalize “direct reasoning”, not containing detours through unrelated formulas.
Classical logic, both propositional and predicate, satisfies the cut-elimination theorem:
every provable sequent is provable without using the cut rule. The questions whether
the cut-elimination theorem holds, or whether a sequent calculus exists at all, is relevant
and studied for every logic.

As to classical logic, we use GK to denote its (more or less just described) calculus.
The letters stand for “Gentzen klassisch”. In the literature one can also find LK where
L refers to “logic”. We use the same name GK also for the predicate version of the
classical calculus, which we will deal with now. The generalization rules of GK are

(T ea(y) = A) (I' = A pa(y))
(T,3zp = A) an (T = A, Vzp)

()
where ¢, (y) denotes the result of substituting y for all free occurrences of the variable x

in ¢, and y, the eigenvariable, is a variable substitutable for z in ¢ that has no free occur-
rences in the resulting sequent (I, 3z = A)or (I' = A, Vzy). Thus Hilbert-style
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calculi and sequent calculi share a restriction concerning the variable that is generalized.
The rules (5), furthermore, make it possible to rename this variable. This difference is
not essential: while the rules (1) do not allow renaming, in a Hilbert-style calculus re-
naming of bound variables can, of course, be achieved. The remaining quantifier rules
of GK are the instantiation (or specification) rules:

(T, @a(t) = A) g I =Ae)
(T\Vzp = A) an (T = A, Jzp)

(6)

where, again, ¢, (t) denotes the result of substituting ¢ for all free occurrences of z in ¢,
and t is a term of the language in question that is substitutable for x in ¢. It is good
to notice the common properties and the differences between the generalization and in-
stantiation rules. In both (5) and (6) a quantified formula is obtained by “unsubstituting”
a substitutable term. However, in (5) this term must be a variable and it must not occur
in the resulting sequent. The latter stipulation is called eigenvariable condition, and it is
easy to verify that without it the rules (5) would not be sound with respect to the classical
(i.e. Tarskian) semantics.

The generalization rules correspond to reasoning that appears in virtually every
mathematical proof. For example, the second rule in (5) formalizes the following ar-
gument.

We have to show that every individual has the property ¢. Let an individual y
be given. [...]. Therefore, y has the property ¢. Since y was arbitrary, all
individuals have the property .

This reasoning is sound if y is a new variable, i.e. if y does not denote anything else
in the proof in question. And this is exactly the stipulation to which the eigenvariable
condition corresponds. The first rule in (5) corresponds to a logical step that frequently
occurs as well. This is not a surprise since in classical logic the quantifiers 3 and V
behave symmetrically and are interdefinable.

In this paper we consider the following enhanced, or generalized, generalization
rules:

<F?¢$1,..7I7L(t1?"7tn) :> A> and <F :> A7L)0w17”’a;"<t1,..,tn)>
(T,3z1 .. Fznp = A) (T = A,Vx1..Ve,0)

(7)

where t1, . ., t, are pairwise different terms that are substitutable for z1, . ., z,, in ¢ and
such that, for each ¢, the outermost function symbol of ¢; (the term ¢; itself if it is a
variable) has no occurrences (has no free occurrences) in the resulting sequent (in the
bottom). The terms ¢; can contain inner occurrences of arbitrary function symbols and
of arbitrary variables. We cannot claim that these enhanced rules correspond to some
logical steps in real proofs. Indeed, we never write something so strange like this:

We have to show that every individual z is in the relation ¢ to z, i.e. that it
satisfies ¢(z, z). Let an individual be given and let us denote it by G(2). [...].
Since G(z) is in the relation ¢ to z, we indeed have Vxy(z, 2).

However, modified generalization rules like (7) can be useful when thinking about inter-
polation in predicate logic and about its proof-theoretic proofs.
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3 Aspects of interpolation proofs

In the literature there exist both semantic and proof-theoretic proofs of interpolation
theorems. In this section we will survey known proof-theoretic proofs for several pop-
ular logics. We will also reproduce a proof (known from various sources like [Tak75]
and [Bus98]) for classical predicate logic without function symbols of nonzero arity.

A proof-theoretic proof of an interpolation theorem usually consists in two steps:
first finding a sequent form of the theorem, i.e. formulating a claim concerning provable
sequents, and then proving that claim by induction on the depth of a cut-free proof P.
The steps presuppose that the completeness theorem and the cut-elimination theorem
hold for the given logic. In the case of classical propositional logic, where we know
that a formula ¢ is a tautology if and only if the sequent { = ¢ ) is provable in GK
and that the cut-elimination theorem is true for GK, the claim can be as follows. Let
P be a cut-free proof of (I;I1 = A;A). Then there exists a formula p such that
Symb(u) C (TUA)N(TTUA) and both (T' = A, p) and (11, = A ) are provable.
The semicolons denote set union just like commas, but in addition they indicate how
the given sequent is divided into two sequents (I" = A) and (II = A). The sets
I and IT and also the sets A and A do not have to be disjoint. Once this claim is proved,
the interpolation theorem follows: if ¢ — ) is a tautology, then { ; = ;1) is provable,
and then a formula p obtained by the claim is an interpolant of ¢ and .

If an initial sequent, i.e. an endsequent of a zero-depth proof, is divided into two
sequents, we have one of the following six situations. Recall the agreement that L is a
basic symbol and that T and — are considered shorthands for . — | and ¢ — L:

(T, LTI = A;A), (T; LI = A;A)
(T, IT = Asp,A),  (Ti0,I1 = A;p,A) (8)
(T, oI = A, A), (T, = A, A).

One can easily check that the six formulas L, I — 1, ¢, L — 1, 1 and p — L,
respectively, satisfy the requirements on interpolant. For example in the third case ev-
ery extralogical symbol in ¢ occurs in both Symb(T', ¢, A) and Symb(II, ¢, A) and
both (I', o = A, ) where ¢ is added to the succedent, and (II,o = ¢, A) where
 is added to the antecedent, are provable. In the first case both (I', L = A, 1)
and (II, L = A) are provable, and the stipulation concerning symbols is satisfied
because Symb(L) = (. Notice also that the last case would be problematic in intu-
itionistic logic. The provability of (I" = A, ¢, — L) is based on the provability
of { = ¢, p — L), and the latter sequent is in fact the same as the disjunction ¢ V —.
We proceed to the induction step. Let a nonzero-depth cut-free proof P of a sequent
divided by semicolons into two subsequents be given. Distinguish the cases whether
the last inference in P is an application of one or another rule and whether the principal
formula of that inference is before or after a semicolon. For example, if the last inference
of P is the antecedent —-rule and its principal formula ¢ — 1) is after the semicolon,
we have:
(I = Ao, A) (T, = A A)
(T;0 =, 11 = AjA).

(9)

83



We for simplicity assume that the binary rules of our calculus are context-sensitive. The
depths of the subproofs P; and Ps of (I'; 1T = A; ¢, A) and (59,11 = A;A) are
less than the depth of P and thus the induction hypothesis is applicable. It says that if we
arbitrarily divide the endsequents of P; and P into subsequents, then a required formula
exists. We do not have to be creative when dividing the two endsequents: since it is given
that o —1) is after the semicolon, in the upper sequents we just put the semicolons before
the active formulas ¢ and 7). Let € and v be interpolants of the endsequents of P; and Ps
respectively. Thus the following four sequents are provable:

(T' = Ae), (I,e = p,A), 10

(I' = Ayv), (v, I, v = A). (10)
We have not written down the succedent &-rule, but it is natural and makes it possible
to derive (I' = A, e & v) from the first and third sequents. Using the antecedent
&-rule, the sequents (II,e & v = ¢, A)and (¢, II,e& v = A) can be obtained from
the second and fourth sequent respectively, and they yield (I, — ¥,e & v = A)
using the antecedent implication rule. Since every atom in ¢ is in both Symb(T, A)
and Symb(II, p, A), and every atom in v is in both Symb(T", A) and Symb(1), IT, A), it
is clear that the formula e & v is built up only from atoms that occur in both Symb(T", A)
and Symb(IT, ¢ — 1), A). We see that the conjunction € & v satisfies all requirements,
and thus it is an interpolant of (T'; o — ¢, IT = A; A).

All other cases are treated similarly. In the case of a binary rule, the conjunction or
the disjunction of the interpolants of the upper sequents always works as an interpolant
of the endsequent of the whole proof P. In the case of a unary rule an interpolant of the
upper sequent satisfies the requirements for an interpolant of the endsequent.

In the definition of the calculus GK one can insist that the principal formulas of
initial sequents be atomic. From this fact one can obtain a somewhat stronger version of
the interpolation theorem for classical propositional logic: for any two formulas ¢ and v
such that ¢ —1) is a tautology there exists an interpolant built up from atoms and negated
atoms using conjunctions and disjunctions only.

In modal logic we have an additional unary logical symbol O. A formula Oy is
read “necessarily ¢”. Besides O, the necessity operator, one can also consider <, the
possibility operator. However, it is usually considered a defined symbol: < is a short-
hand for —~O-¢p. One of extensively studied propositional modal logics is provability
logic. Different symbolic names for this logic can be found in the literature. Now, after
about fifty years history, it is usually denoted by GL where the letters refer to Godel
and Lob. The semantics (one of semantics) for GL is based on the idea to understand
the O operator (interpret it, translate it to) provability in some recursively axiomatized
and sufficiently strong axiomatic theory, formalized in the same (or sometimes different)
axiomatic theory. In GL one can model reasoning about self-referential sentences, and
GL also has some applications in this field and thus in meta-mathematics. One of these
applications is that, under some circumstances, a sentences defined by self-reference is
unique up to provable equivalence.

Hilbert-style calculus for provability logic is based on the axioms K and 4 that tra-
ditionally occur in say more philosophically oriented literature, and on the Lob’s axiom
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schema O(Op — ¢) — Oy. Sequent calculus for GL was defined in [SV82]. It is based
on a single modal rule, which is sufficient to simulate the axioms K and 4 as well as the
Lob’s axiom:
(T,0T, 00 = ¢)
(OI" = Ogp).

(11)

Here OT" denotes the set { Oy ; ¢ € T }. The rule is applicable on a sequent S only
if (i) the succedent of S consists of exactly one formula ¢, (ii) the antecedent of S con-
tains O¢, and (iii) the rest of the antecedent consists of pairs ¢ and Ot). The conditions
(ii) and (iii) are not really demanding because one can always add some formulas using
the weakening rule. All formulas in the bottom sequent of (11) begin with O.

The sequent calculus for GL satisfies cut-elimination, and the interpolation theorem
for GL can be proved along the same lines as for classical propositional logic. That
is, we prove the same claim concerning a sequent (I';II = A, A) by induction on
the depth of its cut-free proof . Most cases are the same as above, but there are two
additional cases to consider: if the last inference of P is an application of the modal
rule and its principal formula O¢p occurs before, or after the semicolon. Let us dis-
cuss the former case, the latter is treated similarly. The endsequent of P thus has the
form (OT'; OIT = Og; ). The sequent to which the modal rule is applied must have T",
ar, II, OIT and Oy in the antecedent and ¢ in the succedent, and we apply the induc-
tion hypothesis (in the expected way) on the sequent (T, OT", O¢p; IT, OII = ¢; ). Thus
there exists a formula v and proofs P; and P, of the sequents (I', O, Op = ¢,v)
and (I, OII, v = ). The proofs P; and P5 can be extended as follows:

(T,00,0p = ¢,v) (I, 01, v =)
(T,0T, 0p, v, 0-v = @) (I, 01, 0-v = —w)
(O, 0-v = Op) (011 = O-w)
(OT = Op,-0-wv) (OIL,-0-v =)

In the left we have first negated v and moved it to the other side of the sequent. This is
exactly what the —-rules do. We have also added the formula O—-v via the weakening
rule, and we did it in one line to save space. Then the modal rule is applicable, and
finally the endsequent is obtained by another application of the —-rule. The explanation
for the proof in the right is similar. Since every symbol (every atom) in v is in both
Symb(T, OT, Oy, ) and Symb(II, OI), it is clear that every atom in =O-w is in both
Symb (0T, Oy) and Symb(OII). Thus 1 = —=O-w is as required.

The above formal proofs can be easily modified for the case where — is not consid-
ered a basic symbol. However, the presence of _L is essential in GL. Without it, the
formulas ¢ = O(p & —p) and ¢p = O(q & —¢q), of which ¢ is not refutable and « is not
provable in GL, would have no interpolant.

A possible exercise could be this: take ¢ = —Op and ¢ = O(¢ — —0Oq) — —0Og,
prove ¢ — 1) in the sequent calculus and find an interpolant of these two formulas. The
choice of ¢ is motivated by Godel’s first incompleteness theorem: if a sentence ¢ is
provably equivalent to its own unprovability, or, if it just implies its own uprovability,
then it is unprovable.
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Provability logic has a satisfactory Kripke semantics. Its Hilbert-style and sequent
calculi polynomially simulate each other and are complete with respect to transitive
reversely well-founded trees, and also with respect to (the smaller class of all) finite
transitive and irreflexive trees. To show completeness of the sequent calculus with re-
spect to Kripke semantics, one can prove (Sambin and Valentini in [SV82] prove) the
following claim: every sequent either has a Kripke counterexample, or a cut-free proof.
This way the completeness and the cut-elimination theorem are proved at the same time.
Similarly, i.e. via a semantic detour, one can actually prove the cut-elimination theorem
for each logic mentioned in this paper. A direct proof for GL, i.e. an algorithm that,
given a proof, outputs a cut-free proof of the same sequent, was published in [GROS].
GL is also complete with respect to the arithmetic semantics. This is a famous Solovay’s
result published in [Sol76].

A sequent calculus for intuitionistic logic can be obtained by the following modifica-
tion of GK: the succedent rules for —, — and V do not admit side formulas in succedent.
Thus after one of these rules is used, the succedent is a singleton consisting of the prin-
cipal formula. We call this calculus GJ, where G again refers to Gentzen. Many authors
(like Takeuti in [Tak75]) use LJ to denote this calculus. A related calculus GJ' is based
on an even stronger restriction: each succedent in a GJ'-proof must be empty or a sin-
gleton. Our assumption that — is a defined symbol again simplifies matters, and it also
has the following consequence: each succedent in a GJ!-proof contains exactly one for-
mula. This is so because no rule except the —-rules can change the number of formulas
in succedent. Thus the —-rules of GJ! are

(I'= ) (I =46) (T, = )
(o=t = 0) (T'= =)

where the rule in the right, the succedent implication rule, is the same as in GJ. The
&-rules of GJ! are:

(T, = §) (T,¢ = 9d) (T = ¢) (T=19)
(T,p&t = 0) (T,p&yp = 0) (T = p&).

The completeness and cut-elimination theorems hold for both GJ and GJ*'. It is not
clear (to the present author) how about GJ, but GJ' can be used to prove the interpolation
theorem for intuitionistic propositional logic. We follow the proof in [Min02].

As in other cases, we proceed by induction on the depth of a cut-free proof. However,
the claim we prove is now different: for any cut-free proof of a sequent (I';I1 = X)
in the calculus GJ' there exists a formula p such that (T = p) and (I, = \)
are provable and all atoms in 1 are in both Symb(T") and Symb(II, ). Now there are
no semicolons in succedents. To prove this claim is sufficient for our goal: to find an
interpolant of a pair ¢ and ), it is enough to put ' = {(}, II = () and A = 1). The base
case is as follows. If (I'; II = \) is an initial sequent (the endsequent of a zero-depth
proof P), we deal with the following four cases:

(D, LI = X), (I;LIO=X), (I,pll=X), ([el=X)

and it is straightforward to verify that L, 1 — 1, ¢ and L — L can be picked for .
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As to the induction step, most cases are the same as in classical logic. For example,
if the last inference in a proof P derives (I'; o — ¢, I = \) from a sequent whose
succedent is {¢} and from another sequent having v in the antecedent, we write the two
sequents as (I'; IT = ¢ ) and (I'; 4, I = X). Then the induction step yields formulas
¢ and v such that all atoms in ¢ are in both Symb(I") and Symb(II, ¢) all atoms in v
are in both Symb(I") and Symb(¢, II, A) and the sequents (I" = ¢), (II,e = ),
(I' = v)and (¢,II,v = X) are provable. Then it is easy to verify that u = ¢ & v is
as required.

A case that cannot be simply copied from classical logic is when the endsequent
of Pis givenas (I', o —¢; II = \) with ¢ — 1) being a principal formula. In this case
we use the right to divide the two preceding sequents as needed, and we write them as
(ILT = ) and (T',4;II = A). The induction hypothesis yields formulas ¢ and v
such that the sequents

(T =e¢e), (Tye =), (T,=v), (ILv=X)

are provable. Then from the second and third, and from the first and fourth of them we
can continue as follows:
(Tye = ¢y (T,¢ = v)
(Typ =, = v)
(Tyo—= 9 = ec—v)

(I =¢) (ILv=A)
(I,e »v = )

Since all atoms in ¢ are in both Symb(IT) and Symb(T, ) and all atoms in v are in both
Symb(T', 1) and Symb(II, A), we see that all atoms in e— v are in both Symb(T', p—1))
and Symb(II, A). Thus u = € — v is as required.

In classical predicate logic without equality we can stick with the same claim as in
classical propositional logic, but we have to consider the generalization rules (5) and
the instantiation rules (6). Generalization poses no problem. Indeed, let a proof P of
a sequent divided by semicolons be given, let its last inference be an application of the
antecedent 3-rule with a principal formula Jxp:

(Ti9a(y), A = ILA)
(T; 3z, A = ILA)

and let v be such that (I' = II,v ) and (p,(y), A, v = A) are provable and Symb(v)
is a subset of both Symb(T", IT) and Symb(p.(y), A, A). From the fact that the vari-
able y satisfies the eigenvariable condition we can draw several consequences. (i) Since
y is not free in formulas in T and TI, from Symb(r) C Symb(T,II) it is clear that y
is not free in v. (ii) Once we know that, from Symb(v) C Symb(p,(y), A, A) we
obtain Symb(r) C Symb(Jzp, A, A). And (iii), since y is not free in the endsequent
of (12), the following is a valid inference according to the antecedent 3-rule:

(0e(y),Av = A)
(Fxp, Av = A).
Thus the formula v, without any modification, satisfies the requirements. Reasoning in

the other cases (principal formula in front of a semicolon or the succedent V-rule as the
last step in P) is completely analogous.

(12)
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Assume now that the last step in P is an application of one of the rules (6). In
addition, assume that the term ¢ is a variable, say y. We thus have a situation like this:

<F§ apm(y),H = A§A>

(T;Vap, 1T = A;A).

(13)

It looks similar to (12), but now y may occur free in any formula in the endsequent.
Let again v be a formula guaranteed by the induction hypothesis. If y is free in Jzp
or in a formula in IT or A, then Symb(Vxp,II, A) = Symb(p.(y),II, A) and, no mat-
ter whether y is free in it, the formula v can be taken as the formula required for the
endsequent. Otherwise we have Symb(Vzp, I, A) = Symb(e,(y), I, A) — {y}. Then

(¢a(y), v = A)
and (Vzp, Iy = A)
(Vep, I, Jyr = A)

(' = Av)
(I' = A, 3yv)

are valid inferences because, in the second step in the right, the eigenvariable condition
for y is met. Thus p = Jyv is a formula required for the endsequent of (13).

The problematic case is when we have a complex term ¢ in the place of the variable y
in (13). Then ¢t may contain several symbols (function symbols and variables) that are
not in Symb(Vx, II, A). These may occur in the formula v, but must not occur in the
formula needed for the endsequent of (13). This case, while unresolved, is the main
reason for writing this paper.

4 The presence or absence of the equality symbol

Let L be the language { P, R, G} where P is a unary predicate, R is a binary predicate
and G is a unary function symbol, and consider the sequent

(R(G(G(2)),G(2)),Vavy(P(z) & Ply) — = =y)'¥,

14
Vavy(R(z,y) — =P(x) & P(y))” = =P(z)) .

It is easy to verify that in logic with equality this sequent is logically valid:

From R(G(G(z)), G(z)) we obtain ~P(G(G(z))) and P(G(z)) using the sen-
tence $ in the antecedent of (14). Assume that P(z). Then P(G(z)) together
with « yield z = G(z). From this we obtain G(z) = G(G(z)), and then
from P(G(z)) we have P(G(G(z))), which is is a contradiction.

Now consider the sequent

(FJuIvR(u,v),VaVy(P(z) & Py) — x =y),

VaVy(R(,y) — ~P(2) & P(y) = -P(x)) )

Since G does not occur in it, it can be derived from (14) using the left rule in (7).
However, it is straightforward to see that it is not logically valid. For this it is sufficient

to pick a two-element structure D with a domain D = {a, b} such that RP = {[a, b]}
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and PP = {b}, and evaluate the variable z by b. This example shows that the rules (7)
are not sound with respect to the classical semantics for logic with equality. In the
following theorem and in its proof we write x and ¢ to denote an n-tuple.

Theorem 1 Let ¢ be a formula, let x4, . ., x, be distinct variables and let t1, . . ,t,, be
distinct terms such that every t; is substitutable for x; in @. Furthermore, assume that if
t; is a variable, then it has no free occurrences in T' U A U {3z}, and if t; is a complex
term, then its outermost symbol does not occur in T UAU{3zp}. Then, in logic without
equality, if (T',.(t) = A) is logically valid, then (I, 3zp = A) is logically valid,
and if (I' = A, p,(t)) is logically valid, then (I' = A,Vzy) is logically valid.

Proof Since the two claims are symmetric, it is sufficient to deal with the existential
quantification. Let L be the set of all function and predicate symbols in (T', Jzp = A).
Let G, .., Gy, be the (distinct) function symbols that appear in ¢1, . ., ¢, as the outer-
most symbols, and let y1, ..,y be those ¢; that are variables. The symbols G; are not
in L. The terms ¢1,..,t, may contain inner occurrences of further function symbols
(the symbols G included) and of variables (the variables y; included). Some of them
may share the outermost symbol. We assume that (I, 3z = A) is not logically valid
and we aim to show that (T, ¢, (t) = A) is not logically valid either. We thus start
with a semantic counterexample for (T', 3z = A). It consists of a structure D for L
and a valuation eg of variables in D such that D |= v[eg] for every ¢p € T' U {Jzp}
and D [ ¢eo] for every ¢ € A. Note that we use square brackets to enclose a valu-
ation when writing the relation “satisfies” symbolically. Since D = (Jzp)[eo], we can
fix elements a1, . ., a, of the domain D of D such that

D oleo(z1/ar, .., 2n/an)]- (1)

Here eo(z1/aq, .., xn/ay,) denotes the valuation that maps 1, .., z, to a1, .., a, and
agrees with eq at all other variables. Let U be the set of all terms in L U {G1,..,G,}.
We put M = D x U and we fix an arbitrary ag € D. The realization F'™ of an r-ary
function symbol F' € L, the realization R™ of an r-ary relation symbol R € L, and the

realizations G;"‘ of the symbols G, . ., G, are defined as follows:
FM([bh 81]7 DR [bra S’l"]) = [FD(bh .. 7b’l“)a F(Sla DR ST)]v (11)
RM([b1, s1],. ., [br,5,]) & RP(by,..,b,), (iii)

lai,Gj(s1,..,8)] ifGj(s1,..,8.)ist;

l[ao,Gj(s1,..,57)] otherwise.

GM([b1, 1], - - [br, 50]) = { (iv)
Since t1, . . , t,, are pairwise different, a term G (s) can equal at most one ¢;, and so (iv)
is a correct definition. The square brackets in (ii)—(iv) denote pairing. We suppose that
this use can be easily distinguished from the situations where they enclose a valuation
of variables (and the symbol k= is involved). Let g : M — D and h : M — D be the
left and right projections, i.e. the functions satisfying g([b, s]) = b and h([b, s]) = s.
Let M~ be the reduct of M to L, i.e. the structure obtained from M by omitting the
realizations of Gy, . ., G,,. Then it is clear from (ii) and (iii) that g preserves all symbols
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in L. Thus g is a homomorphism from M~ to D. Note that in predicate logic without
equality a homomorphism does not have to be one to one.

Consider a valuation e in M, a term s and its value s [e] in M with respect to e.
The function g o e is a valuation in D. If s is a variable, then s [e] is e(s) and the
equality g(e(s)) = (g o e)(s) can be written as g(s™[e]) = sP[g o €]. Using (ii), it is
easy to prove that this equality holds for every term s in L. From this and (iii) it follows
that M~ |= ¢[e] & D | [g o €] for every atomic formula ¢ in L. The fact that g
is onto and another induction show that the latter equivalence holds for every formula v
in L. Thus g preserves all formulas in L. Since M~ |= 9]e] is equivalent to M = 1[e]
for 1 in L, we have obtained

MEYle] & DEylgoe] V)
for each formula ¢ in L and every valuation e in M. We now define a valuation e; in M
as follows:
) { [a;, 2] if z1is t; vi)
ei(z) = vi
! [eo(2), 2] otherwise.

The variables that equal some ¢; are y1, .., y. Clearly, g o e; and eg agree at all other
variables. Since y1, . ., yx are not free in 'UA and e satisfies in D all formulas in I" and
none formula in A, it follows from (v) that M |= ¢[e] forevery 1) € T"and M = ¢)[e;]
for every ¢ € A. It remains to deal with the formula ¢, (t).

From (vi) and (ii) it is clear that h(s™[e;]) = s for every term s in L U {G1, .., G, }.
If t; has the form G, (s1,. ., s,), then from (iv) we see that g(tM[e1]) = a;. If t; is y;,
then from (vi) we have g(t/[e1]) = a; as well. Since h(t}![e;]) = t;, we have verified
that t[e;] = [a;, ;] forevery i € {1,..,n}. Then we have:

M E gz (t)er] & M E plei(x1/[ar, t1], .. 20/ [an, tn])]
& DEplgoei(xi/[ar, t1],. ., zn/[an, tn])],

where the first equivalence is an elementary fact about the truth value (w.r.t. a structure
and an evaluation) of a formula obtained by substitution, and the second equivalence
follows from (v). From (vi) we see that the valuations goey (z1/[a1, t1], - ., Tn/[an, tn])
and eg(x1/as,..,x,/ay,) agree at all variables z that are different from all x4, .., z,
and all yq,..,y%. They also agree at x1, .., x,. The remaining variables are those y;
that are not among x1, .., x,. Since yi, ..,y are not free in Iz, those of them that
are not among z1,..,x, are not free in . Thus g o e1(x1/[a1, t1], .., Tn/[an,tn))
and eg(z1/a1,..,xn/a,) agree at all variables that are free in . Then from (i) we
have D = ¢[g o e1(x1/[a1,t1], .., Tn/[an, t,])], and (vii) yields M = ¢, (t)[e:]. O

(vii)

5 An example

We finish by an example on the use of Theorem 1. It is not difficult to verify that in
predicate logic without equality, where there are no assumptions about the symbol =, the
sequent (14) is not logically valid. However, adding VaVy(z =y — G(z) = G(y))™
and VaVy(z = y — (P(x) — P(y)))® to its antecedent yields a logically valid
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sequent. Indeed, one can check that these two sentences are everything that is needed to
make the informal proof in the beginning of Section 4 gap-free:

Assume that P(z). From R(G(G(z)),G(z)) and 8 we have =P(G(G(z)))
and P(G(z)). Then P(z) and P(G(z)) yield z = G(z) using . From
we have G(z) = G(G(z)), and then ¢ yields P(G(z)) — P(G(G(z))).
Since P(G(z)), we conclude that P(G(G(z))), which is a contradiction.

This can be translated to a proof P of ( R(G(G(z)),G(?)),v; B, a,6 =;-P(z)). Let
the endsequent and thus the entire P be divided as indicated by the semicolons, let
I and I be { R(G(G(2)),G(z)),~} and {B,, 0}, and put A = P and A = {=P(2)}.
We have Symb(I', A) = {R, G, z,=} and Symb(II, A) = {R, P, z,=}. We thus seek
a formula p satisfying Symb(u) C {R, z,=}. The proof P contains no generalizations
and in its construction we have a lot of freedom when choosing the order of instantia-
tions. Assume that it ends by two unsubstitutions that yield the sentence /3:

(I R(G(G(2)),G(2)) —» ~P(G(G(2)) & P(G(2)),a,6 =;A)
(I Vy(R(G(G(2)),y) — —P(G(G(2))) & P(y)),o, 6 =;A) (16)
(T;VaVy(R(x,y) — —P(z) & P(y)),a,0 =;A).

Writing down the entire proof P and revisiting Section 4, the reader can verify that the
procedures described there yield the following formula v for the upper sequent of (16):

R(G(G(2)),G(2) & (2 = G(2) = G(z) = G(G(2)))-

Notice that the symbol G occurs on both sides of semicolons in the upper sequent of (16)
and thus it does not matter that it occurs in v. Let 4 be

FuFv(R(u,v) & (z=v — v =u)).

Since (I' = v) is logically valid, it is clear that (I' = ) is logically valid. Also
(R(G(G(2)),G(2)) — —P(G(G(2))) & P(G(2)),a,d,v = A) is logically valid,
and two instantiations applied to it yield ( 5, «,d,v = A ). The latter sequent is

(I, R(G(G(2)),G(2)) & (z =G(z) = G(2) = G(G(z))) = A).

~—

Now, as G does not occur in IT U A, Theorem 1 is applicable and yields (II, u = A).
Thus the formula p has the required properties: both (I' = A, u) and (I, p = A)
are logically valid and we have Symb(u) C (TUA) N (TTU A).

6 Comments and conclusions

Let us again consider the situation described in the end of Section 3. Assume that an

instantiation rule:
(I41L,0.(s) = AjA)

(T T,V20 = A A)

is used in a cut-free proof P and that we have an interpolant p of the upper sequent.
Then Symb(u) € Symb(T', A) N Symb(I1, 0, (s), A) and the sequents (I' = A, pu)

(17)
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and (II,0,(s),x = A) are provable (logically valid). The term s and thus also the
formula p can contain function symbols and free variables that do not occur (free)
in Symb(II, V20, A). These symbols are unwanted because they must not occur in a
possible interpolant of the bottom sequent in (17). If no occurrences of variables in the
scope of unwanted function symbols are bound, we can write  as 4 (1, . ., t,) where
the terms ¢1, .., t, are as described in Theorem 1. Then (I' = A,Jze) is provable
from (I' = A, ,(t)) via instantiations, and the provability of (II,Vz6,3zp = A)
follows from the provability of (II,Vz6, ¢, (t) = A) using Theorem 1. Then Jz¢
is an interpolant of the bottom sequent in (17). However, a problem is that if (17) is
not the last inference in the proof P, then symbols that are unwanted at this stage may
occur in the scope of function symbols that become unwanted at some later stage. Then
getting rid of unwanted symbols (that is, generalizing the terms ¢4, ..,%,) at this stage
introduces bound occurrences of variables, and the just described procedure cannot be
simply repeated at later stages.

This explains that Theorem 1 is probably not sufficient to prove the general interpo-
lation theorem for classical predicate logic without equality but with function symbols.
It can only solve some cases, as the example in Section 5 suggests.
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