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ABSTRACT
Recall the Rabin–Keisler theorem which gives a lower bound κω for the size of
proper elementary extensions of complete structures of size κ, provided that κ is
an infinite cardinal below the first measurable cardinal. We survey—and at places
clarify and extend—some facts which connect the Rabin–Keisler theorem, sizes of
ultrapowers, combinatorial properties of ultrafilters, and large cardinals.
Keywords: Rabin–Keisler theorem; sizes of ultrapowers; non-regular ultrafilters.

1 Introduction
In this short survey, we gather some facts scattered in the literature which connect
first-order theories, elementary extensions and ultrapowers. As a starting point we con-
sider the following question:

The Löwenheim–Skolem theorem (LS theorem for short) says that every
infinite structure M for a language L has an elementary extension of every
size greater or equal to |L| + ℵ0. In particular, every theory T with an
infinite model has a model of every size greater or equal to |L| + ℵ0. The
question is whether the LS theorem really depends on |L|, or not.

On a quick look one might think that if M is a countable structure in an uncountable
language L(M), then the language must be in some sense “trivial” (except for some
countable sublanguage) if it can be realized on a countable domain. This idea might gain
more plausibility by the loosely formulated fact that first-order theories are not strong
enough to control infinite sizes, so if a theory T has a model of size ℵ0, it probably has
models of every infinite size.

We will review below some folkore facts and results which show that this idea is
false: the size of the language |L| in the LS theorem is essential, and for example there
is consistently a theory whose models exist in every infinite size except for ℵ1 (in fact,
this is a consequence of 2ℵ0 = ℵ2 as we will see below). The bottom line is that
first-order theories can control the sizes of their models provided these sizes are less or
equal than the size of |L|+ ℵ0 (see the short paper [Mek77] for an example).

The paper is centered around the Rabin–Keisler theorem as stated for instance in
[BS74, Theorem 5.6] or [Cha65]. We give this theorem as Theorem 3.11. This the-
orem marks the importance of the ultrapower construction in the model theory of the
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first-order predicate logic. It is interesting from several perspectives; we will focus on
the fact that while it a priori does not deal with large cardinals, the very statement of the
theorem for an arbitrary κ needs the notion of a measurable cardinal (see Section 4.1).
The connection to large cardinals is accentuated by more recent set-theoretic research
which shows that the size of ultrapowers is closely connected to combinatorial properties
of ultrafilters, which in turn often pre-suppose some large cardinals (see Section 4.3).

These results appeared in various books and papers, but are often written from dif-
ferent perspectives, without proper proofs and with different focus at different times (the
results stretch over several decades). We briefly review some of these results using a uni-
fied notation with emphasis on the connections to modern set theory and large cardinals.
We will also briefly comment on the question whether large cardinals are natural to logic
(and mathematics) or they are artificial notions imported by set theory.

2 Proper elementary extensions, ultrafilters generated by “ideal”
elements

Recall the standard method of defining an ω1-complete (normal) ultrafilter on a regu-
lar uncountable κ using an elementary embedding (see the reference book [Kan03] for
more details and also for the notational conventions): suppose j : M → N is an ele-
mentary embedding between transitive models of set theory M,N (the language is just
the language of set theory) such that the critical point of j is a regular cardinal κ and the
powerset of κ is a subset of M . Then it is easy to check that

Uj = {X ⊆ κ ; κ ∈ j(X) } (1)

is an ω1-complete normal ultrafilter on κ. Uj is generated by “ideal” element κ (in
the sense that κ is not in the range of j). Since it is known that such ultrafilters imply
consistency of ZFC (and much more), it follows that the existence of j : M → N as
above cannot be proved in ZFC.

It may be surprising that this natural idea of defining an ultrafilter via an “ideal”
element can be formulated also in the context of ZFC without any large cardinal strength:
see the definition in (2) below. Without large cardinals, the construction will lose its easy
formulation, but it is still useful.1

Suppose T is a first-order theory in language L(T ) with an infinite model. With
L(T ) given, we write λT = |L(T )| + ℵ0. By the compactness theorem, it is easy to
show that T has models of every size ≥ λT . Let us give some observations related to
models of size < λT .

We first discuss these notions in the language of structures. The reformulation for
theories is discussed in Remark 3.4.

If A is an infinite structure, let L(A) be the language of A.

1The reader will note that the LS theorem guarantees the existence of many embeddings like j : M → N
(yielding the elementary extensions of M ), but since the first-order logic is weak, it cannot guarantee that N
is well-founded (equivalently, transitive). This looks like a minor thing, but all of the large cardinal strength
of Uj comes from this fact.
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Definition 2.1 We say that A is a complete structure if for every a ∈ A there is a
constant symbol ȧ in L(A) with ȧA = a, and for every R ⊆ An where 1 ≤ n < ω there
is a symbol Ṙ in L(A) of the corresponding arity such that (Ṙ)A = R.

It follows that the language of a complete structure has size 2|A|.
SupposeA is a complete structure and ProperExt(A) is the set of proper elementary

superstructures of A in L(A), i.e.

ProperExt(A) = {B ; Bis in L(A), A ( B and A ≺ B }.

Let us consider the partial order � on ProperExt(A). As it turns out, the set of ultra-
powers in ProperExt(A) is dense in the following sense (compare with [Kei71, Theo-
rem 47]):

Theorem 2.2 Suppose B ∈ ProperExt(A). Then there is a non-principal ultrafilter
U such that Ult(AA, U) ∈ ProperExt(A) and Ult(AA, U) � B (up to isomorphism).
If |A| = ω, then U is uniform.

Proof Let x be some fixed element in B \A. Let us define

U = {X ⊆ A ; x ∈ ẊB },where X = ẊA. (2)

U contains for everyX ⊆ A eitherX orA\X: forX ⊆ A and Y = A\X , we have by
elementarity that ẊB ∪ Ẏ B = B and ẊB ∩ Ẏ B = ∅. The other properties of U are ver-
ified similarly, and so U is an ultrafilter. Let us consider Ult(AA, U) and let us identity
[fa] with a, where fa is a constant function with value a, so that A ⊆ Ult(AA, U).

We cannot in general conclude that U is uniform,2 but U is always non-principal in the
sense that does not contain finite sets: for every finite subset X = {x0, . . . , xn} of A,
there is a first-order formula ϕX which determines the elements of X .3 It follows by
elementarity applied to ϕX that ẊB = ẊA, and hence ẊB cannot contain the new
element x. If |A| = ω, then it immediately follows that U is uniform.

The fact that U is non-principal implies that Ult(AA, U) is a proper elementary exten-
sion because the diagonal function f(a) = a is different from every constant function
(mod U ).

We have verified A ≺ Ult(AA, U). Let us show Ult(AA, U) � B. Let us define
h : Ult(AA, U) → B by setting, for ḟA = f , h([ḟA]) = ḟB(x). We have the
following equalities:

Ult(AA, U) |= ϕ([f ])⇔ { a ∈ A ; A |= ϕ(ḟA(a)) } ∈ U ⇔
x ∈ ẊB ⇔ B |= ϕ(ḟB(x)), (3)

where Ẋ is chosen to have ẊA = {a ∈ A;A |= ϕ(ḟA(a))}. We can take an isomorphic
copy if necessary identify Ult(AA, U) with an elementary submodel of B. 2

2In fact, it may not be because ProperExt(A) can contain small structures which cannot be generated
by uniform ultrafilters; see Section 3.4. However, if we are willing to go beyond the first-order logic, we can
obtain uniform ultrafilters on uncountable cardinals; see Section 4.2 for more details.

3For instance ϕX = (∀x)(Ẋ(x)→ x = ẋ0 ∨ · · · ∨ x = ẋn) ∧ (Ẋ(ẋ0) ∧ · · · ∧ Ẋ(ẋn)).
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3 Combinatorial properties of ultrafilters and sizes of elementary
extensions

3.1 Uniform ultrafilters

It follows by Theorem 2.2 that the minimal size of a structure in ProperExt(A) for a
complete A is determined by the size of ultrapowers. For uniform ultrapowers there are
some immediate lower bounds.

Lemma 3.1 SupposeA is a complete structure of size κwhere κ is an infinite cardinal.

(i) Assume κ<κ = κ. Then for every uniform ultrafilter U on κ, Ult(AA, U) has size
exactly 2κ.

(ii) Let there exist on κ an almost-disjoint system X of size λ with κ < λ ≤ 2κ. Then
for every uniform ultrafilter U on κ, Ult(AA, U) has size at least λ.

Proof Let us first prove (ii). Let X = { Xi ; i < λ } be an almost disjoint family
of size λ of subsets of A (every Xi has size κ and Xi ∩ Xj has size < κ for i 6= j).
Let us fix for every i some bijection fi : A → Xi. It follows that if i 6= j, then
{ a ∈ A ; fi(a) = fj(a) } is bounded in κ. It follows [fi]U 6= [fj ]U , and hence
h(i) = [fi]U is an injective function from λ to Ult(AA, U).

Claim (i) follows from claim (ii) by observing that κ<κ = κ implies that there exists an
almost-disjoint system of size 2κ. 2

Lemma 3.1 gives the following (because non-principal equals uniform for ω):

Corollary 3.2 (a version of the Rabin–Keisler theorem) If A is a complete structure of
size ω, then every element of ProperExt(A) has size at least 2ω .

Lemma 3.1 determines the size of ultrapowers via uniform ultrafilters in many situ-
ations, for instance under GCH:

Corollary 3.3 Suppose GCH holds, κ is a regular cardinal, and U is a uniform ultra-
filter on A with |A| = κ. Then Ult(AA, U) has size 2κ.

However, note that the ultrafilter U from (2) may be non-uniform for uncount-
able κ, so Lemma 3.1 does not completely determine the least size of structures in
ProperExt(A).

Remark 3.4 Let A be any complete structure. Let TA be the theory in the language
L(A) (including any language A natively has) which contains all sentences which are
true in A in this extended language. Note that A is a model TA, and any other model
is up to isomorphism in ProperExt(A). It follows by Corollary 3.2 that there exists a
first-order theory T with language of size 2ω which has a countable model, and every
other model has size at least 2ω . The theory T may extend ZFC or any other theory as
desired.

48



3.2 Regular ultrafilters

There is a combinatorial concept which is stronger than uniformity and which implies
that the associated ultrapower has the maximal size without making the extra assump-
tions about almost disjoint families and their sizes (as in Lemma 3.1).

Definition 3.5 Let U be an ultrafilter on an infinite cardinal κ. We say that U is regular
if there is a family {Xi ; i < κ } of pairwise distinct sets in U such that every infinite
subcollection of {Xi ; i < κ } has an empty intersection.

Notice that one can say equivalently that {Xi ; i < κ } is a witness for regularity if
for every j < κ the set

Zj = { i < κ ; j ∈ Xi } (4)

is finite. Also note that regularity immediately implies that U is non-principal (does not
contain a singleton).

Though it is not immediately clear, regularity implies uniformity:

Lemma 3.6 Suppose U is a regular ultrafilter on an infinite κ. Then U is uniform.

Proof Suppose U is regular and suppose for contradiction that U contains some set of
size µ < κ; let us assume that µ ∈ U . Let { Xi ; i < κ } be some sets in U . We will
show that this family doess not witness regularity. Suppose for contradiction it does.
Consider the family {Xi ∩µ ; i < κ } which are also sets in U . If this set is of size < κ,
it follows that there is some Xi ∩ µ which is contained as a subset in κ-many Xj’s (and
their intersection is therefore non-empty because it equalsXi∩µ), so {Xi ; i < κ} does
not witnesses regularity. If the set is of size κ, consider for every α < µ the set Zα of
all Xi ∩ µ which contain α as an element; by our assumption {Xi ; i < κ } is a witness
for regularity, and so this set must be finite; it follows that

⋃
α Zα has size at most µ, but

this contradicts the fact that
⋃
α Zα = {Xi ∩ µ ; i < κ } has size κ. 2

We now show that regular ultrafilters give large ultrapowers (we follow [Hod93,
Theorem 9.5.4]).

Theorem 3.7 Let U be a regular ultrafilter over some A of size κ. Then Ult(AA, U)
has size 2κ.

Proof We identify A with κ for easier reading. For every j, let hj : ZjA → A be a
bijection, where Zj is as in (4). For every f : A → A, let f∗ : A → A be defined as
follows:

f∗(j) = hj(f |Zj).

A disagreement of f and g from A to A on a single argument translates into a disagree-
ment of f∗ and g∗ on a set in U :

Claim 3.8 Suppose f, g : A → A and f(i) 6= g(i) for some i < κ. Then f∗ and g∗

are different on all arguments j in Xi (where Xi ∈ U ).

Proof For every Zj such that i ∈ Zj it holds that f |Zj 6= g|Zj , and since hj is
injective, we have hj(f |Zj) 6= hj(g|Zj). Now notice that j ∈ Xi implies i ∈ Zj for
every j, and so the disagrement of f∗ and g∗ is witnessed on the whole set Xi ∈ U . 2
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This shows that if f 6= g, then [f∗]U 6= [g∗]U because f∗ and g∗ are different on a set
in U . 2

Remark 3.9 In fact, the theorem gives information about the size of Ult(AI , U) for
infinite structure A and regular ultrafilters on I: consider injections hj : ZjA → A and
functions f from I to A. Then the size of the ultrapower is |A||I|.

However, we do not get a generalization of the Rabin–Keisler theorem regarding
the minimal size of structures in ProperExt(A) because even if all uniform ultrafilters
are regular (which holds for instance in V = L, or more generally if we forbid some
very large cardinals, see Section 4.3 for more details), there are always non-uniform
ultrafilters which tend to have small ultrapowers, see Section 3.4.

3.3 Non-σ-complete ultrafilters

We saw that regular ultrafilters are always uniform and that this property makes them
not general enough for the analysis of ProperExt(A). There a different concept, i.e.
non-σ-completeness defined below which gives more information.

Definition 3.10 An ultrafilter U on an infinite cardinal κ is called σ-complete if it is
closed under the intersection of countably many sets in U . The same concept is also
called ω1-complete. The extension of this concept to κ-completeness is obvious. U is
non-σ-complete if it is not σ-complete.

Theorem 3.11 (Rabin–Keisler) Let κ be an infinite cardinal on which every non-prin-
cipal ultrafilter is non-σ-complete. If A is a complete structure of size κ, then every
element of ProperExt(A) has size at least κω .

Note that if κ is inaccessible, then κω = Σν<κνω = κ, so the theorem does not
say much regarding the size of elements in ProperExt(A) for an inaccessible κ. It
has informational value if κ satisfies the assumptions of the theorem and κ is singular
of countable cofinality (because in this case κω > κ), or with failures of GCH which
increase the number of countable subsets of κ. For κ = ω, it follows directly from an
easier construction in Corollary 3.2.

First we show a version of the almost-disjointness property:

Lemma 3.12 Suppose κ is an infinite cardinal. There is an almost disjoint family X
of size κω of countable subsets of κ (for x 6= y ∈ X , |x ∩ y| < ω).

Proof This is a variant of the usual construction of an almost disjoint family of size 2κ
provided 2<κ = κ: it is enough to construct an almost disjoint family on κ<ω and then
use the bijection between κ and κ<ω to transfer it to κ. On κ<ω , the collection of cofinal
branches κω through κ<ω viewed as a tree is an example of such a family. 2

Let us now prove Theorem 3.11 (following [BS74, Theorem 5.4]):

Proof (Of Theorem 3.11) Suppose A ≺ B and B is a proper extension. As in (2),
define a non-principal ultrafilter U determined by some fixed element x ∈ B \ A. Let
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〈 rf,n | f ∈ ωκ, n < ω 〉 be some enumeration of elements of A with respect to some
almost disjoint family X from the previous Lemma 3.12: rf,n is the n-th element of the
countable subset indexed by f .

Since U is non-σ-complete, there is a strictly decreasing sequence 〈Fn | n < ω 〉 of sets
in U with the empty intersection (we may assume F0 = A).

For every f ∈ ωκ, let us define a function τf : A → A as follows

τf (a) = rf,n, iff a ∈ Fn \ Fn+1. (5)

Let us write Yn for Fn \Fn+1. Clearly { a ∈ A ; τf (a) = τg(a) } 6∈ U for f 6= g: since
f and g are almost disjoint, they can agree only on some finite number n of arguments.
By the definition of τf and τg it follows that { a ∈ A ; τf (a) = τg(a) } is contained
in Y0 ∪ · · · ∪ Yn, and this set is not in U .

This proves that for f 6= g, [τf ]U 6= [τg]U , and hence Ult(AA, U) and also B have size
at least κω . 2

3.4 Non-uniform ultrafilters

Up to now, we discussed ultrafilters on A which give large ultrapowers of A. We now
observe that if we use non-uniform ultrafilters on A, or equivalently ultrapowers of A
with uniform ultrafilters on sets smaller than A, we (non-surprisingly) obtain smaller
ultrapowers. Let us illustrate this case on the following example:

Lemma 3.13 Assume CH. Suppose U on ω1 contains some countable set; without loss
of generality assume ω ∈ U . Then Ult(ωω1

1 , U) has size ω1.

Proof Assume for contradiction that there is a family W = { fα ; α < ω2 } of
functions from ω1 into ω1 which are pairwise U -inequivalent. Since U contains ω, also
W |ω = { fα|ω ; α < ω2 } must be pairwise U -inequivalent,4 so in particular pairwise
distinct and so W |ω must have size ω2. But by CH, |ωω1| = ω1, a contradiction. 2

It follows that the Rabin–Keisler theorem does not directly generalize from ω to ω1
if we require just the non-principality of the ultrafilters:

Corollary 3.14 Assume CH. Suppose A is a complete structure of size ω1. Then
ProperExt(A) contains a proper elementary extension ofA of the form Ult(AA, U) for
some U generated by a non-principal ultrafilter on ω1, and this has size ω1.

Proof Let U ′ be a non-principal ultrafilter on ω. This is a centered system on ω1 and
by Zorn’s lemma extends into some non-principal ultrafilter on ω1. 2

Corollary 3.15 More generally: if A is a complete structure of size κ and κω = κ,
then there is a non-principal ultrafilter U on A generated by a countable set such that
Ult(AA, U) has size κ.5

4For every X ⊆ ω1, X ∈ U implies X ∩ ω ∈ U because ω ∈ U .
5Note that [BS74, Theorem 5.1] proves this by taking Ult(Aω , U) for a non-principal U on ω. Observing

the connection with non-uniform ultrafilters allows one to work just with the ultrafilters on the domain of the
structure.
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This gives the statement of the full Rabin–Keisler theorem formulated as an equiva-
lence, see for instance [BS74, Theorem 5.1].

4 Some connections with large cardinals
4.1 The limits of the Rabin–Keisler theorem

Theorem 3.11 can be stated with the notion of a measurable cardinal: if κ is the least
cardinal with a σ-complete non-principal ultrafilter, then κ is in fact measurable, so the
following is true:

Theorem 4.1 (Rabin–Keisler, reformulation) Suppose κ is an infinite cardinal smaller
than the least measurable cardinal. If A is a complete structure of size κ, then every
element of ProperExt(A) has size at least κω .

As we discussed in the paragraph before the statement of Theorem 3.11, the theorem
provides a non-trivial lower bound for singular cardinals κ with countable cofinality or
in cases with failures of GCH, provided that κ is smaller than the first measurable.

It is a natural question whether the assumptions that κ is smaller than then first
measurable, or that there is no σ-complete ultrafilter on κ, are necessary. Surprisingly,
not much is known about this problem; in particular the following seems open:

Question 4.2 Is it consistent that there is a singular cardinal κ with countable cofi-
nality such that for some complete structure A of size κ, there is a proper elementary
extension of A of size κ?

Note the following context for this question: if κ is singular with countable cofinal-
ity, no uniform ultrafilterU on κ can be σ-complete. However, it can consistently happen
(for instance if there is a strongly compact cardinal) that there is some λ, ω < λ < κ,
some non-principal non-uniform ultrafilter U on κ generated by a set of size λ, and U is
σ-complete. Little reflection shows that λ must be greater or equal than the first measur-
able cardinal. Existence of such U blocks the argument from the proof of Theorem 3.11
because it may be that the ultrafilter from Theorem 3.11 is σ-complete.

4.2 The Rabin–Keisler theorem and strongly compact cardinals

If we are willing to go beyond the first-order logic, then the Rabin–Keisler theorem
generalizes to other cardinals.

Let us consider the logic Lκ,κ which allows formulas of length < κ with conjunc-
tions and disjunctions of length < κ and with quantifications of length < κ. We say that
κ is strongly compact if for every theory T in Lκ,κ (in an arbitrarily large signature), if
every subtheory of T with size < κ has a model, then the whole theory T has a model.

If κ is strongly compact, then it is not difficult to check that the construction in
Theorem 2.2 yields a non-principal κ-complete ultrafilter U . The κ-completeness plus
non-principality implies that U is uniform, and by Lemma 3.1 and the fact that strong
compactness of κ implies κ<κ = κ, we know that Ult(AA, U) has size 2κ. It follows
we obtain the following theorem:
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Theorem 4.3 (Rabin–Keisler, for strongly compact cardinals) Suppose κ is strongly
compact. If A is a complete structure of size κ, then every element of ProperExt(A)
(where elementary extensions are now considered in the infinitary logic Lκ,κ) has size
at least 2κ.

4.3 Non-regular ultrafilters

We saw in Theorem 3.7 that regular ultrafilters on A give the maximal possible size
of ultrapowers Ult(AA, U). There is a natural question whether there are non-regular
ultrafilters; in view of Lemma 3.6 every non-uniform ultrafilter is non-regular, so to
avoid trivialities, we are interested in non-regular uniform ultrafilters.

Let us first give a two-parameter version of regularity:

Definition 4.4 Suppose κ is an infinite cardinal, and ω ≤ λ < µ ≤ κ are cardinals.
We say that U is (µ, λ)-regular if there µ-many elements { Xi ; i < µ } from U such
that the intersection

⋂
F of any subfamily F ⊆ {Xi ; i < µ } with |F | = λ is empty.

It follows that ifU on κ is regular according to Definition 3.5 then it is (κ, ω)-regular.
Note that every uniform U on κ is (κ, κ)-regular, so for nontrivial context, λ must be
smaller than κ. Lemma 3.5 generalizes as follows:

Lemma 4.5 Suppose U is a (κ, λ)-regular ultrafilter on an infinite κ, with λ < κ.
Then U is uniform.

Proof This is like the proof of Lemma 3.6 observing that in the second part of the
proof, every Zα has size < λ, and hence

⋃
α Zα has size < κ, which gives a contradic-

tion. 2

The existence of uniform ultrafilters U which are not (κ, λ)-regular for some λ < κ
has a very large consistency strength. On the other hand, it is true in V = L (and other
core models) that every uniform ultrafilter is regular. We will not review the relevant
results here, but an interested reader can consult [Mag79, FMS88, Don88, SJ99] for
more information (ordered chronologically).

For the purposes of this article, let us just comment on the relevance for the Rabin-
-Keisler theorem. As we mentioned, for uncountable structures, the construction from
Theorem 2.2 can yield non-uniform ultrafilters, so there is no direct connection with
uniform non-regular ultrafilters. However, we can still ask about the size of the ultra-
power Ult(AA, U). We saw in Lemma 3.1 that if |A| = κ, and κ<κ = κ, then this
ultrapower has alway the maximal size for a uniform U . Not much is known about other
possibilities; for instance, the following seems open:

Question 4.6 Is it consistent that there is a uniform ultrafilter U on ω1 such that for
some complete structure |A| = ω1, |Ult(AA, U)| < 2ω1 ?

Note that for this to happen, U must be non-regular, and it must hold ω1 < 2ω < 2ω1

and every almost disjoint family on ω1 must have size< 2ω1 . By [DD03], a lower bound
for the consistency strength of this configuration is an inaccessible stationary limit of
measurable cardinals.
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4.4 Some more general comments on large cardinals

This statement of Rabin–Keisler theorem, Theorems 3.11 and 4.1, raises a legitimate
question regarding the status of measurable cardinals: if there are no measurable cardi-
nals (for example if we assume V = L), then the Rabin–Keisler theorem holds for every
κ. If measurable cardinals exist, the picture is less clear and not much is known as we
already mentioned in the previous sections.

In the interest of simplicity—provided we think that mathematics should be such—it
is tempting to assume there are no measurable cardinals. On second thought, this clean
cut suffers from various technical drawbacks: forbidding measurable cardinals in V does
not by itself remove them from other transitive models of ZFC, so configurations like in
Question 4.6 can still arise V even if there are no large cardinals.6 So for the “clean cut”
we should in fact postulate that

The theory ZFC +M is inconsistent, (6)

whereM denotes “there exists a measurable cardinal”.
However, this is essentially a finitary statement whose postulation seems arbitrary

and without a real mathematical reason. There is an extensive discussion (see for in-
stance [FFMS00]) whether such a reason can be obtained in a weaker sense by consid-
ering certain set-theoretic axioms of wide consequence which decide the existence of a
measurable cardinal either way. In the context of measurable cardinals, an axiom worth
considering could be V = L which implies ¬M, i.e. (6) is weakened to a provable fact

The theory ZFC + V = L +M is inconsistent. (7)

Whether V = L is good axiom cannot be decided without a larger context which we
have not developed here, and there is no general consensus (see again [FFMS00] for
more references and details).

It is equally interesting to ask whether we should postulate

The theory ZFC +M is consistent. (8)

There is the tendency to view this postulate as preferable over the negative (6): unlike
(6), (8) can be refuted by a proof of contradiction from ZFC+M if there is one, whereas
by Gödel’s theorem there is no chance to refute (6).7

These few comments might suggest that we should not artificially “remove” the
problem of measurability from the Rabin–Keisler theorem because there are no real
mathematical reasons for doing so.

Acknowledgement The author was supported by GAČR grant The role of set theory
in modern mathematics (24-12141S).

6The typical “trick” is to start with a universe V where some property like in Question 4.6 holds: If V has
no large cardinals, we are done. If it has large cardinals, cut V at the first inaccessible cardinal κ. Then Vκ
is a model of ZFC with no large cardinals, and yet the property holds because it concerns only sets low in the
cumulative hierarchy.

7This is a fine distinction because refuting (8) is the same as verifying (6); but for general methodological
reasons it is usually preferable to consider axioms which are in principle refutable over those which can be
only verified, but never refuted, if verification is considered unlikely.

54



References
[BS74] J. L. Bell and A. B. Slomson. Models and ultraproducts: an introduction.

North-Holland / American Elsevier, 3rd ed., 1974.

[Cha65] C. C. Chang. A simple proof of the Rabin-Keisler theorem. Bull. of the
Amer. Math. Soc., 71:642–643, 1965.

[DD03] O. Deiser and H.-D. Donder. Canonical functions, non-regular ultrafilters
and Ulam’s problem on ω1. J. Symb. Logic, 68(3):713–739, 2003.

[Don88] H.-D. Donder. Regularity of ultrafilters and the core model. Israel J. Math.,
63(3):289–322, 1988.

[FFMS00] S. Feferman, H. M. Friedman, P. Maddy, and J. R. Steel. Does mathematics
need new axioms? Bull. Symb. Logic, 6(4):401–446, 2000.

[FMS88] M. Foreman, M. Magidor, and S. Shelah. Martin’s maximum, saturated ide-
als and non-regular ultrafilters. part II. Ann. Mathematics, 127(3):521–545,
1988.

[Hod93] W. Hodges. Model theory. Cambridge University Press, 1993.

[Kan03] A. Kanamori. The Higher Infinite. Springer, 2003.

[Kei71] H. J. Keisler. Model theory for infinitary logic. North-Holland, 1971.

[Mag79] M. Magidor. On the existence of nonregular ultrafilters and the cardinality
of ultrapowers. Trans. Amer. Math. Soc., 249(1):97–111, 1979.

[Mek77] A. Mekler. Theories with models of prescribed cardinalities. J. Symb. Logic,
42(2):251–253, 1977.

[SJ99] S. Shelah and R. Jin. Possible size of an ultrapower of ω. Archive Math.
Logic, 38:61–77, 1999.

55


