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ABSTRACT
Time series analysis of synthetic aperture radar data (SAR) offers a systematic, dynamic and comprehensive way to monitor for-
ests. The main emphasis of this study is on the identification of the most suitable and best performing Sentinel-1 SAR polarimetric 
parameters for forest monitoring. This is accomplished through: 1) a pairwise correlation analysis of SAR polarimetric parameters, 
multispectral optical vegetation indices and ancillary data, 2) a univariate binary time series classification for differentiation between 
forest types and 3) a visual exploration of time series. For this purpose, 600 validated broad-leaved and 600 coniferous forest areas 
in Czechia were used. Nine different SAR polarimetric parameters were examined, including VH and VV polarizations, VV/VH and 
VH/VV polarization ratios, the Radar Vegetation Index, Radar Forest Degradation Index, polarimetric radar vegetation index and the 
original and modified versions of the dual polarimetric SAR vegetation index. The pairwise correlation analysis revealed that most 
of the derived SAR polarimetric parameters were functions of each other with nearly identical behavior (r > |0.96|). The strongest 
correlation of r ~0.50 between SAR and optical features was found for broad-leaved forest for VV/VH and VH/VV. The highest overall 
accuracy in the time series classification of forest types was achieved by VH (76%), while for VV, VV/VH and VH/VV it was higher 
than 60%. Furthermore, the time series analysis of these parameters showed seasonal behaviors of the SAR features in both forest 
types. These results demonstrated the high relevance of using VH, VV, VV/VH and VH/VV time series in forest monitoring compared 
to other SAR polarimetric parameters. This study also introduces a novel pipeline to generate multi-modal time series datasets in 
Google Earth Engine (MMTS-GEE), used to generate data for the analysis. MMTS-GEE combines spatially and temporally aligned 
SAR and multispectral data, extended with topographic and weather data, and a land cover class label. Its high versatility enables 
its use in time series analyses, intercomparisons and in machine learning applications for tabular time series data. The GEE code for 
the proposed tool and analysis is freely available to the research community.
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1. Introduction

Time series analysis of remote sensing (RS) data offers 
a  dynamic and comprehensive way to monitor the 
Earth’s surface and atmosphere in a systematic way. 
One of the most dynamically changing land cover types 
is vegetation, especially forests, being influenced by 
several anthropogenic and natural factors (Senf and 
Seidl 2021; Ma et al. 2023; Forzieri et al. 2022). Forest 
change is an important ecological process leading to 
reestablishment of forest biomass and structure (Bar-
tels et al. 2016); therefore, incorporating time series 
in their monitoring is essential. Currently, the two 
most commonly used open-access RS data types are 
optical multispectral data (e.g., from Landsat or Sen-
tinel-2 missions) and synthetic aperture radar (SAR) 
data (e.g., from the Sentinel-1 mission).

Optical vegetation indices, such as the Normal-
ized Difference Vegetation Index (NDVI), Enhanced 
Vegetation Index (EVI), or biophysical and structur-
al parameters, such as the Leaf Area Index (LAI) and 
Fraction of Absorbed Photosynthetically Active Radi-
ation (FAPAR) are one of the most-known and most-
used parameters for vegetation and forest monitoring 
in the optical domain (Zeng et al. 2022). NDVI is the 
most popular VI due to its simplicity, long history, and 
the fact that it can be created from the data of almost 
every RS sensor (Huang et al. 2021). EVI has improved 
sensitivity in high biomass regions compared to NDVI 
and it reduces the influence of the ground and atmo-
sphere signal on the canopy response (Huete et al. 
2002). LAI and FAPAR were identified as terrestrial 
Essential Climate Variables (ECV) by the Global Cli-
mate Observing System (WMO et al. 2011). These VIs 
are also generated on the global scale for operational 
use, e.g. NDVI and EVI from the MODIS or from NASA 
Visible Infrared Imaging Radiometer Suite (VIIRS) 
(at 250–1000 m and 16 days of spatial and temporal 
resolution, respectively) (Didan 2021b; 2021a; Didan 
and Barreto 2018), LAI and FPAR from MODIS and 
VIIRS (500 m and 4–8 days) (Myneni, Knyazikhin, and 
Park 2021; Myneni and Knyazikhin 2018), NDVI, LAI 
and FAPAR from the Copernicus Global Land Service 
(CGLS) (300 m and 10 days) (Fuster et al. 2020) or the 
Pan-European Sentinel-2 LAI, FAPAR and NDVI prod-
ucts (10 m and 1 day) (Smets et al. 2023).

Vegetation indices based on optical data are heavily 
dependent on sunlight, making them less effective in 
areas with frequent cloud cover. For this reason, SAR 
polarimetric parameters have also been developed for 
vegetation monitoring in recent years. They are based 
on a combination of backscatter coefficient from SAR 
polarizations, e.g. co-polarization ratios (PR) of VH/
VV or VV/VH, Radar Vegetation Index (RVI), Radar 
Forest Degradation Index (RFDI), polarimetric radar 
vegetation index (PRVI), dual polarimetric SAR veg-
etation index (DPSVI) (Frison et al. 2018; Chang, 
Shoshany, and Oh 2018; Alvarez-Mozos et al. 2021; 
Hird et al. 2017; Kim and van Zyl 2000; Periasamy 

2018; dos Santos, Da Silva, and do Amaral 2021) or 
incorporate also the phase information, such as the 
Dual-pol radar vegetation index (DpRVI) or the Com-
pact-pol RVI (CpRVI) (Mandal et al. 2020a; 2020b). 
Compared to optical indices, which are altered pri-
marily by physiological, biophysical, and biochemical 
changes in vegetation throughout the year, SAR sig-
nals can be strongly influenced not only by structural 
changes during the year but also by environmental 
factors such as precipitation and temperature (Olesk  
et al. 2015; Benninga, van der Velde, and Su 2019; 
Rüetschi, Small, and Waser 2019; Paluba et al. 2023). 
Environmental effects can alter the moisture content 
and, consequently, the dielectric properties of objects, 
which typically change throughout the year. 

For the purpose of finding the most suitable combi-
nation of optical and SAR data for environmental mon-
itoring, relationship/correlation between them has 
been evaluated. Moderate to high correlations were 
found between NDVI and SAR polarizations (VH and 
VV), polarimetric indices (Radar Vegetation Index –  
RVI, VH/VV, VV/VH and other) for crop monitoring, 
(e.g., in Alvarez-Mozos et al. 2021; Filgueiras et al. 
2019; Holtgrave et al. 2020; Jiao, McNairn, and Dingle 
Robertson 2021) and interferometric coherence (Bai 
et al. 2020). However, these analyses were performed 
on an image-by-image basis and no time series data 
were included. Frison et al. (2018) were focused on 
the aspect of time series and a  strong correlation 
between NDVI and the co-polarimetric ratio VH/VV 
for forest time series was found.

Effective computing platforms and algorithms are 
needed to assess, pre-process and test a wide range 
of data types, especially in time series analysis and 
machine learning approaches, such as classification 
or regression tasks. Current cloud-based platforms, 
such as Google Earth Engine (GEE), allow access to 
a wide range of datasets, as well as processing pow-
er in the cloud, without the need to download data 
locally or own high computational resources (Gore-
lick et al. 2017). The wide use of GEE is documented 
by recognized publication databases, such as the Web 
of Science (webofscience.com), where a total of 3,937 
published contributions including the “Google Earth 
Engine” keyword in the abstract, title or keywords 
was found, while 1,032 were published last year, in 
2023 (accessed on 16.7.2024). GEE has a prominent 
role in current forest monitoring efforts. The Global 
Forest Watch (Global Forest Watch 2014), using the 
power of GEE, collects global and regionally oriented 
forest datasets to provide deforestation (Reiche et al. 
2021) or fire alerts (Tyukavina et al. 2022), map for-
est loss and gain (Hansen et al. 2013), primary forest 
distribution (Turubanova et al. 2018), forest green-
house gas emissions (Harris et al. 2021) or identify 
the drivers of forest loss (Curtis et al. 2018) to men-
tion a few.

Nowadays, there are about 400 RS datasets for 
deep learning applications, including Satellite Time 
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Series Datasets (Dufourg et al. 2024), as reported 
in Schmitt et al. (2023). These datasets contain data 
from various sensors and RS platforms, even their 
combinations, focusing on different topics, covering 
various geographical locations and time steps. Most of 
these datasets are mono-temporal, covering selected 
patches globally, but only for a single time step. Their 
publication dates vary, affecting the up-to-dateness 
of data, and their sizes range from a few megabytes 
to tens of terabytes. Although DL models trained on 
large geographic scales can work on local levels, their 
use in time series analysis for a defined area of inter-
est would be challenging due to local specifics, time 
scale or equipped sensors.

For this purpose, in this work, a GEE pipeline to 
create multi-modal time series datasets (MMTS-
GEE), specifically temporally and spatially paired 
labeled time series of S1, S2 and ancillary data (DEM 
and weather data), is developed. MMTS-GEE enables 
generation of paired time series for any time period 
(based on data availability) and over any geographic 
region as well as preprocessing data including cloud 
masking, speckle filtering and feature extraction. 
Selected and validated forest areas in Czechia were 
used to extract time series of selected SAR and opti-
cal indices/parameters, as well as ancillary data. The 
main goal and scientific contribution of this study 
is to identify the most suitable and best performing 
SAR polarimetric parameters for forest monitoring. 
It was accomplished through performing a  pair-
wise correlation analysis of SAR, optical and ancil-
lary data, time series classification in forest type 
differentiation and visual inspection of time series. 
The GEE code for the MMTS-GEE tool repository 
has been made available on GitHub to support open  
science.

1.1 Data

The main data sources for this study are Copernicus 
Sentinel-1 SAR data (S1) and Sentinel-2 multispectral 
data (S2) operated by the European Space Agency 
(ESA). The S1 C-band (with 5.405 GHz central fre-
quency) SAR data in Ground-range detected (GRD) 
were accessed from GEE with a  pixel size of 10 m 
and a spatial resolution of about 20 × 22 m. There-
fore, a spatial resolution of 20 m was used in all data 
processing in GEE and in further analyses. S1 data 
acquired before 2022 were used to explore the full 
potential of both Sentinel-1A and B satellites, which 
provided a 6-day temporal resolution until the end of 
2021 when an anomaly occurred with the Sentinel-1B 
satellite (Pinheiro et al. 2022). The S2 mission with 
its two sun-synchronously orbiting satellites provides 
images of the Earth’s surface in the optical domain 
every 5 days with a spatial resolution of 10, 20 and 
60 m, depending on wavelength.

To enhance multi-modality and address the rela-
tionship between SAR backscatter and topographic 

and climatic features, the Copernicus DEM digital 
elevation model (C-DEM) and weather data from the 
ERA-5 Land mission were also assessed. The C-DEM 
is a digital surface model representing the surface of 
the Earth, including buildings, infrastructure and veg-
etation for the time frame between 2011 and 2015 
(European Space Agency and Airbus 2022). It is based 
on TanDEM-X satellite products provided by the Ger-
man Aerospace Center (DLR) and Airbus Defence 
and Space. In this work, the C-DEM GLO-30 product 
was used, which represents a global DEM with a spa-
tial resolution of 30 m. C-DEM was used to provide 
information on elevation, calculating slope, and local 
incidence angle (LIA). LIA, the angle between the 
look (incidence) vector of the SAR signal and the 
vector normal to the surface, was calculated for each 
S1 image separately based on the methodology of  
Paluba et al. (2021).

The ERA5-land is a  reanalysis dataset from the 
original ERA5 dataset with an hourly temporal res-
olution and with an enhanced resolution of 0.1 arc 
degrees with a native resolution of 9 km (Coperni-
cus Climate Change Service 2019, p. 5). The dataset 
includes 50 variables in an hourly step from 1981, 
from which two variables were used: “tempera-
ture_2m”, an average temperature of air 2 meters 
above the surface; and “total_precipitation”, accumu-
lated liquid and frozen water, including rain and snow, 
that falls to the Earth’s surface. The following meteo-
rological data were derived from the ERA5 Land data-
set for the selected study area: the sum of precipita-
tion 12 hours prior to each SAR acquisition, and the 
temperature at the time of SAR acquisition.

Three land cover datasets, specifically ESA World-
Cover v200 (ESA WC) for 2021 with a spatial resolu-
tion of 10 m (Zanaga et al. 2022), Corine Land Cover 
(CLC) for 2018 with a spatial resolution of 100 m and 
a minimal mapping unit of 25 ha (Kosztra et al. 2019), 
Copernicus Global Land Cover Layers Collection 3 
(GLCL) (Buchhorn et al. 2020) with a spatial resolu-
tion of 100 m, and a forest-oriented dataset, the Han-
sen Global Forest Change v1.10 (GFC) with a spatial 
resolution of 30 m (Hansen et al. 2013) were used for 
forest mask generation.

1.2 Study areas and methods

Study Areas
Czechia was selected as a case study. Czechia has a rel-
atively high share of forests with heterogeneous spe-
cies composition. In 2021, forests represented 34% 
of the total area of Czechia. The coniferous species 
represented 70% of the total forest cover, while the 
most populous species are Norway spruce (68% of all 
conifers), followed by pines (23%) and larch (6%). 
Broad-leaved species are represented mainly by 
beech (32% of all broad-leaved species), oak (27%) 
and birch (10%) (Ministry of Agriculture of the Czech 
Republic 2022).
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Automatic Forest Dataset Generation
Coniferous and broad-leaved forest areas were select-
ed in the entire Czechia for this study. Healthy forest 
masks were created based on an enhanced pipeline 
from (Paluba et al. 2021; Onačillová, Krištofová, and 
Paluba 2023), where an intersection of three land 
cover datasets (ESA WC, CLC and GLCL) and a for-
est-oriented dataset (GFC) was utilized. In the first 
step, pixels with a canopy closure greater than 50% 
in the base layer, as recorded in the GFC dataset for 
the year 2000, were selected. Pixels where a forest 
loss occurred between 2000 and 2021 (forest_loss 
band) were further masked out. The CLC and GLCL 
datasets allowed differentiation between coniferous 
and broad-leaved forests; therefore, based on their 
intersection, broad-leaved and coniferous forest 
masks were created. Consequently, around 1000 ran-
dom points with a 20-m buffer, entirely located inside 
the forest masks, were generated for the whole of 
Czechia for both forest types.

Validation of automatically generated forest areas
In the next step, a verification of automatically gen-
erated healthy forest areas (~1000 from each class) 
was carried out to include only pure forest areas 
throughout the observed period. They were verified 
using a visual analysis with high-resolution images 
in Google Earth Pro (GEP). GEP provides satellite 
images with medium to very high spatial resolution, 
including providers such as NASA / USGS with Land-
sat data (30 m), CNES with SPOT data (10–1.5 m) or 
DigitalGlobe/Maxar with IKONOS and QuickBird data 
with sub-meter resolution (Bey et al. 2016). To dif-
ferentiate between broad-leaved and coniferous for-
ests, images that capture both leaf-on (summer) and 
leaf-off (winter) conditions of the forests were used. 
The European Larch (Larix decidua), a coniferous tree 
that loses its needles in autumn, was excluded from 
both the broad-leaved and coniferous input datasets 
to avoid discrepancies in the satellite time series.  

To ensure that the areas did not undergo significant 
forest changes in 2021 and to eliminate possible 
errors introduced by the forest masks, only areas with 
at least 75% tree coverage in their 20 × 20 m buffered 
areas were left in the final input dataset. Areas locat-
ed on the borders of different forest growth stages 
(small young versus high old trees) were excluded to 
avoid the effects of possible SAR shadowing on young 
trees caused by higher trees. Areas containing water 
or paved/concrete roads were also excluded. In the 
end, 600 coniferous and 600 broad-leaved forest 
areas were selected for further analysis. Their spatial 
distribution can be seen in Fig. 1.

S1 and S2 Data Preparation and Pre-Processing
Initially, S2 Surface Reflectance (Level-2A) image 
tiles with cloud cover higher than 30% were filtered 
out (resulting in 871 S2 images for the entire Czechia 
in 2021). It should be noted that the S2 Level-2A data 
in GEE are already processed using the Sen2Cor pro-
cessor and are automatically ingested to GEE from 
the Copernicus Open Access Hub (scihub.coperni-
cus.eu). In the next step, the CloudScore+ approach, 
using the cs band with a default threshold of 0.60 was 
applied to exclude defected pixels affected by clouds, 
shadows and haze. CloudScore+ uses a weakly super-
vised deep learning approach to analyze the quality 
of each image pixel, while assigning per-pixel quality 
scores (Pasquarella et al. 2023; Pasquarella 2024). 
The cs band was used rather than the cs_cdf due to 
its higher sensitivity to haze and cloud edges and is 
recommended for applications where an absolute 
clear pixel is required (Pasquarella 2024). A thresh-
old of 0.60 was found to have sufficient tradeoff 
between masking the correct pixels and losing use-
ful information in (Nicolau 2024). After the cloud 
unmasking, two optical vegetation indices, NDVI and 
EVI, and two vegetation parameters, LAI and FAPAR, 
were calculated. More information can be found  
in Tab. 1. 

Fig. 1 Spatial distribution  
of broad-leaved and 
coniferous forest areas used 
in this study.
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A  total of 1,419 S1 images were acquired and 
pre-processed for the entire Czechia in 2021. Follow-
ing Filgueiras et al. (2019), the Lee speckle filter with 
a window size of 5 × 5 pixels was applied to the S1 data 
in GEE to reduce the speckle noise, based on the imple-
mentation in Mullissa et al. (2021). The Lee filter is one 
of the most used speckle filters, being computationally 
efficient while effectively smoothing the speckle effect 
and preserving the edges or subtle details (Lee 1985). 
The SAR polarimetric parameters (VV/VH, VH/VV,  
Radar Forest Degradation Index – RFDI, Radar Veg-
etation Index – RVI, the original Dual Polarized SAR 
Vegetation Index – DPSVIo and its modified version 
DPSVIm) were then calculated in power/linear units 
(Tab. 2). The VV and VH polarizations were converted 
to decibels (dB), to a logarithmic scale.

The final MMTS-GEE pipeline: Image pairing and 
time series data export
In the next step, the pre-processed S1 and S2 images 
were temporally and spatially joined and aligned. The 
joined S1–S2 image collection was created based on 
a spatial overlap and the 24-hour temporal difference 

between the pre-processed S1 and S2 images. The S1 
images served as master images in image stacking, 
that is, the S2 images were joined to the S1 images. 
The temporal difference of 24 hours was selected 
based on the findings that daily differences in optical 
VIs, e.g., in NDVI, are negligible (May et al. 2017). In 
total, 1254 S1–S2 pairs were identified in 2021 in Cze-
chia. The analysis of temporal differences between the 
S1–S2 pairs resulted in a bimodal distribution. More 
than half of the pairs (643 images) had differences 
between 4 and 7 hours, while the second group of the 
pairs (611 images) had differences between 17 and 
20 hours. The mean difference was 12 hours, with the 
majority of pairs having a difference of 5 (302 images) 
and 19 hours (288 images).

The ancillary features (DEM and weather data) 
were then calculated for each pixel and added to the 
feature space. At the end, an image collection was cre-
ated, where each image includes spatially and tempo-
rally joined and aligned S1 and S2 images, topograph-
ic characteristics (elevation, slope, LIA) and weather 
data (temperature, precipitation). All data are resam-
pled into a 20-m grid using the nearest neighborhood 

Tab. 1 Target optical vegetation indies.

Name Abbreviation Forumula Source

Normalized Difference Vegetation Index NDVI
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𝑁𝑁𝑁𝑁𝑁𝑁	 + 	𝑅𝑅𝑅𝑅𝑅𝑅	 (Gamon	et	al.	

1995)	

Enhanced	Vegetation	Index	 EVI	 2.5

×
𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁	 + 	6 × 𝑅𝑅𝑅𝑅𝑅𝑅 − 7.5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵	 + 1	

(Liu	and	Huete	

1995)	

Leaf	Area	Index	 LAI	 based	on	(Weiss	and	Baret	2016)	 *	

Fraction	of	Absorbed	

Photosynthetically	Active	Radiation	

FAPAR	 based	on	(Weiss	and	Baret	2016)	 *	

Note:	*	GEE	implementation	by	Van	Tricht	(2023).	
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Name	 Abbreviation	 Forumula	 Source	
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𝑉𝑉𝑉𝑉	 − 	𝑉𝑉𝑉𝑉	 [3]	

Polarimetric	Ratio	1	 VV/VH	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 [4]	

Polarimetric	Ratio	2	 VH/VV	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉 	 [5]	

Normalized	Ratio	Procedure	between	 NRPB	 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [6]	

(Gamon et al. 1995)
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preserving	the	edges	or	subtle	details	(Lee	1985).	The	SAR	polarimetric	parameters	

(VV/VH,	VH/VV,	Radar	Forest	Degradation	Index	–	RFDI,	Radar	Vegetation	Index	–	RVI,	

the	original	Dual	Polarized	SAR	Vegetation	Index	–	DPSVIo	and	its	modified	version	

DPSVIm)	were	then	calculated	in	power/linear	units	(Tab.	2).	The	VV	and	VH	

polarizations	were	converted	to	decibels	(dB),	to	a	logarithmic	scale.	

	

Tab.	2	Calculated	SAR	polarimetric	features.	*	in	Alvarez-Mozos	et	al.	(2021),	it	was	

used	as	the	Normalized	Difference	Polarization	Index	(NDPI).	

Name	 Abbreviation	 Forumula	 Source	

Radar	Vegetation	Index	 RVI	 4 ×
𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [1,2]	

Radar	Forest	Degradation	Index*	 RFDI	 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 − 	𝑉𝑉𝑉𝑉	 [3]	

Polarimetric	Ratio	1	 VV/VH	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 [4]	

Polarimetric	Ratio	2	 VH/VV	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉 	 [5]	

Normalized	Ratio	Procedure	between	 NRPB	 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [6]	

 

Tab.	1	Target	optical	vegetation	indies.	

Name	 Abbreviation	 Forumula	 Source	

Normalized	Difference	Vegetation	

Index	

NDVI	 𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁	 + 	𝑅𝑅𝑅𝑅𝑅𝑅	 (Gamon	et	al.	

1995)	

Enhanced	Vegetation	Index	 EVI	 2.5

×
𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁	 + 	6 × 𝑅𝑅𝑅𝑅𝑅𝑅 − 7.5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵	 + 1	

(Liu	and	Huete	

1995)	

Leaf	Area	Index	 LAI	 based	on	(Weiss	and	Baret	2016)	 *	

Fraction	of	Absorbed	

Photosynthetically	Active	Radiation	

FAPAR	 based	on	(Weiss	and	Baret	2016)	 *	

Note:	*	GEE	implementation	by	Van	Tricht	(2023).	

	

A	total	of	1,419	S1	images	were	acquired	and	pre-processed	for	the	entire	Czechia	in	

2021.	Following	Filgueiras	et	al.	(2019),	the	Lee	speckle	filter	with	a	window	size	of	5x5	

pixels	was	applied	to	the	S1	data	in	GEE	to	reduce	the	speckle	noise,	based	on	the	

implementation	in	Mullissa	et	al.	(2021).	The	Lee	filter	is	one	of	the	most	used	speckle	

filters,	being	computationally	efficient	while	effectively	smoothing	the	speckle	effect	and	

preserving	the	edges	or	subtle	details	(Lee	1985).	The	SAR	polarimetric	parameters	

(VV/VH,	VH/VV,	Radar	Forest	Degradation	Index	–	RFDI,	Radar	Vegetation	Index	–	RVI,	

the	original	Dual	Polarized	SAR	Vegetation	Index	–	DPSVIo	and	its	modified	version	

DPSVIm)	were	then	calculated	in	power/linear	units	(Tab.	2).	The	VV	and	VH	

polarizations	were	converted	to	decibels	(dB),	to	a	logarithmic	scale.	

	

Tab.	2	Calculated	SAR	polarimetric	features.	*	in	Alvarez-Mozos	et	al.	(2021),	it	was	

used	as	the	Normalized	Difference	Polarization	Index	(NDPI).	

Name	 Abbreviation	 Forumula	 Source	

Radar	Vegetation	Index	 RVI	 4 ×
𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [1,2]	

Radar	Forest	Degradation	Index*	 RFDI	 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 − 	𝑉𝑉𝑉𝑉	 [3]	

Polarimetric	Ratio	1	 VV/VH	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 [4]	

Polarimetric	Ratio	2	 VH/VV	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉 	 [5]	

Normalized	Ratio	Procedure	between	 NRPB	 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [6]	

(Liu and Huete 1995)

Leaf Area Index LAI based on (Weiss and Baret 2016) *

Fraction of Absorbed Photosynthetically Active 
Radiation FAPAR based on (Weiss and Baret 2016) *

Note: * GEE implementation by Van Tricht (2023).

Tab. 2 Calculated SAR polarimetric features.

Name Abbreviation Forumula Source

Radar Vegetation Index RVI

Tab.	1	Target	optical	vegetation	indies.	

Name	 Abbreviation	 Forumula	 Source	

Normalized	Difference	Vegetation	

Index	

NDVI	 𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁	 + 	𝑅𝑅𝑅𝑅𝑅𝑅	 (Gamon	et	al.	

1995)	

Enhanced	Vegetation	Index	 EVI	 2.5

×
𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁	 + 	6 × 𝑅𝑅𝑅𝑅𝑅𝑅 − 7.5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵	 + 1	

(Liu	and	Huete	

1995)	

Leaf	Area	Index	 LAI	 based	on	(Weiss	and	Baret	2016)	 *	

Fraction	of	Absorbed	

Photosynthetically	Active	Radiation	

FAPAR	 based	on	(Weiss	and	Baret	2016)	 *	

Note:	*	GEE	implementation	by	Van	Tricht	(2023).	

	

A	total	of	1,419	S1	images	were	acquired	and	pre-processed	for	the	entire	Czechia	in	

2021.	Following	Filgueiras	et	al.	(2019),	the	Lee	speckle	filter	with	a	window	size	of	5x5	

pixels	was	applied	to	the	S1	data	in	GEE	to	reduce	the	speckle	noise,	based	on	the	

implementation	in	Mullissa	et	al.	(2021).	The	Lee	filter	is	one	of	the	most	used	speckle	

filters,	being	computationally	efficient	while	effectively	smoothing	the	speckle	effect	and	

preserving	the	edges	or	subtle	details	(Lee	1985).	The	SAR	polarimetric	parameters	

(VV/VH,	VH/VV,	Radar	Forest	Degradation	Index	–	RFDI,	Radar	Vegetation	Index	–	RVI,	

the	original	Dual	Polarized	SAR	Vegetation	Index	–	DPSVIo	and	its	modified	version	

DPSVIm)	were	then	calculated	in	power/linear	units	(Tab.	2).	The	VV	and	VH	

polarizations	were	converted	to	decibels	(dB),	to	a	logarithmic	scale.	

	

Tab.	2	Calculated	SAR	polarimetric	features.	*	in	Alvarez-Mozos	et	al.	(2021),	it	was	

used	as	the	Normalized	Difference	Polarization	Index	(NDPI).	

Name	 Abbreviation	 Forumula	 Source	

Radar	Vegetation	Index	 RVI	 4 ×
𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [1,2]	

Radar	Forest	Degradation	Index*	 RFDI	 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 − 	𝑉𝑉𝑉𝑉	 [3]	

Polarimetric	Ratio	1	 VV/VH	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 [4]	

Polarimetric	Ratio	2	 VH/VV	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉 	 [5]	

Normalized	Ratio	Procedure	between	 NRPB	 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [6]	

[1,2]

Radar Forest Degradation Index RFDI

Tab.	1	Target	optical	vegetation	indies.	

Name	 Abbreviation	 Forumula	 Source	

Normalized	Difference	Vegetation	

Index	

NDVI	 𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁	 + 	𝑅𝑅𝑅𝑅𝑅𝑅	 (Gamon	et	al.	

1995)	

Enhanced	Vegetation	Index	 EVI	 2.5

×
𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁	 + 	6 × 𝑅𝑅𝑅𝑅𝑅𝑅 − 7.5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵	 + 1	

(Liu	and	Huete	

1995)	

Leaf	Area	Index	 LAI	 based	on	(Weiss	and	Baret	2016)	 *	

Fraction	of	Absorbed	

Photosynthetically	Active	Radiation	

FAPAR	 based	on	(Weiss	and	Baret	2016)	 *	

Note:	*	GEE	implementation	by	Van	Tricht	(2023).	

	

A	total	of	1,419	S1	images	were	acquired	and	pre-processed	for	the	entire	Czechia	in	

2021.	Following	Filgueiras	et	al.	(2019),	the	Lee	speckle	filter	with	a	window	size	of	5x5	

pixels	was	applied	to	the	S1	data	in	GEE	to	reduce	the	speckle	noise,	based	on	the	

implementation	in	Mullissa	et	al.	(2021).	The	Lee	filter	is	one	of	the	most	used	speckle	

filters,	being	computationally	efficient	while	effectively	smoothing	the	speckle	effect	and	

preserving	the	edges	or	subtle	details	(Lee	1985).	The	SAR	polarimetric	parameters	

(VV/VH,	VH/VV,	Radar	Forest	Degradation	Index	–	RFDI,	Radar	Vegetation	Index	–	RVI,	

the	original	Dual	Polarized	SAR	Vegetation	Index	–	DPSVIo	and	its	modified	version	

DPSVIm)	were	then	calculated	in	power/linear	units	(Tab.	2).	The	VV	and	VH	

polarizations	were	converted	to	decibels	(dB),	to	a	logarithmic	scale.	

	

Tab.	2	Calculated	SAR	polarimetric	features.	*	in	Alvarez-Mozos	et	al.	(2021),	it	was	

used	as	the	Normalized	Difference	Polarization	Index	(NDPI).	

Name	 Abbreviation	 Forumula	 Source	

Radar	Vegetation	Index	 RVI	 4 ×
𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [1,2]	

Radar	Forest	Degradation	Index*	 RFDI	 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 − 	𝑉𝑉𝑉𝑉	 [3]	

Polarimetric	Ratio	1	 VV/VH	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 [4]	

Polarimetric	Ratio	2	 VH/VV	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉 	 [5]	

Normalized	Ratio	Procedure	between	 NRPB	 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [6]	

[3]

Polarimetric Ratio 1 VV/VH

Tab.	1	Target	optical	vegetation	indies.	

Name	 Abbreviation	 Forumula	 Source	

Normalized	Difference	Vegetation	

Index	

NDVI	 𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁	 + 	𝑅𝑅𝑅𝑅𝑅𝑅	 (Gamon	et	al.	

1995)	

Enhanced	Vegetation	Index	 EVI	 2.5

×
𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁	 + 	6 × 𝑅𝑅𝑅𝑅𝑅𝑅 − 7.5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵	 + 1	

(Liu	and	Huete	

1995)	

Leaf	Area	Index	 LAI	 based	on	(Weiss	and	Baret	2016)	 *	

Fraction	of	Absorbed	

Photosynthetically	Active	Radiation	

FAPAR	 based	on	(Weiss	and	Baret	2016)	 *	

Note:	*	GEE	implementation	by	Van	Tricht	(2023).	

	

A	total	of	1,419	S1	images	were	acquired	and	pre-processed	for	the	entire	Czechia	in	

2021.	Following	Filgueiras	et	al.	(2019),	the	Lee	speckle	filter	with	a	window	size	of	5x5	

pixels	was	applied	to	the	S1	data	in	GEE	to	reduce	the	speckle	noise,	based	on	the	

implementation	in	Mullissa	et	al.	(2021).	The	Lee	filter	is	one	of	the	most	used	speckle	

filters,	being	computationally	efficient	while	effectively	smoothing	the	speckle	effect	and	

preserving	the	edges	or	subtle	details	(Lee	1985).	The	SAR	polarimetric	parameters	

(VV/VH,	VH/VV,	Radar	Forest	Degradation	Index	–	RFDI,	Radar	Vegetation	Index	–	RVI,	

the	original	Dual	Polarized	SAR	Vegetation	Index	–	DPSVIo	and	its	modified	version	

DPSVIm)	were	then	calculated	in	power/linear	units	(Tab.	2).	The	VV	and	VH	

polarizations	were	converted	to	decibels	(dB),	to	a	logarithmic	scale.	

	

Tab.	2	Calculated	SAR	polarimetric	features.	*	in	Alvarez-Mozos	et	al.	(2021),	it	was	

used	as	the	Normalized	Difference	Polarization	Index	(NDPI).	

Name	 Abbreviation	 Forumula	 Source	

Radar	Vegetation	Index	 RVI	 4 ×
𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [1,2]	

Radar	Forest	Degradation	Index*	 RFDI	 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 − 	𝑉𝑉𝑉𝑉	 [3]	

Polarimetric	Ratio	1	 VV/VH	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 [4]	

Polarimetric	Ratio	2	 VH/VV	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉 	 [5]	

Normalized	Ratio	Procedure	between	 NRPB	 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [6]	

[4]

Polarimetric Ratio 2 VH/VV

Tab.	1	Target	optical	vegetation	indies.	

Name	 Abbreviation	 Forumula	 Source	

Normalized	Difference	Vegetation	

Index	

NDVI	 𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁	 + 	𝑅𝑅𝑅𝑅𝑅𝑅	 (Gamon	et	al.	

1995)	

Enhanced	Vegetation	Index	 EVI	 2.5

×
𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁	 + 	6 × 𝑅𝑅𝑅𝑅𝑅𝑅 − 7.5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵	 + 1	

(Liu	and	Huete	

1995)	

Leaf	Area	Index	 LAI	 based	on	(Weiss	and	Baret	2016)	 *	

Fraction	of	Absorbed	

Photosynthetically	Active	Radiation	

FAPAR	 based	on	(Weiss	and	Baret	2016)	 *	

Note:	*	GEE	implementation	by	Van	Tricht	(2023).	

	

A	total	of	1,419	S1	images	were	acquired	and	pre-processed	for	the	entire	Czechia	in	

2021.	Following	Filgueiras	et	al.	(2019),	the	Lee	speckle	filter	with	a	window	size	of	5x5	

pixels	was	applied	to	the	S1	data	in	GEE	to	reduce	the	speckle	noise,	based	on	the	

implementation	in	Mullissa	et	al.	(2021).	The	Lee	filter	is	one	of	the	most	used	speckle	

filters,	being	computationally	efficient	while	effectively	smoothing	the	speckle	effect	and	

preserving	the	edges	or	subtle	details	(Lee	1985).	The	SAR	polarimetric	parameters	

(VV/VH,	VH/VV,	Radar	Forest	Degradation	Index	–	RFDI,	Radar	Vegetation	Index	–	RVI,	

the	original	Dual	Polarized	SAR	Vegetation	Index	–	DPSVIo	and	its	modified	version	

DPSVIm)	were	then	calculated	in	power/linear	units	(Tab.	2).	The	VV	and	VH	

polarizations	were	converted	to	decibels	(dB),	to	a	logarithmic	scale.	

	

Tab.	2	Calculated	SAR	polarimetric	features.	*	in	Alvarez-Mozos	et	al.	(2021),	it	was	

used	as	the	Normalized	Difference	Polarization	Index	(NDPI).	

Name	 Abbreviation	 Forumula	 Source	

Radar	Vegetation	Index	 RVI	 4 ×
𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [1,2]	

Radar	Forest	Degradation	Index*	 RFDI	 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 − 	𝑉𝑉𝑉𝑉	 [3]	

Polarimetric	Ratio	1	 VV/VH	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 [4]	

Polarimetric	Ratio	2	 VH/VV	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉 	 [5]	

Normalized	Ratio	Procedure	between	 NRPB	 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [6]	

[5]

Normalized Ratio Procedure between Bands NRPB

Tab.	1	Target	optical	vegetation	indies.	

Name	 Abbreviation	 Forumula	 Source	

Normalized	Difference	Vegetation	

Index	

NDVI	 𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁	 + 	𝑅𝑅𝑅𝑅𝑅𝑅	 (Gamon	et	al.	

1995)	

Enhanced	Vegetation	Index	 EVI	 2.5

×
𝑁𝑁𝑁𝑁𝑁𝑁	 − 	𝑅𝑅𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁	 + 	6 × 𝑅𝑅𝑅𝑅𝑅𝑅 − 7.5 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵	 + 1	

(Liu	and	Huete	

1995)	

Leaf	Area	Index	 LAI	 based	on	(Weiss	and	Baret	2016)	 *	

Fraction	of	Absorbed	

Photosynthetically	Active	Radiation	

FAPAR	 based	on	(Weiss	and	Baret	2016)	 *	

Note:	*	GEE	implementation	by	Van	Tricht	(2023).	

	

A	total	of	1,419	S1	images	were	acquired	and	pre-processed	for	the	entire	Czechia	in	

2021.	Following	Filgueiras	et	al.	(2019),	the	Lee	speckle	filter	with	a	window	size	of	5x5	

pixels	was	applied	to	the	S1	data	in	GEE	to	reduce	the	speckle	noise,	based	on	the	

implementation	in	Mullissa	et	al.	(2021).	The	Lee	filter	is	one	of	the	most	used	speckle	

filters,	being	computationally	efficient	while	effectively	smoothing	the	speckle	effect	and	

preserving	the	edges	or	subtle	details	(Lee	1985).	The	SAR	polarimetric	parameters	

(VV/VH,	VH/VV,	Radar	Forest	Degradation	Index	–	RFDI,	Radar	Vegetation	Index	–	RVI,	

the	original	Dual	Polarized	SAR	Vegetation	Index	–	DPSVIo	and	its	modified	version	

DPSVIm)	were	then	calculated	in	power/linear	units	(Tab.	2).	The	VV	and	VH	

polarizations	were	converted	to	decibels	(dB),	to	a	logarithmic	scale.	

	

Tab.	2	Calculated	SAR	polarimetric	features.	*	in	Alvarez-Mozos	et	al.	(2021),	it	was	

used	as	the	Normalized	Difference	Polarization	Index	(NDPI).	

Name	 Abbreviation	 Forumula	 Source	

Radar	Vegetation	Index	 RVI	 4 ×
𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [1,2]	

Radar	Forest	Degradation	Index*	 RFDI	 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 − 	𝑉𝑉𝑉𝑉	 [3]	

Polarimetric	Ratio	1	 VV/VH	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 [4]	

Polarimetric	Ratio	2	 VH/VV	 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉 	 [5]	

Normalized	Ratio	Procedure	between	 NRPB	 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉	 [6]	

[6]

Dual Polarized SAR Vegetation Index, original DPSVIo

Bands	

Dual	Polarized	SAR	Vegetation	Index,	

original	

DPSVIo	 𝑉𝑉𝑉𝑉

×
𝑉𝑉𝑉𝑉!"# × 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉 × 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉$

1.41421 ∗ 𝑉𝑉𝑉𝑉 	

[7]	

Dual	Polarized	SAR	Vegetation	Index,	

modified	

DPSVIm	 𝑉𝑉𝑉𝑉!"# − 𝑉𝑉𝑉𝑉	 + 	𝑉𝑉𝑉𝑉
1.41421 × ((𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉)/𝑉𝑉𝑉𝑉) × 𝑉𝑉𝑉𝑉	 [8]	

References:	[1]:	Kim,	van	Zyl	(2000),	[2]:	Sahadevan,	Sitiraju,	Sharma	(2013),	[3]:	

Saatchi	(2019),	[4]:	Frison	et	al.	(2018),	[5]:	Alvarez-Mozos	et	al.	(2021),	[6]:	Hird	et	al.	

(2017),	[7]:	Periasamy	(2018),	[8]:	dos	Santos,	Da	Silva,	do	Amaral	(2021)	

	

The	final	MMTS-GEE	pipeline:	Image	pairing	and	time	series	data	export	

In	the	next	step,	the	pre-processed	S1	and	S2	images	were	temporally	and	spatially	

joined	and	aligned.	The	joined	S1-S2	image	collection	was	created	based	on	a	spatial	

overlap	and	the	24-hour	temporal	difference	between	the	pre-processed	S1	and	S2	

images.	The	S1	images	served	as	master	images	in	image	stacking,	that	is,	the	S2	images	

were	joined	to	the	S1	images.	The	temporal	difference	of	24	hours	was	selected	based	

on	the	findings	that	daily	differences	in	optical	VIs,	e.g.,	in	NDVI,	are	negligible	(May	et	

al.	2017).	In	total,	1254	S1–S2	pairs	were	identified	in	2021	in	Czechia.	The	analysis	of	

temporal	differences	between	the	S1–S2	pairs	resulted	in	a	bimodal	distribution.	More	

than	half	of	the	pairs	(643	images)	had	differences	between	4	and	7	hours,	while	the	

second	group	of	the	pairs	(611	images)	had	differences	between	17	and	20	hours.	The	

mean	difference	was	12	hours,	with	the	majority	of	pairs	having	a	difference	of	5	(302	

images)	and	19	hours	(288	images).	

The	ancillary	features	(DEM	and	weather	data)	were	then	calculated	for	each	pixel	and	

added	to	the	feature	space.	At	the	end,	an	image	collection	was	created,	where	each	

image	includes	spatially	and	temporally	joined	and	aligned	S1	and	S2	images,	

topographic	characteristics	(elevation,	slope,	LIA)	and	weather	data	(temperature,	

precipitation).	All	data	are	resampled	into	a	20-m	grid	using	the	nearest	neighborhood	

method,	while	reprojection	and	resampling	in	GEE	are	done	automatically	on-the-fly.	

Multimodal	time	series	were	extracted	for	each	selected	forest	area.	Each	forest	area	

had	its	unique	ID	and	the	date	of	SAR	image	acquisition.	As	the	final	step	in	GEE,	each	

timestep-area	combination	including	values	of	optical,	SAR	and	ancillary	features	was	

exported	from	GEE	in	a	csv	table.	The	analysis	was	carried	out	using	the	original	S1	

coordinate	system	for	Czechia	(EPSG:32634)	and	with	a	spatial	resolution	of	20	meters,	
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×
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References:	[1]:	Kim,	van	Zyl	(2000),	[2]:	Sahadevan,	Sitiraju,	Sharma	(2013),	[3]:	

Saatchi	(2019),	[4]:	Frison	et	al.	(2018),	[5]:	Alvarez-Mozos	et	al.	(2021),	[6]:	Hird	et	al.	

(2017),	[7]:	Periasamy	(2018),	[8]:	dos	Santos,	Da	Silva,	do	Amaral	(2021)	
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added	to	the	feature	space.	At	the	end,	an	image	collection	was	created,	where	each	

image	includes	spatially	and	temporally	joined	and	aligned	S1	and	S2	images,	

topographic	characteristics	(elevation,	slope,	LIA)	and	weather	data	(temperature,	

precipitation).	All	data	are	resampled	into	a	20-m	grid	using	the	nearest	neighborhood	

method,	while	reprojection	and	resampling	in	GEE	are	done	automatically	on-the-fly.	

Multimodal	time	series	were	extracted	for	each	selected	forest	area.	Each	forest	area	

had	its	unique	ID	and	the	date	of	SAR	image	acquisition.	As	the	final	step	in	GEE,	each	

timestep-area	combination	including	values	of	optical,	SAR	and	ancillary	features	was	

exported	from	GEE	in	a	csv	table.	The	analysis	was	carried	out	using	the	original	S1	

coordinate	system	for	Czechia	(EPSG:32634)	and	with	a	spatial	resolution	of	20	meters,	
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×
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Saatchi	(2019),	[4]:	Frison	et	al.	(2018),	[5]:	Alvarez-Mozos	et	al.	(2021),	[6]:	Hird	et	al.	

(2017),	[7]:	Periasamy	(2018),	[8]:	dos	Santos,	Da	Silva,	do	Amaral	(2021)	
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images)	and	19	hours	(288	images).	

The	ancillary	features	(DEM	and	weather	data)	were	then	calculated	for	each	pixel	and	

added	to	the	feature	space.	At	the	end,	an	image	collection	was	created,	where	each	

image	includes	spatially	and	temporally	joined	and	aligned	S1	and	S2	images,	
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[8]

References: [1]: Kim, van Zyl (2000), [2]: Sahadevan, Sitiraju, Sharma (2013), [3]: Saatchi (2019), [4]: Frison et al. (2018), [5]: Alvarez-Mozos et al. 
(2021), [6]: Hird et al. (2017), [7]: Periasamy (2018), [8]: dos Santos, Da Silva, do Amaral (2021)
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method, while reprojection and resampling in GEE are 
done automatically on-the-fly.

Multimodal time series were extracted for each 
selected forest area. Each forest area had its unique 
ID and the date of SAR image acquisition. As the final 
step in GEE, each timestep-area combination includ-
ing values of optical, SAR and ancillary features was 
exported from GEE in a csv table. The analysis was 
carried out using the original S1 coordinate system 
for Czechia (EPSG:32634) and with a spatial resolu-
tion of 20 meters, which matches the spatial resolu-
tion of the S1 data. The full pipeline of the MMTS-GEE 
is depicted in Fig. 2.

Pairwise correlation analysis of optical, SAR and 
ancillary features
In the next step, a pairwise correlation analysis was 
performed between each SAR feature, to assess sim-
ilarities between them and to reduce possible data 
redundancy by excluding features. The second cor-
relation analysis focused on exploring the relation-
ship between SAR features and optical features gen-
erated from S2 data. For these analyses, all exported 
data were used, that is, each time step for each select-
ed point. Pairwise correlation analysis was performed 
and a Pearson’s correlation coefficient (r) was calcu-
lated for each combination of features.

To examine seasonality in the optical and SAR 
domains for both forest classes, a time series analysis 
was performed on the entire input dataset (600 for each 
class). Additionally, the mean value for each time step 
was calculated separately for each class to obtain a com-
plete understanding of the seasonality for each class.

Time series classification on forest type 
differentiation
To examine the performance of each individual SAR 
polarimetric parameter (Tab. 2) and both polarizations 
of S1, a univariate time series classification (TSC) was 
performed using the Time Series Support Vector Clas-
sifier (TS-SVC). The TS-SVC was specifically adopted 

for time series analysis and is available from the sktime 
Python library (Löning et al. 2022). As the exported 
time series are based mainly on the availability of S2 
data, they are unequal in length for different areas 
in Czechia. They were first imported into a Python 
environment and prepared in a  Pandas multiindex 
format (with ‘date’ and ‘ID’ as indices), as expect-
ed by the sktime algorithms. The TS-SVC was select-
ed as the only classifier in the sktime library to deal 
with unequal lengths of time series. Moreover, TS-SVC 
is considered to be one of the most used algorithms 
for TSC tasks, while in some cases achieving superior 
accuracy (Wang et al. 2022; Faouzi 2022). The Radial 
Basis Function (RBF) was selected as a kernel type due 
to its general good performance for SVC in RS applica-
tions (Thanh Noi and Kappas 2018; Mountrakis, Im, 
and Ogole 2011; Oliveira, Dutra, Sant’Anna 2023). To 
find the best performing regularization parameter C, 
fine-tuning of 11 different values (0.1, 1, 5, 10, 50, 100, 
150, 200, 300, 500 and 1000) was performed for VH 
polarized time series in differentiation between conif-
erous and broad-leaved forests.

After finding the best C parameter, a univariate time 
series classification was performed for each S1 SAR 
polarization and polarimetric parameter (Tab. 2), and 
the overall accuracy (OA) was calculated. Forest areas 
were divided into training and testing samples. Time 
series of 70% of points of each forest type was used 
in training the TS-SCV, while the remaining 30% was 
used to test the accuracy for various C parameters and 
also in accuracy assessment of various SAR features.

2. Results

2.1 Pairwise Correlation Analysis

To explore the proposed SAR polarimetric param-
eters and other features derived from DEM and 
weather datasets, a  pairwise correlation analysis 
was performed in the first step. In general, pairwise 

Fig. 2 Data pre-processing and 
preparation workflow of the 
MMTS-GEE.



Sentinel-1 SAR polarimetric parameters for forest monitoring� 7

correlation analysis indicates a  consistent pattern 
of correlation between certain features for both 
forest types, while there are features suggesting 
that some features interact differently for differ-
ent forest types. A perfect negative or positive cor-
relation (r = +/−1.00) was found for each combina-
tion between VH/VV, RVI, RDFI and NRPB for both 
broad-leaved and coniferous forests (Fig. 3a and Fig. 
3b), meaning that they are functions of each other. 
They also had a  very high correlation with VV/VH  
(|0.94| – |0.96|) and a moderate correlation with VH 
(~ |0.40|), while the correlation with VV was low  
(~ |0.15|). The VV/VH and VH/VV had a mutual cor-
relation of 94%, while they had slightly different cor-
relations with other examined features. The DPSVIo 
and its modified version (DPSVIm) had a mutual cor-
relation of –0.97 for both forest types, while having 
a moderate correlation with VV and VH and a low cor-
relation with other SAR parameters.

As expected, a high correlation (−0.60 – −0.75) was 
found between the LIA and VV and VH polarizations, 
being stronger for broad-leaved forests, while the 
SAR parameters had almost no correlation with LIA. 

The temperature had a  moderate correlation with 
the polarimetric parameters (0.35–0.38) and with VV 
and VH polarizations (0.40 and 0.57, respectively) for 
coniferous forests. The correlation for broad-leaved 
forests was about 0.25 between temperature and SAR 
features and very low for VV and VH polarizations 
(0.01 and 0.14, respectively). On the other hand, pre-
cipitation showed almost no correlation with SAR or 
other features. DEM features, slope and elevation, were 
moderately correlated with polarimetric features only 
for coniferous forests, while for broad-leaved forests 
they exhibited almost no correlation. 

The pairwise correlation in Fig. 4 demonstrates 
the varying relationships between SAR and optical 
features in different forest types. A stronger linear 
relationship (~0.50) was found for the polarimetric 
parameters VV/VH and VH/VV in broad-leaved for-
ests compared to coniferous forests. However, conif-
erous forests exhibited stronger correlations of both 
S1 polarizations with LAI and EVI. FAPAR achieved 
the strongest correlation between SAR and optical 
features for broad-leaved forests, while for coniferous 
forests it exhibited almost no correlation (Fig. 4b). 

Fig. 3 Pairwise correlation between SAR, DEM and weather features for a) broad-leaved (n = 17303) and b) coniferous forest areas (n = 13070).

Fig. 4 Pairwise correlation between SAR and optical features for a) broad-leaved (n = 17303) and b) coniferous forest areas (n = 13070).

a) b)

a) b)
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The strongest correlation for coniferous forests of 
each SAR feature was found for EVI.

The analysis also shows the correlation between 
each individual optical vegetation indices and param-
eters. Generally, the strongest correlation was found 
for broad-leaved forests: over 0.85 for each combi-
nation and a maximum of 0.97 between EVI and LAI. 
Coniferous forests exhibited a moderate correlation 
between NDVI and other optical features (~0.50), 
while the highest correlation was also achieved 
between EVI and LAI.

Based on the results of the pairwise analysis, some 
of the tested SAR features (RVI, RFDI, NRPB, and  
VH/VV) showed perfect correlation with each other; 
therefore, RVI, RFDI, and NRPB were excluded from 
further analysis, while VH/VV was retained.

2.2 Time series analysis

Generally, optical vegetation indices and parameters 
were higher in magnitude for broad-leaved forests in 
summertime and lower in wintertime compared to 
coniferous forests, while coniferous forests exhibit-
ed a more stable pattern throughout the year. Time 
series analysis of optical features, showed a clear and 
expected seasonal pattern for broad-leaved forests 
with low values in the beginning of the year, peaks in 
mid-year/summertime and a decrease in late spring 
with the lowest values during wintertime (Fig. 5a). 
The optical time series for coniferous forests shows 
a similar seasonality with peaks in summertime for 

EVI and LAI (Fig. 5b and 5c) and a rather stable behav-
ior throughout the year with a slight increase toward 
winter for NDVI and FAPAR (Fig. 5a and 5d). Some 
areas represent some noise throughout the year, even 
in the summertime. The lack of data in the wintertime 
is apparent in the time series, causing a rather noisy 
behavior of the signal with high fluctuation, especially 
in NDVI and FAPAR. Certain variability in individual 
time series, represented by the lighter lines in Fig. 5, 
can be detected within each forest type. 

In the case of SAR time series, clear seasonal 
behavior was found in both polarizations and ratios 
(VV/VH and VH/VV) for both forest types, while 
DPSVIo and DPSVIm exhibited a rather noisy behav-
ior throughout the year (Fig. 6). The more apparent 
differentiation between forest types is enabled by VH 
polarization and both ratios, while VV showed similar 
behavior and values for both forest types. The season-
alities found for these features are opposite in nature 
for the two forest types. For example, the VH backs-
catter and the VH/VV increase in summertime for 
coniferous forests, whereas they decrease for broad-
leaved forests. An opposite behavior can be observed 
in VV/VH, which decreases in summertime for conif-
erous forests and increases for broad-leaved forests. 
In contrast, VV increases in wintertime for both for-
est types. Overall, higher values were obtained in 
the VV polarization compared to those obtained in 
VH. Higher variation in individual time series can 
be observed for SAR features compared to optical  
parameters.

Fig. 5 Average and individual time series for 2021 of a) NDVI, b) EVI, c) LAI and d) FAPAR using all input data for broad-leaved and coniferous 
forests. 
Note: dec. = deciduous forests, con. = coniferous forests

a) b)

c) d)
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2.3 Time series classification

Fine-tuning the TS-SVC model, especially the C param-
eter yielded expected results: the overall accuracy is 
increasing with increasing of the C parameter value. 
An increase from 0.1 to the default C parameter for 
TS-SVC in sktime (C = 1) showed an increase in OA of 
22%. The further increases in OA were slighter, that is, 
by 2.5% from 1 to 5 and by 0.8% between 5 and 50, 50 
and 100 (Fig. 7a). The best OA, 76.12% were achieved 
with C = 200, 300 and 500, while another increase to 
1000 resulted in a decrease of 0.3% in OA (Fig. 7a). 
This suggests that increasing the C parameter above 
200 does not improve the accuracy of the model. For 
this reason, 200 was set for the regularization param-
eter C and used in the comparative analysis of the 
performance of each individual SAR polarization and 
polarimetric parameter in the differentiation between 
forest types.

The results of the TSC indicate the highest OA for 
VH polarization with 76.12%, significantly outper-
forming other SAR features by at least 11%. The sec-
ond highest OA was achieved by VH/VV (65.73%), fol-
lowed by NRPB and RFDI (both 64.89%). Accuracies 
over 60% were achieved also by VV, VV/VH and RVI 
(Fig. 7b). Based on the pairwise correlation analysis, 
where NRPB, RFDI, RVI, and VH/VV each demonstrat-
ed a 100% correlation with each other (Fig. 3), VH/VV  
was identified as the most promising SAR polarimet-
ric parameter for forest monitoring among these four, 
due to its highest OA in the TSC. The lowest accura-
cies below 60% were achieved by DPSVIm and DPS-
VIo (53.65% and 47.19%, respectively). These results 
indicate that the DPSVI indices are less capable of dis-
criminating between forest types. Furthermore, based 
on the SAR time series analysis (Fig. 6), these features 
showed a rather noisy behavior throughout the year, 
which explains the lower accuracy achieved in TSC. 

Fig. 6 Average and individual time series of a) VH, b) VV, c) VV/VH d) VH/VV, e) DPSVIm and f) DPSVIo using all input data for broad-leaved 
and coniferous forests.
Note: dec. = broad-leaved forests, con. = coniferous forests

a) b)

c) d)

e) f)
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Therefore, the final selection of the best perform-
ing SAR features based on each analysis was VH, VV, 
VH/VV and VV/VH. 

2.4 The MMTS-GEE dataset generation tool

The proposed MMTS-GEE tool, which generates 
a temporally and spatially paired time series dataset 
of S1, S2, DEM and weather data, has several param-
eters, which the user can set to customize the area of 
interest, time range, the preprocessing pipeline or 
export settings. The following settings can be set in 
the GEE environment:
– Time series length: Set the start and end dates to

generate time series.
– Random point generation: If enabled, users can

specify the type of land cover from the ESA World
Cover 2021 to generate random points, the num-
ber of these points, and a buffer around each point. 
Alternatively, users can import their own spatial
data as a GEE FeatureCollection and use it in time
series generation.

– Geographical coverage: Select a broad geometry
like an entire country or manually draw a custom
ROI, needed for the initial data assessment.

– Sentinel-2 data preprocessing: Settings to adjust
the CloudScore+ algorithm settings for cloud
unmasking are available.

– Optical and SAR indices: Choose from a list of pre-
defined optical and SAR polarimetric indices to
include in the output.

– Speckle Filtering: There is an option to perform
speckle filtering on SAR data using a Lee filter, with
configurable kernel window size.

– S1–S2 temporal difference: Set the temporal differ-
ence between the S1 and S2 images when pairing
them temporally can be set.

– Null Value Handling: Decide how to handle null val-
ues in the exported data, with options to exclude all
rows with nulls, include only rows where optical
indices have nulls, or include all nulls.

It should be noted that the MMTS-GEE code is free-
ly available, therefore, other settings, not included in 

the recommended user settings listed above, can be 
adjusted by editing the code. To list a few, users can 
create their own optical or SAR indices, select a differ-
ent land cover database for random point generation, 
set a different speckle filtering approach, or integrate 
other ancillary data to enhance the multi-modality of 
the created time series dataset.

3. Discussion

In this study, a tool for creating multi-modal time 
series datasets, consisting of spatially and temporal-
ly aligned and paired preprocessed S1, S2, weather 
and DEM data was created in GEE (MMTS-GEE). The 
MMTS-GEE tool is unique because it enables genera-
tion of paired time series for any time period (based 
on data availability) and over any geographic region, 
both locally and globally. Moreover, customization of 
data preprocessing pipelines, including cloud mask-
ing, speckle filtering and feature extraction, or fur-
ther extension with other ancillary datasets is possi-
ble. This versatility addresses various challenges of 
the currently used satellite-based datasets, as pre-
sented in Schmitt et al. (2023). Therefore, the GEE 
code for the MMTS-GEE tool has been made public-
ly available in the GitHub repository of this work at  
github.com/palubad/MMTS-GEE. In the present 
form, the MMTS-GEE is prepared for export of 
tabular data, but the next work will focus on 
improving the  MMTS-GEE to export image patches 
for deep learning (DL) analyzes to fully address the 
requirements for DL analysis in (Schmitt et al. 2023).

The testing and evaluation of various SAR polari-
metric parameters was performed to select the most 
suitable ones for forest monitoring using both quan-
titative (pairwise correlation analysis and TSC) and 
qualitative analysis (time series comparison). For this, 
time series were generated for 600 broad-leaved and 
600 coniferous areas using the MMTS-GEE. Based on 
the pairwise analysis of mutual correlation between 
SAR features and the highest achieved OAs in TSC on 
differentiation of forest types, four SAR features were 
considered as the most suitable and best performing 

Fig. 7 Fine-tuning of the C parameter for the TS-SVC (a) and results of TSC for SAR polarizations and polarimetric parameters (b).

a) b)

https://github.com/palubad/MMTS-GEE
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ones for forest monitoring: two original S1 polariza-
tions VV and VH and two most commonly used polar-
ization ratios VV/VH and VH/VV. Some of the tested 
SAR features were excluded due to a perfect correla-
tion between each other (RVI, RFDI, NRPB), while 
a perfect correlation between RVI and RFDI was also 
found in Paluba et al. (2023). This suggests that these 
indices are functions of each other and did not provide 
new information. DPSVIm and DPSVIo were exclud-
ed from the final selection due to their low accura-
cy in TSC and their rather noisy time series behav-
ior for both forest types. Although a high correlation 
was also found between the VV and VH polarization 
(0.84–0.85), they were included in the final selec-
tion of the most efficient SAR features. With that, the 
original polarizations of the S1 data were preserved. 
Moreover, VH polarization achieved the highest OA in 
TSC, suggesting that it is the most reliable and import-
ant SAR feature to distinguish between forest types 
and for forest monitoring in general.

The basic assumption based on previous studies 
(Dostálová et al. 2016; Frison et al. 2018), that SAR 
feature time series have seasonal variations for for-
ests, was confirmed (Fig. 6). Seasonal variations in 
SAR backscatter have been observed in both conif-
erous and broad-leaved forests, although their sea-
sonality differs. Coniferous forests exhibit increased 
backscatter in VV and VH in summer and reduced 
backscatter during colder conditions, often attribut-
ed to loss of moisture content, needle loss and the 
presence of understory vegetation, which can be 
formed by broad-leaved plant types (Dostálová et al. 
2016; 2018; 2021). Broad-leaved forests, on the oth-
er hand, show higher VV and VH backscatter values 
during leaf-off periods due to decreased attenuation 
by tree crowns, particularly by leaves with sizes sim-
ilar to or larger than the C-band wavelength (~5 cm). 
This leads to a higher received backscatter resulting 
from multiple scattering between primary and sec-
ondary branches, or even between the tree trunk and 
the ground, depending on tree crown density. Lower 
backscatter values during hot and dry summer days 
are associated with a reduced moisture content in veg-
etation, allowing greater penetration of the SAR signal 
into the tree crown and less backscatter returning to 
the SAR sensor. Generally, higher backscatter values 
are obtained for VV polarization in both forest types, 
confirming previous findings (Dostálová et al. 2016; 
2018; Paluba et al. 2021). A clearer and more distinct 
seasonality in the VH polarization for both forest types 
compared to VV can be attributed to the fact that the 
VH polarization is more strongly affected by volume 
scattering (Richards 2009; Vreugdenhil et al. 2018). 
The lower number of observations from wintertime 
caused a rather noisy behavior, similarly as in optical 
features. The lack of data in wintertime in the case of 
SAR data is due to the fact that only unmasked paired 
S1–S2 observations were considered in the analysis, 
therefore the number of S1 observations is equal to 

the number of valid/unmasked observations by S2. 
Overall, the analysis of these SAR parameters sug-
gests that the SAR backscatter is sensitive to seasonal 
changes in forest composition.

Topographic properties can significantly alter the 
backscatter behavior over time, especially when SAR 
images are combined from ascending and descending 
orbits (Paluba et al. 2021). A high correlation between 
the LIA and both S1 polarizations for both forest types 
can be caused by the fact that the input time series 
included S1 data derived from every possible acquisi-
tion geometry, i.e., both from ascending and descend-
ing orbits with variations in LIAs for the same area. 
The moderate correlation of DEM features (slope and 
elevation) with SAR features for coniferous forests and 
almost no correlation for broad-leaved forests can be 
attributed to the topographical distribution of the input 
areas. Broad-leaved forest areas had a mean elevation 
of 417 m with a range of 823 m, while the mean for 
coniferous forests was 650 m with a range of 1119 m.

Environmental effects, such as precipitation, 
alter moisture content and consequently the dielec-
tric properties of objects, which typically change 
throughout the year (Rüetschi, Small, and Waser 
2019; Benninga, van der Velde, and Su 2019; Ranson 
and Sun 2000). However, precipitation had almost no 
correlation with S1 polarizations and polarimetric 
parameters. This can be attributed to the high num-
ber of observations in which most of the observations  
(~28 000 out of ~30 000) exhibited less than 1.8 mm 
of cumulative precipitation in the 12 hours period 
prior to the S1 acquisition, as defined in (Benninga, 
van der Velde, and Su 2019). Although a moderate 
correlation was found between SAR features and 
temperature in this study, but only for coniferous 
forests, temperature was found to have a strong cor-
relation with C-band SAR backscatter in other studies, 
such as in Olesk et al. (2015). Moreover, in previous 
studies (Rüetschi, Small, and Waser 2019; Benninga, 
van der Velde, and Su 2019; Ranson and Sun 2000) it 
was found that freezing conditions and temperatures 
below 1 °C cause a significant decrease in SAR back-
scatter over forests. Therefore, the influence of envi-
ronmental factors, specifically precipitation and low 
temperatures, on the SAR backscatter in vegetation 
over time should be further examined in future studies. 

Weaker correlations between SAR and optical fea-
tures were found in this study (with a maximum of 
0.54 between FAPAR and VH/VV) compared to pre-
vious studies, e.g. 0.63–0.84 in (Jiao, McNairn, and 
Dingle Robertson 2021), 0.41–0.83 in (Alvarez-Mo-
zos et al. 2021), 0.45–0.74 in (Holtgrave et al. 2020). 
These studies, however, focused on agricultural areas 
while performing analysis only on mono-temporal 
image pairs, using an image-to-image comparison. 
A correlation of 0.77 between VV/VH and NDVI time 
series in broad-leaved temperate forests was found 
in Frison et al. (2018), while almost no correlation 
was found in coniferous forests. This is in line with 
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the findings of this study, where a significantly weak-
er correlation was found between optical and SAR 
features in coniferous forests. The variability in the 
individual time series (visualized with lighter lines 
in Fig. 5 and Fig. 6) for both SAR and optical features 
suggests that there is variation within both forest 
types, potentially due to microclimatic or topographic 
conditions (elevation, slope, aspect), species compo-
sition or other ecological factors (Mašek et al. 2023). 
The noisy behavior of optical TS throughout the year 
can also be attributed to insufficient haze, cloud and 
shadow masking.

4. Conclusion

The study aimed to identify the most effective SAR 
polarimetric parameters for forest monitoring through 
quantitative and qualitative analyses for Czech forests. 
The analyses revealed that some of the SAR features 
exhibit identical behavior, providing no additional 
information, demonstrated a  rather noisy behavior 
over time, or showed low performance in differentia-
tion of forest types in time series classification. There-
fore, the two original S1 polarizations (VV and VH) 
and two polarimetric parameters (VV/VH and VH/VV) 
were identified as most suitable and best performing 
in all the tested aspects and are proposed for further 
use in forest monitoring. Moreover, in a correlation 
analysis between SAR and optical features, the stron-
gest correlation was found for broad-leaved forest for 
VV/VH and VH/VV, while the highest overall accuracy 
in the time series classification was achieved by VH. As 
a secondary output, this study introduced the MMTS-
GEE tool to generate spatially and temporally aligned 
multi-modal time series datasets including paired S1 
and S2 data, extended with DEM and weather data in 
GEE. The MMTS-GEE offers high flexibility for users to 
adopt it for various geographical areas, time frames, 
adjust processing pipelines or enhance the modality 
of the tool with additional datasets. This versatility 
enables its use in time series analyses, intercompari-
sons and in machine learning applications for tabular 
time series data. The data generated with MMTS-GEE 
were used in the case study of Czechia focusing on the 
identification of the most efficient SAR features for for-
est monitoring. The public availability of the MMTS-
GEE code increases its accessibility and usability for 
researchers and supports further development and 
customization of the tool to meet specific research 
needs. Given its limitation to tabular data, further 
development of the tool for DL-ready data generation 
would be important.
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