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ABSTRACT
Machine learning algorithms are widely used methods in geographical research. However, these algorithms are not properly exploit-
ing the underlying spatial relationships present in the geographical data. One of the approaches, which addresses this problem, is 
based on an ensemble of local models, which are constructed from samples in close proximity to the location of prediction. This 
concept was applied to the Random Forest (RF) algorithm, creating a Geographical Random Forest (GRF). This study aims to further 
develop GRF by tuning the spatial parameters for each location in case of agricultural drought. In addition to tuning, the explan-
atory property of RF within the framework GRF is explored. Four machine learning models were constructed; regular RF, regular 
RF with spatial covariates, GRF, and GRF with the tuning of spatial parameters. Models were evaluated using Root Mean Squared 
Error (RMSE) and Mean Absolute Error (MAE). Although the decrease in RMSE in this very case is relatively small, the method may 
provide higher improvement with different datasets.
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1. Introduction

Machine learning algorithms are increasingly being 
used in various academic and commercial research 
fields. Geographical topics are no exception. The dif-
ference between machine learning in geography and 
other research fields is the input data. Geographical 
data are located in space, therefore are often denoted 
as spatial data. Location in space is described either in 
absolute terms (geographical coordinates) or in rela-
tive, for example, adjacency to neighborhood entities. 
This property of data can be exploited to achieve a 
higher degree of accuracy. Such an approach can be 
described as spatially sensitive. This study aims to 
apply a spatially sensitive machine learning model 
to the complex phenomena of agricultural drought.

The traditional approach, which does not take into 
account spatial patterns inside data, suffers from the 
inability to properly model spatial relationships. This 
inability is called “spatial non-stationarity” (Fother-
ingham, Charlton and Brunsdon 1996, 605). Foth-
eringham, Brunsdon and Charlton (2003, 9–10) list 
three reasons which cause spatial non-stationarity. 
Firstly, there is sampling variation, which relates to 
statistical artifacts. Secondly, some relationships are 
intrinsically different across space, especially for 
social processes. And lastly, there is a possibility that 
one or more important variables are missing from the 
model. The second point can be exemplified by Simp-
son’s Paradox (Simpson 1951) which refers to incor-
rect estimation of function when data are analyzed 
separately and then aggregated.

One option to capture spatial non-stationarity is 
to include spatial covariates, the most popular and 
easiest to use being geographical coordinates. A com-
prehensive study and evaluation of such an approach 
were conducted (Hengl et al. 2018) with Random 
Forest (RF) algorithm. The second option is to create 
an ensemble of local models, which encompass only 
a portion of all samples depending on their location. 
For each location where prediction takes place, a local 
model is created including n closest samples. In addi-
tion, one global model is created and final predictions 
are weighted averages of global and local models. This 
method has been applied to Linear Regression creat-
ing Geographical Weighted Regression (Brunsdon, 
Fotheringham and Charlton 1996) and to the RF algo-
rithm creating Geographical Random Forest (GRF) 
(Georganos et al. 2019). 

1.1 Random Forest

The Random Forest was developed by Breiman 
(2001) and belongs to a family of decision trees. Deci-
sion tree-based models make predictions by divid-
ing prediction space into several subregions and 
have a tree-like hierarchical structure. The building 
of decision trees follows two steps; firstly, at each 
split, divide the feature space (range of values for 

each feature) into several distinct regions. Secondly, 
for each observation that falls into the same region, a 
prediction is made – the mean of values of the predict-
ed variable. The problem is to find value by dividing 
predictor space most efficiently. The threshold value 
is calculated so that the overall sum of square errors 
is minimized (Kuhn and Johnson 2013, 175). Howev-
er, it is not computationally feasible to find optimal 
partition for features. The algorithm begins with one 
region and then successively divides the feature space 
at each split. At each split, the best partition is made at 
that particular split. This is also known as a top-down 
greedy approach. Unfortunately, the variance of trees 
is very high. The application of bootstrap aggregation 
(bagging) decreases the variance by averaging many 
similar trees from bootstrapped datasets. The new 
datasets are sampled with replacements from the 
original dataset. On average, one-third of all samples 
are not used during the tree-building process and are 
called out-of-bag (OOB). RF algorithms further devel-
op this concept by incorporating an ensemble of deci-
sion trees. In addition, the algorithm considers only 
part of the features at every splitting, which decreas-
es correlation among trees and therefore decreases 
variance.

The Random Forest algorithm achieves one of the 
highest forecasting accuracies compared to other 
algorithms for the broad field of tasks (Berk 2020, 
288). One of the advantages of RF is its great perfor-
mance for high dimensional data when the amount of 
predictors is higher than the amount of observation. 
Another reason to choose RF is its great computa-
tional performance, which is native to all tree-based 
algorithms. “Compared to bagging, RF is more com-
putationally efficient on a tree-by-tree basis since the 
tree-building process only needs to evaluate a frac-
tion of the original predictors at each split” (Kuhn 
and Johnson 2013, 200). RF can be running simulta-
neously on more cores and results can be aggregated 
afterward (Liaw and Wiener 2002, 22).

Hyperparameters of machine learning algorithms 
control the training process. Values for each hyperpa-
rameter need to be set before the start of the train-
ing phase. Hyperparameter optimization is necessary 
to construct a stable and accurate machine learning 
model. RF has several important hyperparameters. 
A number of randomly drawn features during the 
splitting phase often denoted as mtry, influences 
the stability and prediction accuracy. Lower values 
tend to boost the stability of the model, on the other 
hand, the accuracy is slightly lower (Probst, Wright 
and Boulesteix 2018, 3). Lower values also decrease 
the computational complexity, as the algorithm does 
not need to calculate as many thresholds. The next 
parameter, the number of trees in the forest should 
be set to at least 100. According to Probst and Boul-
esteix (2017), the accuracy increases with diminish-
ing returns when inputting higher values. However, 
the computational complexity increases as well. 
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The Hyperparameter Minimal Number of Samples 
describes how many samples are used for training 
each tree and its effect is similar to hyperparame-
ter number of randomly drawn features. Additional 
parameters are Node size (minimum number of sam-
ples in a terminal node) and Splitting rule (function to 
assess the quality of the split). Generally, RF performs 
well with tuning only mtry hyperparameter (Fernán-
dez-Delgado et al. 2014, 3175). Hyperparameters can 
be tuned with traditional methods, for example, Grid 
Search or Random search. Existing OOB samples can 
be utilized to evaluate the model, which saves time.

In addition to hyperparameters native to RF, GRF 
brings hyperparameters bandwidth and local weight. 
Bandwidth describes the size of the kernel for each 
local model. In other words, a number of closest sam-
ples of which local models are trained. There are two 
types of kernels – adaptive and fixed. The former 
encompasses n closest samples in the vicinity where 
prediction takes place. The latter is the circle, in which 
the radius is the bandwidth (Fotheringham, Brunsdon 
and Charlton 2003, 44). The final prediction for loca-
tion is made from a weighted average of the local 
model and global model, where the weight for the 
local model is a tunable parameter. The combination 
of two models results in higher accuracy – the local 
model ensures low bias and the global one has low 
variance (Georganos et al. 2019, 7). The drawback is 
higher computational complexity, GRF needs to com-
pute a new model for each predicted location. 

1.2 Agricultural drought

Environmental hazards are natural phenomena that 
negatively affect human society regarding economic 
and social losses. Drought hazard belongs to the most 
damaging and widespread causes of huge economic 
and human losses. The severity of drought depends 
on the environment’s (or society’s) ability to cope 
with hazards. For example, in developed countries, 
drought’s direct impact is almost invisible, and indi-
rect impact projects to higher consumption of water 
to irrigate agricultural plants. In developing countries, 
drought might cause crop failure and subsequent 
instability. However, climate change will worsen many 
aspects of drought, including its recurrence, severity, 
and timespan (Mukherjee et al. 2018).

The gravity of drought hazard is reflected in the 
abundance of research studies focusing on identify-
ing vulnerable locations or factors. Various methods 
have been applied; including the subjective weighting 
of drought drivers (Wilhelmi and Wilhite 2002) or the 
analytical hierarchy process (Hoque et al. 2020). More 
recently, machine learning algorithms are utilized to 
model drought. For example, Rahmati et al. (2019) 
employed RF, Support vector machines, and others to 
create a vulnerability map of Queensland, Australia. 
A similar study utilized an Artificial Neural Network 
(Rahmati et al. 2020).

The machine learning model requires independent 
variables, which influence the drought intensity, and 
a dependent variable, which functions as a drought 
indicator. According to Mishra and Singh (2010, 207), 
the drought indicator is a prime variable for assessing 
the effect of drought and defining different drought 
parameters, which include intensity, duration, severi-
ty, and spatial extent. The selection of an appropriate 
indicator is essential as it will be the dependent vari-
able, which will be predicted by the model. Soil mois-
ture, especially within the root system of the plants, 
is an accurate indicator of agricultural drought. Soil 
moisture-based indicators are used in similar studies 
concerning agricultural drought e.g. Rahmati et al. 
(2019) and Rahmati et al. (2020).

The severity of agricultural drought is influenced 
by various factors. The most profound is meteorologi-
cal. The connection between agricultural drought and 
meteorological patterns is clear. Precipitation is the 
only source of moisture for the environment with the 
exception of irrigation, which is available for a frac-
tion of cultivated areas. Temperature influences the 
rate of transpiration, higher temperatures increase 
the transpiration rate. A region with higher tempera-
tures is, therefore, more prone to drought. However, 
precipitation deficit impacts are greater than high 
temperatures in general (Yang et al. 2020, 9). 

Topographic characteristics refer to the quanti-
tative descriptions of the physical features of land. 
Vegetation in mountainous regions subscribes to dif-
ferent patterns of climatic conditions and develops 
specific adaptations. The slope of an area affects the 
run-off, recharge, and movement of surface water. 
Flat terrain areas have relatively high infiltration 
rates, on the other hand, areas with steeper slopes 
have low infiltration rates and higher run-off (Shek-
har and Pandey 2015, 409). Another topographic 
factor is aspect, which refers to the orientation of the 
slope. The aspect of a slope can influence local climate 
because of the length of the exposure to sun rays. 
West and south-facing slopes are warmer than east 
and north-facing slopes, therefore having lower soil 
moisture and higher evaporation rate (Magesh and 
Chandrasekar 2010, 375). The topographical Wet-
ness Index (TWI) (Beven and Kirkby 1979) describes 
the proclivity of a place to accumulate water based on 
topographic information. TWI is a widely used indica-
tor to obtain information on the spatial distribution 
of wetness conditions, since only a terrain model is 
required for calculation. Soil properties are import-
ant factors influencing the environment’s ability to 
cope with drought. Soil acts as a substrate for plants’ 
roots, providing them with water and nutrients. Soil 
characteristics influence these functions to various 
degrees. Soil texture refers to the size of solid par-
ticles, that soil is composed of. The size of particles 
determines the amount of water that can be stored 
for plants. Organic matter is one of the most import-
ant soil characteristics. According to Bot and Benites 
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(2005, 35–36), organic content increases water infil-
tration and water holding capacities, increasing the 
diversity and activity of soil organisms and providing 
nutrient availability. Land cover is intertwined with 
water demand and the coping abilities of the envi-
ronment to drought hazards. Land use describes how 
society uses land, land cover refers to the physical fea-
tures of the land. In case of vulnerability to drought, 
the scientific community classifies several types – 
 mainly agricultural fields, grasslands, forests, bar-
ren lands, urban areas, and water bodies (Jain, Pan-
dey and Jain 2014; Thomas et al. 2016; Hoque et al. 
2020).

This study continues to develop GRF by tuning 
spatial parameters for each location. The hypothesis 
is that tuning the spatial hyperparameters for each 
location will improve the accuracy of the GRF model. 
This hypothesis is based on the assumption that those 
spatial hyperparameters are spatially correlated. The 
study aims to confirm the hypothesis by completing 
three subtasks; firstly, creating an accurate statistical 
model based on the RF algorithm of drought hazard 
which consists of many local models and one global 
model and subsequently evaluating the accuracy met-
rics for both models. Secondly, performing a tuning of 
parameters for each local GRF model, answering the 
question of whether it is possible to improve the accu-
racy of the model further. Lastly, providing insight into 
the vulnerability modeling from the feature’s impor-
tance of local models.

2. Methodology and Data

This section describes the study area, datasets used 
to build the machine learning model, and method, 
which facilitates the local tuning of spatial hyperpara- 
meters.

2.1 Study Area

The problem is studied within the agricultural land-
scape in the Czech Republic, Central Europe. The 
extent reaches approximately 50 km beyond the bor-
der north to Poland, west to Germany, south to Aus-
tria, and east to Slovakia. The study area was limited 
to an agricultural landscape with these conditions:
– Forest should not cover more than 20% of the pixel 

area.
– Built-up areas should not cover more than 20% of 

the pixel area.
The study are is shown in Fig. 1. The total area of 

locations, that met the conditions is 53,860 km2.

2.2 Data

The drought model requires many features (inde-
pendent variables) to work properly. This is reflected 
in the variety of data sources, from which data were 
collected. The independent variable – the drought 
predictor was chosen to be the Soil Water Index (SWI). 
The selection was influenced by the availability of 
data in terms of spatial and temporal resolution. SWI 
is available within Copernicus Global Land Service 
(Bauer-Marschallinger et al. 2018). SCATSAR-SWI 
(Scatterometer Synthetic Aperture Radar Soil Water 
Index) is computed from the data fusion of products 
Sentinel-1 SSM (Surface Soil Moisture) and ASCAT 
SSM/SWI, which assess soil moisture. The dataset 
includes layers with various temporal parameters T, 
which correspond to different soil depths. The layer 
with a T value of 20 was chosen as it correlates best 
with the subsoil conditions (10–20 cm below the sur-
face) (Paulik et al. 2014, 5) and has uniform quality 
scores across the study area.

Meteorological features were acquired from the 
E-OBS dataset maintained by the European Climate 

Fig. 1 Study area.
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Assessment & Dataset project. E-OBS is interpolated 
from point data gathered from national meteorolog-
ical stations across Europe. According to the project 
website (Cornes et al. 2018), Czechia has an above-av-
erage density of stations (770 km2 for precipitation 
and 913 km2 for temperature per station). All topo-
graphic-related features were extracted from Euro-
pean Digital Elevation Model (EU-DEM). 

All soil properties except Soil organic matter were 
acquired from the “Topsoil Physical Properties for 
the Europe” dataset, which is based on Land Use and 
Cover Area frame Statistical Survey (LUCAS) data-
set. LUCAS is the largest harmonized soil dataset 
in Europe overseen by the Statistical Office of the 
European Union, which consisted of in situ measure-
ments from more than 22,000 locations (Orgiazzi et 
al. 2018). Another dataset derived from LUCAS is Soil 
Organic Matter (SOM) fractions (Cotrufo et al. 2019), 
which utilized more than 9400 points, to interpolate 
point data to a grid with a 1 km spatial resolution 
using the RF algorithm. Organic matter is divided by 
size into particulate and mineral-associated organic 
matter (less than 53 µm). Datasets are delivered in 
GeoTiff format and ETRS89-LAEA coordinate system. 

Both datasets, TPPE and SOM are distributed by the 
European Soil Data Centre (Panagos et al. 2012).

Land cover information was obtained from Corine 
Land Cover (European Environment Agency (EEA), 
2019). Land cover categories were aggregated into 
four thematic classes – built-up areas, agricultural 
areas, grasslands, and forests. Land cover categories 
and their corresponding thematic classes are listed in 
the table below (Tab. 1).

Metadata of datasets used in the study are listed in 
following table (Tab. 2).

2.3 Methods

A new variant of GRF was developed – Locally Tuned 
GRF (LT GRF). Values for hyperparameters band-
width and local weight are universal for every sample 
across space. LT GRF aims to find optimal values for 
each location. The optimal values are found for each 
location during the training process. Values are inter-
polated for the whole study area by linear interpola-
tion. In case there are several different values in one 
place, the mean value is used. We assume, that there 
exists a spatial autocorrelation in the model parame-
ter’s weights and bandwidth. Six models in total were 
developed; RF, GRF, and LT GRF with coordinates and 
RF, GRF, and LT GRF without coordinates. LT GRF 
should be the most accurate model created. Algorithm 
LT GRF can be described by the following pseudocode.

Algorithm 1 Geographical Random Forest with local 
tuning.
1: for training observation do
2: for bandwidth, local weight in the kernel, weights 

do
3: Perform Random Forest.
4: Perform Random Forest with bandwidth number 

of samples.
5: end for
6: Select optimal values of bandwidth and local 

weight.
7: end for

Tab. 1 Aggregated thematic classes and their corresponding Land 
cover categories.

Aggregated class Former classes

Built-up areas

Continuous urban fabric, Discontinuous urban 
fabric, Industrial or commercial units, Road  
and rail networks and associated land, Port 
areas, Airports, Mineral extraction sites,  
Dump sites, Construction sites

Agricultural  
areas

Non-irrigated arable land, Vineyards, Fruit trees 
and berry plantations, Annual crops associated 
with permanent crops, Complex cultivation 
patterns

Grasslands
Pastures, Natural grasslands, Moors and 
heathland

Forests
Broad-leaved forest, Coniferous forest,  
Mixed forest, Transitional woodland-shrub

Tab. 2 Metadata of datasets.

Product name
Original temporal 

resolution
Temporal resolution 

used in the study
Original spatial 

resolution
Format Reference

SCATSAR-SWI 1 day 14 days 1 km NetCDF
Copernicus Global Land  
service (2023)

E-OBS 1 day 14 days 0.1° NetCDF Cornes et al. (2018)

EU-DEM / / 25 m GeoTiff
European Environment  
Agency (2016)

Topsoil Physical Properties 
for the Europe

/ / 500 m GeoTiff Panagos et al. (2022)

Soil Organic Matter / / 1 km GeoTiff Lugato et al. (2021)

Corine Land Cover / / 100 m GeoTiff
Copernicus Land Monitoring 
Service (2019) 
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8: Interpolate bandwidth and local weight values for 
the location of testing observations.

9: for testing observation do
10: Perform Random Forest.
11: Perform Geographical Random Forest.
12: Compute the weighted average of the output of 

Random Forest and Geographical Random Forest.
13: end for

The process of evaluating models consists of sev-
eral steps; pre-processing of the data, model build-
ing, and performance evaluation by accuracy metrics. 
Firstly, the time periods were chosen for SWI. Five 
time periods – the first two weeks of August from 
2015 to 2019. Each period has a different distribution 
of values, therefore combined dataset contains obser-
vations with low and high values for the same place. 

Fig. 2 SWI values for each selected period.
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Various values of SWI for the same place can facilitate 
a robust and accurate model. SWI values are shown 
in Fig. 2. Secondly, drought predictors were chosen; 
geographical coordinates (X and Y), elevation, slope, 
aspect, TWI from category terrain characteristics, 
temperature and precipitation from meteorological 
characteristics, soil texture, organic matter content, 
soil bulk ratio, and AWC from soil properties. Organic 
matter content was created as a sum of both layers of 
the SOM dataset. Landcover features are represented 
by their proportion in each location. Four land cov-
er classes were chosen – built-up areas, agricultural 
areas, grasslands, and forests. In addition to the list-
ed features, the distance to large water bodies (rivers 
and reservoirs) was added. SWI and meteorological 
features are available for each day, therefore need to 
be aggregated. SWI and temperature are averaged, 
and precipitation is summed. Three periods of tem-
perature and precipitation are selected. Two weeks 
period, which is identical to the SWI period, a one-
month period (two weeks before the start of the SWI 
period), and a three-month period. 

All datasets were resampled to sample size with a 
resolution of 3 km2 using linear interpolation. Values 
of all features (independent variables) were scaled 
from 0 to 1. The dataset was split into training and 
testing sets with a ratio of 0.33 (two-thirds were used 
for tuning and one-third for testing) using random 
sampling. Three hyperparameters of RF were tuned 
using Grid Search with OOB samples – a number of 
randomly drawn features, a number of trees, and 
a minimal number of samples. Subsequently, GRF 
hyperparameters bandwidth and local weight were 
tuned using a grid search cross-validation method. 
Several bandwidth values were tested; 50, 100, 150, 
200, 250, 500, 750, 1000, 1500, 2000 and 5000. The 
distances are not equal for all locations, because of the 
use of an adaptive kernel. For a bandwidth of size 50, 
the average distance is 5205 m. For maximum band-
width of 5000, the average distance is approximately 
45 km. The parameter of local weight values from 0 to 
1 with increment 0.1 were tested. 

The performance of statistical models is evaluat-
ed by metrics – Root Mean Square Error (RMSE) and 
Mean Absolute Error (MAE). These metrics were cho-
sen because of their wide use in the scientific commu-
nity. The RMSE is calculated by the formula:

–
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In addition to the RMSE and MAE, relative accura-
cy in % is used. Relative accuracy is calculated as a 
ratio of error (RMSE or MAE) to the range of values of 
the dependent variable without outliers. Outliers are 
understood to be values less than one percentile and 
higher than 99 percentil of SWI values.

The import, processing and building of the models 
took place using the python programming language. 
Libraries used include scikit-learn, NumPy, Pandas 
and Xarray. Map outputs were created using QGIS 
software.

3. Results

This section describes the results of tuning the 
machine learning models, performance assessment, 
and the feature importances of GRF LT model shown 
graphically in the maps.

The hyperparameters were tuned using the Grid 
Search method with OOB samples. The optimal val-
ue for the number of randomly drawn features was 
found to be 16. The minimum number of samples was 
set to 5. The number of trees is 200, and the RMSE 
decreases with diminishing returns with increasing 
the value of the hyperparameter. The RMSE of values 
of spatial hyperparameters is depicted in Figure 3. 
The optimal value for local weight was found to be 0.7 
(0.7 local model and 0.3 global model). The decrease 
in error between regular RF (local weight is 0) is 
approximately 0.297 RMSE. In comparison, the dif-
ference between the default value of hyperparameter 
Randomly Drawn Features (typically one-third of all 
available features) is 0.2 RMSE. The optimal band-
width is 100 observations. The decrease in RMSE in 
comparison to the global model is very small 0.09, 
smaller than the decrease of hyperparameter local 
weight.

The optimal values of the bandwidth and local 
weight are found for each location. The count of each 
value of the parameter is displayed in a histogram 
below (Fig. 4). The most numerous value for band-
width is 50 constituting 20% of all values. The second 
place belongs to value 100 with a 12.7% share. Oth-
er values constitute a portion smaller than 10%. GRF 
assigns one universal value to all locations, however, 
as can be seen, it is not optimal for the vast majority 
of locations. In the case of local weight, the situation is 
more uneven. The most numerous local weight value 
is 1 (only the local model is employed) which consti-
tutes 56.4% of all values. The second most numerous 
is value 0 (only the global model is employed) with an 
8% contribution to all values. Other values are rep-
resented less, the count decreases with lower local 
weight. However, the best value achieved by GRF tun-
ing is 0.8. This value is not optimal for more than 92% 
of all locations.

Each tuned model was trained and tested. RF with-
out coordinates achieved an RMSE of 4.48 (MAE of 
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Fig. 3 Flow chart of the research.

Fig. 4 RMSE of spatial parameters, extracted from tuning of GRF with spatial coordinates.
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3.4), RF with spatial coordinates achieved an RMSE 
of 2.7 (MAE of 2.05), GRF without coordinates of 2.6 
(MAE of 1.96), GRF with spatial coordinates of 2.42 

(MAE of 1.83), LT GRF without coordinates of 2.58 
(MAE of 2.02) and LT GRF with spatial coordinates 
of 2.41 (MAE of 2.41). Values are listed in the table 
below (Tab. 3).

Feature importance of the RF and GRF models are 
displayed in bar plots below (Fig. 5 and Fig. 6). The 
most important features of the RF (without spatial 
coordinates) are precipitation features. Together they 
account together for almost approximately 60% of 
the importance. Summed precipitation over 1-month 
accounts for 38% and is the most important feature. 
The fourth place belongs to elevation with 6% of 
importance. The elevation is followed by temperature 
features, each accounting for 5% of importance. Other 
features have less than 3% of importance.

Feature importances of the GRF LT model (with-
out spatial coordinates) were aggregated by the mean 
value (Fig. 7). Values are similar to the RF model. The 

Tab. 3 Accuracy metrics for each tested model expressed in relative 
and absolute values. Models with spatial coordinates are denoted  
with ‘XY’. 

RMSE MAE

abs rel [%] abs rel [%]

RF model 4.48 90.86 3.40 93.02

RF XY model 2.70 94.46 2.05 95.77

GRF model 2.60 94.66 1.96 95.97

GRF XY model 2.42 95.03 1.83 96.24

LT GRF model 2.58 94.70 2.02 95.85

LT GRF XY model 2.41 95.05 1.80 96.30

Fig. 5 Histograms for bandwidth and local weight extracted from tuning of GRF with spatial coordinates.

Fig. 6 Feature importances for RF model (without spatial coordinates).
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most important features are precipitation features 
(1 month with 38%, 3 months with 15%, and 2 weeks 
with 6%) followed by temperature features (each 
with approximately 7%). Elevation and water prox-
imity account for approximately 1%. The rest of the 
features account for only 6% of feature importance.

The top eight features were visualized in maps 
(Fig. 8). Precipitation features show different spa-
tial distributions. The longest precipitation period 
(3-months) shows strong importance in the north-
western part of the area, 1-month precipitation in west-
ern and southwestern parts of the area, and the short-
est period in the eastern part. Temperature features 
show a similar pattern for each period. Strong impor-
tance can be assessed in southern part of the area. 

3. Discussion

The tuning of spatial parameters showed that there 
is no optimal uniform value for all training locations. 
However, GRF or LT GRF did not achieve a signifi-
cantly higher degree of accuracy. The minuscule dif-
ference in error between models can be explained in 
several ways. Firstly, regular RF achieves very good 
results. Accuracy of more than 90.86% is very high 
and the possibility for improvements is limited. It is 
most likely that model accuracy cannot be significant-
ly improved any further for the given modeled prob-
lem and available input data sets. Secondly, spatial 
non-linearity is explained well by spatial coordinates, 
which are input features in the RF model. In other 
words, the global model (RF model with spatial coor-
dinates) has not left any space for local models (GRF 
and GRF LT models) to improve more significantly.

The reduction in RMSE error between the GRF and 
GRF LT models (models with spatial coordinates) is 
surprisingly low. During the tuning phase, GRF LT 

achieved an RMSE of 1.8, which is significantly less 
than the resulting error in the testing phase. The lim-
ited improvement of the GRF corresponds with the 
visual examination of bandwidth. There is no or very 
little spatial correlation between bandwidth and local 
weight and a decrease in error. Values are localized 
randomly as a residue of random error.

GRF creates local models on a subset of original 
datasets. This process can be reinterpreted as a huge 
number of created decision trees with a very small 
number of observations. A similar situation can be 
recreated with regular RF with parameter maximum 
samples set to a value of best bandwidth (100). How-
ever, experiments show that such a model is very 
inaccurate (RMSE of 9.5) and this hypothesis can be 
rejected.

The performance of GRF and LT GRF was com-
pared to the performance in other studies. The GRF 
with spatial covariates in the study by Georganos et 
al. (2021) achieved an RMSE of 0.606, the global mod-
el achieved an RMSE of 0.65. The error decreased by 
6.76%. Master thesis by Hokstad and Tiganj (2020) 
compared RF with spatial covariates to GRF. RF 
achieved an RMSE of 17,944 and GRF of 16,705, a 
6.9% decrease in error. In both studies, a decrease in 
error between RF with spatial coordinates and with-
out them is more significant.

Improvement of GRF or LT GRF over regular RF is 
small and computational runtime is much higher. A 
desktop PC is not sufficient for larger datasets (more 
than 100,000 samples) and a more expensive solu-
tion needs to be employed. Therefore, it may seem 
that GRF might not be advantageous over classical 
RF based on this case study given the computation-
al requirements and not significant improvements in 
model performance.

The feature importance results provide unique 
insight into the drivers of agricultural drought. 

Fig. 7 Feature importances for GRF LT without spatial coordinates.
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Fig. 8 Top most important features of GRF LT (without spatial coordinates) visualized on the map.
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However, to draw conclusions from maps, deeper 
knowledge of local conditions is needed.

The concept of local sub-models and their param-
eters can be studied further. Despite the increase in 
accuracy being small, local tuning might deliver more 
beneficial results in different use cases. Therefore, it 
would be useful to find and evaluate spatial patterns 
in various datasets, which would benefit most from 
this method. The use of more sophisticated spatial 
interpolation methods such as kriging when obtain-
ing unknown values of local parameters can increase 
the accuracy of models. Such an approach would be 
particularly advantageous for a sparse dataset. The 
GRF and GRF LT models used use a binary kernel – 
records up to a certain distance are included in the 
local model. Another approach is to use a function 
that would assign weights to records based on their 
distance.

The explanatory function of the model (features 
importance) has the potential to provide additional 
insight into geographical phenomena. Results from 
GRF or LT GRF can be compared with more estab-
lished methods such as Geographic Weighted Regres-
sion. This concept can be also extended to other 
Machine Learning algorithms. As mentioned by Geor-
ganos et al. (2019), Support Vector Machines are suit-
able methods, because of their lower computational 
complexity. 

4. Conclusion

The study developed six machine learning algorithms; 
RF with and without spatial coordinates, GRF with 
and without spatial coordinates and LT GRF with and 
without spatial coordinates. LT GRF in contrast to 
GRF tunes the local parameters – bandwidth and local 
weight for each location. The models were applied and 
evaluated in the case of agricultural drought. A total of 
21 features were used to predict drought using a soil 
moisture-based index as the dependent variable. In 
addition, the study provides insight into the feature 
importance property of GRF. The increase in accuracy 
is relatively small in this very case, however, different 
datasets may provide more desirable results.
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