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DESCRIPTION OF F0 CONTOURS  
WITH LEGENDRE POLYNOMIALS

MICHAELA SVATOŠOVÁ, JAN VOLÍN

ABSTRACT

Phonetic research has developed both impressionistic and more objec-
tive means of describing the basic units of intonation. The quantification 
involved in the approaches based on acoustic measurements provides 
more detail and it is a necessary prerequisite for the comparability and 
replicability of the results of different studies. In addition to having these 
characteristics, a proper description of intonation should be comprehensi-
ble and meaningful. This article presents a method for describing melodic 
contours using Legendre polynomials, which yields a few coefficients that 
capture the basic properties of the analysed contour (e.g. level or slope). 
This approach thus connects objectivity and quantitative precision with 
common linguistic concepts. The article also proposes the use of Legendre 
polynomials for the description of traditionally recognized Czech melo-
demes through the analysis of schemes reported in the literature. Further 
research on real material could verify the validity of these categories and 
the usefulness of the method itself.

Key words: intonation, fundamental frequency, Legendre polynomials, 
polynomial modelling

1. Introduction

Despite differing substantially, various models of intonation share a common goal. 
They aim to simplify the enormous variability of melodic contours produced by speak-
ers into a limited number of perceptually distinctive categories. This effort involves two 
tasks – identifying the relevant categories and characterising them appropriately in pho-
netic terms. The first accounts of intonation were based on careful listening, which is an 
accessible method that considers perceptually relevant changes in F0. Nevertheless, the 
impressionistic descriptions formulated as verbal labels (e.g. fall, rise-plateau) or autoseg-
mental labels (e.g. H*, L+H*) suffer from subjectivity and vagueness.

When instrumental measurements of fundamental frequency became available, new 
methods emerged that attempted to quantify melodic patterns objectively, e.g. by stat-
ing the size of a melodic step in semitones. Experiments have shown that listeners per-
ceive intonation only in the central parts of vowels (Hermes, 2006: 13−15), allowing 
for one value to represent the pitch of a short syllable. The reduction of a contour into 
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a set of points connected by lines was licensed by the close-copy stylization approach  
(’t Hart et al., 1990). On the other hand, the models produced by Fujisaki (1983), Taylor 
(1994) or Hirst et al. (2000) used complex equations in order to reconstruct F0 con-
tours. Previous studies have also approximated F0 contours with polynomial equations 
(Andruski & Costello, 2004; Volín & Bořil, 2014). These approaches usually model the 
original contours more accurately at the expense of interpretability. A compromise is 
therefore sought that adequately captures the data but remains easily understandable.

This article presents a method for the description of melodic patterns with Legen-
dre polynomials, which provide a quantification that is more linguistically meaningful 
than conventional polynomial approximations. This approach was already used for the 
analysis of British nuclear tones (Grabe et al., 2007) and it was applied also to German 
(de Ruiter, 2011) and Czech (Volín et al., 2017). Furthermore, the research on Czech has 
exploited Legendre coefficients in the field of automatic speech processing, where they 
were shown to effectively parameterize the nuclear patterns and improve the prosody of 
the TTS synthesis (Matura & Jůzová, 2018). Section 2.1 introduces the first four Legendre 
polynomials (as a subset of the whole Legendre polynomial family) and their coeffi-
cients, which relate them to complex curves. The practical steps constituting the process 
of obtaining the coefficients from the F0 contour are outlined in Section 2.2. The meaning 
of the coefficients is discussed using real examples in Section 2.3. The following Section 3 
then suggests the application of Legendre coefficients in the description of Czech nuclear 
contours. This demonstration with schematic patterns could serve as a starting point for 
other studies that could test this approach on real material.

2. Legendre polynomials

2.1 Mathematical basis and modelling of curves

Polynomials are mathematical functions that can be used for describing curves. Leg-
endre polynomials are named after the French mathematician Adrien-Marie Legendre, 
who discovered them in 1782. They are defined in the interval [−1, 1] and normalized 
to Ln(1) = 1. The first four polynomials are shown in Figure 1 (all figures in this article 
were created with the R packages tidyverse, grid and gridExtra (Auguie, 2017; R Core 
Team, 2022; Wickham et al., 2019)). The equation of the Legendre polynomial of the n-th 
degree can be derived from the general formula given in (1). The degree of a polynomial 
expresses how many changes it can describe. The first polynomial in Figure 1 is constant 
and it has a degree of 0. The rising line of L1 already captures one change (from low to 
high values), which corresponds to the first degree, while the subsequent polynomials of 
higher degrees turn their directions more times.

(1)

These polynomials represent basic building blocks for creating more complex curves. 
Combining pairs of polynomials (by adding together values that correspond to each oth-
er on the x-axis) yields curves shown in Figure 2. The panel a) illustrates the combination 
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of the first two polynomials. While the values of L1 in its basic form range from −1 to 1 
(on the y-axis), the addition of L0 makes them range from 0 to 2, because L0 has a con-
stant value of 1 in the whole interval. Adding L0 to any other polynomial would also shift 
the given polynomial on the y-axis, but its shape would remain the same. The curve in the 
second panel retains the cup-shape of L2, but it also has a clear rising tendency overall due 
to the presence of L1. In the panel c), the direct rise of L1 is modified by the wave shape 
of L3. Finally, the last panel d) shows that summing the nearly opposite values in the first 
halves of L2 and L3 produces values around zero, while their similarly rising shape toward 
the end results in a more prominent rise.

Figure 1. The first four Legendre polynomials (L0–L3) with their equations.

Figure 2. Combinations of pairs of Legendre polynomials.

Each polynomial Ln can be multiplied by the coefficient cn. The basic polynomials in 
Figure 1 are not accompanied by any number, which implicitly refers to cn = 1. A different 
value of c0 simply makes L0 represent a different constant, as shown in the panel a) of Fig-
ure 3, where c0 = 1.8. The other coefficients affect the span of their respective polynomials. 
Lowering c1 to 0.5 produces halved values across the whole interval of L1, as illustrated in 
the second panel. Multiplying the polynomials by negative numbers creates curves that 
are mirror-shape images (according to the x-axis) of their counterparts with positive coef-
ficients. Negative values of c2 therefore lead to dome-shaped curves instead of the cup-
shaped ones that were presented so far. This is shown in the panel c), where the coefficient is 
not only negative, but also of higher absolute value (c2 = −2, compared to c2 = 1 in Figure 1), 
which is reflected in the wider range of its values. Similarly, a negative c1 would produce 
a falling line and a negative c3 corresponds to a falling-rising-falling shape.
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The two variations just presented imply the possibility to multiply each basic poly-
nomial with a specific coefficient and add them together. Since the precise values of 
individual coefficients are no longer easily recognizable from the complex curve, they 
can be summarized in a profile accompanying the curve, as will be done in the rest of 
the figures in this article. Figure 3 contains three simple profiles that graphically depict 
the respective coefficients. The coefficients of polynomials that are not part of a given 
curve equal zero. It is therefore sufficient if the profile includes coefficients from c0 up to 
the last coefficient with a nonzero value. Figure 4 illustrates some of the curves that can 
be modelled using only two polynomials (L1 and L2), but in different ratios. The panel 
a) starts with a simple fall that corresponds to the polynomial L1 multiplied by a negative 
coefficient (c1 = −1). In addition to L1, the curves in the following panels also include the 
polynomial L2 modified by negative values of the coefficient c2 (these produce dome-
shaped curves as in the panel c) of Figure 3). As the relative magnitude of c2 compared 
to c1 gradually increases in panels a) – e), the falling L1 transforms into the dome-shaped 
L2. The curves in panels f) – i) contain a positive c1, making the overall slope rising. Mir-
ror-shaped images of the first eight curves could be modelled using opposite values of 
c1 and c2 (as indicated in the last four panels), forming a transition from a rise through 
a cup-shaped parabola to a fall.

Figure 4 shows that curve shapes are determined by the ratios between L1 and L2 (and 
possibly other higher coefficients). In order to compare various curve shapes, relative 
coefficients (rcn) can be calculated from the raw ones (cn) by the formula given in (2), 
where N stands for the highest degree of a polynomial with a nonzero coefficient. It trans-
forms all coefficients with nonzero values to make the sum of their absolute values equal 
1. The first coefficient (c0) is excluded from this conversion, because it shifts the curve 
on the y-axis, but it is not related to its shape. The relative coefficients do still express 
the positive or negative orientation of their respective polynomials. However, they also 
indicate to what extent do the individual polynomials contribute to the overall shape of 
the modelled curve. The profiles in Figure 4 actually present relative coefficients (the sum 
of their absolute values equals 1).

(2) 

Figure 3. The first three Legendre polynomials multiplied by different coefficients. The profiles (on the 
right side of each panel) show the coefficient values.
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An important feature of Legendre polynomials is their orthogonality. In mathematical 
terms it means that the inner product of each two polynomials equals zero. It refers to 
the fact that each polynomial captures a property that is not explainable by any other 
polynomial. The average value of a given curve can be described only using L0, since all 
the other polynomials have an average of zero. Similarly, the linear slope is only reflected 
in L1, because the linear regression of the other polynomials equals zero. The polyno-
mials of higher degrees describe unique characteristics in the same manner. Thanks to 
orthogonality, any curve in the [−1, 1] interval can be formed by summing polynomials 

Figure 4. Curve shapes produced by combinations of the second (L1) and third (L2) Legendre polynomial. 
Each polynomial is multiplied by a different coefficient (their values are shown in the profiles on the right 
side of each panel).
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of different degrees, each multiplied by a specific coefficient, although the modelling of 
more complex curves (containing numerous or abrupt changes) requires using polyno-
mials of higher degrees. From the opposite perspective, it is possible to decompose any 
curve (e.g. an interpolated F0 contour) into a set of Legendre polynomials multiplied by 
different coefficients (having different “amplitudes”). This is analogical to Fourier analysis 
of a sound wave, which works with cosine functions of various frequencies instead of 
Legendre polynomials. Identifying the values of these coefficients lies at the core of the 
analysis presented in Section 2.2. Since the inner product of any pair of Legendre poly-
nomials equals zero, the coefficient of each polynomial can be calculated from the inner 
product of that polynomial and the analysed curve. Another consequence of orthogonal-
ity is the independence of the coefficients, which means they are not correlated and can 
be statistically evaluated as separate variables within one analysis.

The first few polynomials are sufficient for the analysis of intonation, because they cap-
ture the main melodic movements and ignore microprosodic effects. In other words, they 
model the relatively simple underlying shape of the F0 contour. Specifically, in nuclear 
patterns that usually span over a few syllables, a higher number of changes is not expect-
ed. For convenience, the first four coefficients are referred to as AVERAGE (c0), SLOPE 
(c1), PARABOLA (c2) and WAVE (c3) following Grabe et al. (2007). Their further advan-
tage over other methods of polynomial modelling (e.g. least squares approximation) is 
that they can be interpreted in linguistic terms. As mentioned earlier, the AVERAGE has 
a special position, because it expresses the mean value of the curve, while all the other 
coefficients are related to its shape. The meaning of AVERAGE and units in which it is 
expressed depend on the method of normalization of the original F0 contour (described 
in detail in Section 2.2), but it is connected to the position of the nuclear pattern in the 
pitch range. The relative ratios of SLOPE, PARABOLA and WAVE affect the shape of the 
curve (as illustrated in Figure 4), while the absolute values of these coefficients reflect its 
span (compressed or expanded). A feature that is not inherently captured by this method 
is the temporal dimension, since each contour needs to be transformed to the interval 
[−1, 1].

2.2 Analysis of F0 contours

This section describes the necessary steps that have to be undertaken in order to 
obtain the Legendre coefficients of a given melodic contour. Some of them are common 
in intonation research, while others are required specifically by this type of analysis.

First of all, the analysis domain has to be chosen. Stress-groups usually consist of 
a few syllables bearing relatively simple melodic movements. These can be adequately 
captured by a few coefficients and therefore seem as a reasonable choice. The decision 
about the appropriate domain should be guided by the research question and by the 
findings from the previous research on the given language. For example, it might be use-
ful to include the pre-stressed syllable, if its relative pitch plays a role in distinguishing 
various patterns, as was done for German in de Ruiter (2011). However, longer units 
such as prosodic phrases could be modelled as well, if the differences in interpretation 
are taken into account. One caveat arising from this approach might be the diversity of 
attested patterns. The range of possibly distinct contours expands with every additional 
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syllable of the analysed domain, which also affects the amount of data necessary for their 
adequate description.

The present analysis is based on the measurement of F0 alone. It differs in this respect 
from the method utilized by Grabe et al. (2007), which additionally required the param-
eters of intensity and periodicity. These were used for weighting the importance of partic-
ular parts of the F0 contour. The idea underlying their approach derives from the finding 
that listeners do not pay equal attention to variations of pitch in different segments. More 
sonorant phones like vowels appear to form the basis of the perceived melodic patterns, 
while the pitch in voiced obstruents is ignored with regard to intonation (Hermes, 2006: 
13−15). The method described here proposes an alternative way of reflecting this knowl-
edge through the exclusion of all F0 values in the irrelevant regions from the analysis. 
Although it provides only a categorical distinction (values are either used or deleted) 
instead of a gradual scale, this approach avoids further errors that are related to the mea-
surements of other parameters.

Since listeners’ sensitivity to pitch variations seems to be language-specific, the choice 
of particular parts of the F0 contour for the analysis should be theoretically ground-
ed. Generally, the F0 values would be retained in vowels and discarded in consonants, 
although some languages might exploit also the regions occupied by sonorants. This ele-
mentary distinction could be further refined to eliminate some of the microprosodic 
effects. This means extracting only certain parts of each vowel, defined either absolutely 
(e.g. starting 10 ms after the beginning of the vowel) or relatively (e.g. using the middle 
third of its duration). Comparing both approaches might show if the simpler method is 
robust enough or whether the further adjustments need to be made. It is obvious that in 
any case, the F0 contour should be annotated at the level of segments.

From the practical point of view, the F0 contour in the domain of interest has to be 
extracted and corrected for errors like octave jumps and missing values, which is a stan-
dard procedure for studies concerning pitch. The values calculated in Hertz are then com-
monly converted to semitones (ST), which applies also for the present analysis, because 
this unit is perceptually more relevant. Semitones are used (instead of octave ratios as in 
Grabe et al., 2007) for two main reasons – their values are easier to interpret and they 
are well known. Nevertheless, the two units are mutually convertible (for comparative 
reasons) by simply dividing the values in semitones by 12 and vice versa, which holds for 
the coefficients as well.

Furthermore, the contours can be normalized to allow comparisons between speakers 
and utterances. The interpretation of AVERAGE (the first coefficient) follows directly 
from the chosen reference. Subtracting the mean F0 of each speaker implies that the coef-
ficient is to be understood in relation to it. For example, if the contours of a speaker are 
expressed in semitones with the reference of 100 Hz (his mean F0), then the AVERAGE 
of 1.5 corresponds to 109 Hz, which is 1.5 ST above 100 Hz. Depending on the research 
question, an alternative reference for the normalization might be chosen (e.g. the mean 
F0 of the given utterance).

Finally, the coefficients are calculated using the method implemented in the rPraat 
package for the R software (Bořil & Skarnitzl, 2016; R Core Team, 2022). As already men-
tioned, the procedure differs from the one described in Grabe et al. (2007), but it derives 
from the orthogonality of Legendre polynomials. The algorithm takes the adapted F0 
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contour (normalized and including only the relevant values) and performs the following 
operations on it. First, the contour is linearly interpolated into 1000 points to ensure 
equivalent sensitivity in the whole analysed domain. Secondly, the time scale is trans-
formed into the interval [−1, 1] in which Legendre polynomials are defined. This means 
that the coefficients alone are unable to capture the stretching or compressing of an iden-
tically shaped contour in the temporal dimension. Lastly, the coefficients are calculated 
from the inner products of the transformed contour and the respective polynomials.

The outlined method is summarized in these four steps:
   1. selection of the analysis domain and its relevant parts
   2. extraction of the F0 contour (in semitones)
   3. normalization
   4. calculation of the coefficients

An example of a practical application of this procedure is provided here, using a short 
polarity question [ˈr̝ɛknɛtɛ jɪm ˈt͡so sɪ ˈmɪsliːtɛ] (“Will you tell them what you think?”) 
produced by six speakers. The nuclear contour spanning the last stress-group [ˈmɪsliːtɛ] 
was chosen as the analysis domain, limiting the relevant parts only to vowels, which form 
the nuclei of the three syllables. F0 estimates in 10 ms intervals were extracted in Praat 
(Boersma & Weenink, 2022) using the autocorrelation method with standard settings 
and then manually corrected for octave jumps and missed voicing regions. All values 
in Hertz were converted to semitones with the reference of 1 Hz. The speakers’ means 
(obtained from a collection of their utterances) were then subtracted from the respective 
contours.

Figure 5 shows all six nuclear contours. The black points represent the extracted F0 
values, while the interpolated values (also used for the analysis) are coloured in grey. The 
Legendre coefficients (c0−c3 in this case) are presented in the profiles on the right side 
of each panel. The black curves are models based solely on these four coefficients. Their 
values are summarised in Table 1 together with their relative counterparts and explained 
in the next section.

2.3 Interpreting the coefficients

So far, only coefficients relating to isolated curves were discussed. However, working 
with real data usually requires comparing multiple contours. This section therefore pro-
vides a more detailed description of the relationship between Legendre coefficients and 
the curves they represent. It also explains how similarities of contour shapes translate 
into the coefficient values.

The speaker S1 realized the analysed nuclear pattern as a rise (with the main melodic 
step located between the first and the second syllable), as shown in the top left panel of 
Figure 5. The accompanying profile reveals that its most prominent coefficient is the pos-
itive SLOPE, followed by the negative PARABOLA, which reflect the rising and dome-
shaped appearance (see Figure 3 above for the individual polynomials and Figure 4 for 
their combination). The minor AVERAGE indicates that the whole contour is located 0.1 
ST below the speaker’s mean pitch.

The coefficients of S1’s contour can be compared to those of another speaker, S2. 
Turning to both top panels of Figure 5, it can be seen that the extracted F0 values 
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resemble each other a lot. Conveniently, the similarity is preserved in the coefficients 
of these contours. Excluding the AVERAGE that is not related to the shape, but rather 
signals the position of the nuclear pattern in the pitch range (1.1 ST above S2’s mean 
pitch), the coefficients do not differ from each other by more than 0.4. In contrast, 
S3 produced a pattern that could be called a  late rise, realizing the main melodic 
step between the second and the third syllable. It results in a considerable change in 
PARABOLA, which switches to a positive value. It captures the cup-shaped pattern 
that is present in the contour, although reduced by the more prominent SLOPE. It also 
becomes clear that the coefficients should not be interpreted in isolation. The similar 
SLOPE of the first three contours does not imply their resemblance in the overall 

Figure 5. The nuclear contours on the stress-group [ˈmɪsliːtɛ] produced by six speakers. Each panel 
includes the extracted F0 values (black points), the interpolated values (in grey) and a curve constructed 
from the first four Legendre coefficients (these are shown in the profiles on the right side of each panel).
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shape. Nevertheless, it still holds that they all include overall rising, which is exactly 
what SLOPE represents. However, the type of rising is specified only in combination 
with higher coefficients.

The contour of S3 also features a lower AVERAGE. While this coefficient is auton-
omous in the sense that it merely distinguishes between realizations of an identi-
cal shape on different levels in the pitch range, it also interacts with the shape in 
one respect. The first and third contour begin and end with comparable F0 values of 
approximately −4.5 and 2 ST, yet their values of AVERAGE differ by 2.5 ST. The rea-
son is the shape of the contour (here specifically the position of the second syllable), 
because all interpolated points in the analysed interval contribute equally to the value 
of AVERAGE. The AVERAGE will always be lower for contours with a low middle part 
than for those with a high one, even though they have the same values on the edges. 
It remains to be tested whether it reflects the fact that listeners perceive more low or 
high values in the whole contour. However, this effect should be taken into account 
in the interpretation.

Table 1. The Legendre coefficients (raw on the left, relative in italics on the right) of the six nuclear 
contours from Figure 5.

AVERAGE SLOPE PARABOLA WAVE SLOPE PARABOLA WAVE

speaker c0 c1 c2 c3 rc1 rc2 rc3

S1 –0.1 3.9 –1.7 –0.9 0.60 –0.26 –0.14

S2 1.1 3.9 –1.3 –0.8 0.65 –0.21 –0.14

S3 –2.6 4.0 1.7 –0.3 0.67 0.28 –0.05

S4 0.3 1.9 –0.8 –0.3 0.63 –0.27 –0.10

S5 –0.8 3.0 2.4 0.4 0.52 0.41 0.07

S6 –1.0 5.2 5.2 3.1 0.39 0.38 0.23

Despite the fact that the contour produced by S4 follows the same pattern as the first 
two, its coefficients (especially SLOPE) substantially differ. This is due to the narrower 
span it covers, because the rise stretches only around 3.5 ST compared to approximately 
6.5 ST in the previous contours. The relative coefficients in Table 1 clarify the similarity 
of S4’s contour to those of S1 and S2. It lies in the approximately 63% share of positive 
SLOPE and 23% share of negative PARABOLA. The inclination of S3’s contour to the 
shape of a late rise is therefore mainly caused by the positive PARABOLA, although it is 
present in a similar ratio. The relative coefficients also show that SLOPE forms the most 
important component in these contours, leaving only half as much space to PARABOLA. 
Notice that the ratios between coefficients can be to a certain extent visually assessed 
from the profiles alone, even if their y-axes have the same range and the raw coefficients 
differ in magnitude.

S5 realised a contour with a similar appearance to the one produced by S3 (a late 
rise), which is reflected in the comparable relative coefficients of these two contours. The 
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prominence of the SLOPE is reduced in S5’s contour (although it is still the strongest 
component), while the PARABOLA has a greater share than is S3’s pattern. This change 
in the ratios of both coefficients relates to the position of the second syllable. The third 
panel resembles a straight rising line, while the fifth is more bent (compare with panels 
j) and k) in Figure 4). An important feature for the differentiation of curve shapes is the 
polarity of the most prominent coefficients, which applies for SLOPE and PARABOLA 
here. The contrast of positive and negative WAVE does not affect the shapes dramatically, 
because its relative values are close to zero.

The last panel of Figure 5 shows another late rise. However, the speaker S6 did not 
produce the melodic step between the second and third syllable (as did S3 and S5), but 
compressed this movement into the final syllable, which starts at a low pitch and ends 
high. The modelling of this abrupt change requires the presence of WAVE. Its relative 
value is three times higher for S6 than for S5 and at the same time the highest of all the 
contours in Figure 5. Besides allowing for the steep rise, the WAVE also makes the first 
half relatively flat. Without it, the combination of SLOPE and PARABOLA would result 
in a fall in that part of the curve (as in the panel k) in Figure 4). In fact, any curve with 
a steeper or sharper shape than those in Figure 4 necessarily includes WAVE (or other 
higher coefficients) in a non-negligible ratio. The same tendency can be observed even in 
the contours of S1 and S2. Their values of relative SLOPE and PARABOLA lie somewhere 
between those from panels g) and h) in Figure 4, but they rise in a straighter manner due 
to 14% of negative WAVE.

3. Modelling Czech nuclear patterns with Legendre 
polynomials

3.1 Connecting Legendre polynomials to linguistic 
categories

Previous sections have described the method which allows for the simplification of 
a F0 contour into a few Legendre coefficients that capture its basic properties. Neverthe-
less, these individual numbers do not represent the ultimate goal of phonetic research. 
Returning to the introduction, the aim of the analysis is to describe intonation patterns 
generally, which involves classification into various categories. Each category includes 
a range of possible realizations, while remaining distinct from other categories in vari-
ous ways. The difference between declarative and interrogative utterances is a commonly 
mentioned one, but contours of different types can among other things also signal the 
speaker’s dialect, thus expressing the indexical function.

The most thoroughly studied unit within the intonation of Czech is the nuclear pat-
tern (melodeme), which is considered the most information-laden. Three functionally 
distinct categories are distinguished – conclusive, interrogative and continuative patterns 
(Daneš, 1957: 38-54; Palková, 1994: 307−315), each consisting of several contour types 
(cadences). Their traditional descriptions were based on auditory assessment, resulting 
in schematic stylizations using four pitch levels (Daneš, 1957: 53−54). It would be desir-
able to experimentally test their perceptual validity. However, the controlled design of 
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test items requires quantitative characteristics of these types. Legendre coefficients might 
serve as a convenient tool in this respect. A given category can be described with a model 
contour created from the average coefficients of the contours belonging to that catego-
ry. For illustration purposes, the following sections present an experiment indicating 
approximate coefficient values which could be expected for some of the traditionally 
reported contour types.

3.2 Method

The three categories of melodemes were represented by schematic patterns taken 
from Palková (1994: 309−315) and spanned over a three-syllabic stress-group, which 
allows for a greater variability of contour shapes. The patterns are summarised in 
Table 2. In order to analyse them with Legendre polynomials, F0 contours based on 
these schemes were created in Praat. The four levels were set to 305, 265, 230 and 200 
Hz, which yielded equidistant pitch levels after the conversion to semitones (approxi-
mately 2.4 ST apart). The values of the highest and lowest level were chosen to reflect 
a possible human pitch range, which produces coefficient values comparable in mag-
nitude to those that could be obtained from real recordings. The target values were 
placed in the centres of vowels in a simple CVCVCV template (assuming the same 
duration for all segments) and then interpolated quadratically with the built-in func-
tion in Praat. The edge values in the first and last vowel were adjusted to produce 
a mean F0 (in these vowels) equivalent to the desired levels. The analysis domain 
thus corresponded to a stress-group and the relevant parts used for the analysis were 
limited to the vowels.

Table 2. Schemes of Czech nuclear patterns based on Palková (1994: 309−315). Number 1 represents the 
highest pitch level, number 4 the lowest; * marks the stressed nuclear syllable and the number in brackets 
denotes the level of the pre-nuclear syllable.

conclusive patterns interrogative patterns continuative patterns

(CCL) (INT) (CNT)

1 (1) 2* 3 4 (2) 4* 4 2 (3) 4* 3 2

2 (2) 3* 2 4 (2) 4* 1 2 (4) 2* 1 2

3 (4) 1* 1 2 (4) 1* 1 3

The pitch of the pre-nuclear syllable was chosen as the reference value for normaliza-
tion for two reasons. First of all, the mean F0 of a speaker or utterance could not be used, 
since the contours were created artificially in isolation. Secondly, the relative position 
of the stressed syllable and the preceding (pre-nuclear) syllable is argued to differenti-
ate various patterns and therefore represents a relevant component of the whole con-
tour (Daneš, 1957: 51). Legendre coefficients were calculated in rPraat with the method 
explained in detail at the end of Section 2.2. Their relative counterparts were obtained 
using the formula presented in Section 2.1.
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3.3 Interpretation

Figure 6 illustrates all analysed contours. Similarly to Figure 5, it contains the original 
F0 values (black points) and the whole interpolated contours (grey lines). The black curves 
represent the models based on the first four Legendre coefficients, which are shown in 
the profiles on the right. Both raw and relative coefficients are summarised in Table 3. 
However, the specific values should not be taken literally, since a few arbitrary decisions 
had to be made when transforming the schematic representations into analysable F0 
contours.

The first two contours are conclusive and they both have a negative SLOPE. It indi-
cates an overall fall, which is a typical property of this category. However, they differ in 
some respects. The fall in CCL-2 is milder (it has a smaller absolute SLOPE) and it is 
complemented by a rising-falling element, which is captured by the negative PARABO-
LA. As can be seen from the relative coefficients, the parabolic shape in fact contributes 
to the whole contour to a greater extent than SLOPE. On the other hand, the first two 
interrogative contours are rising, since they both contain a positive SLOPE, although it 
is not the only polynomial present in them. Nevertheless, considering just the first four 
contours, the negative or positive SLOPE seems to differentiate between the conclusive 
and interrogative types.

Table 3. The Legendre coefficients (raw on the left, relative in italics on the right) of the contours from 
Figure 6. The sum of the absolute values of relative coefficients does not equal 1 in some rows due to 
rounding.

AVERAGE SLOPE PARABOLA WAVE SLOPE PARABOLA WAVE

contour c0 c1 c2 c3 rc1 rc2 rc3

CCL-1 –4.9 –3.0 0.0 0.2 –0.94 0.00 0.06

CCL-2 –2.2 –1.5 –2.9 0.1 –0.33 –0.65 0.02

INT-1 –3.4 3.0 1.9 –0.2 0.59 0.37 –0.04

INT-2 –0.5 3.0 –3.9 –0.2 0.43 –0.55 –0.03

INT-3 6.6 –1.5 –0.9 0.1 –0.60 –0.37 0.04

CNT-1 0.0 3.0 0.0 –0.2 0.94 0.00 –0.06

CNT-2 5.8 0.0 –1.9 0.0 0.00 –1.00 0.00

CNT-3 5.8 –3.0 –1.9 0.2 –0.59 –0.37 0.04

The advantage of Legendre coefficients over verbal labels manifests itself in the com-
parison of CCL-2 with INT-2 and CNT-2. They could all be called rise-falls based on 
the relative positions of the three syllables, despite the fact that they are visually and 
perceptually distinct. A longer specification is then required to capture the different mag-
nitudes of the melodic steps between syllables. The descriptions become much more 
concise when translated into Legendre coefficients. The most prominent element is the 
negative PARABOLA, corresponding to the rising-falling skeleton shared by all three 
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Figure 6. The modelled contours based on the schematic patterns from Table 2. Each panel includes the 
F0 values (black points), the interpolated values (in grey) and a curve constructed from the first four 
Legendre coefficients (these are shown in the profiles on the right side of each panel). The horizontal 
dotted lines indicate the four pitch levels.
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contours. It is the only constitutive component of the model in the case of CNT-2, but 
it is complemented by SLOPE in the other two contours. These are distinguished by the 
values of SLOPE – CCL-2 has a falling tendency, while INT-2 is rising. The SLOPE is thus 
indirectly signalling the ratio between the two melodic steps.

The first interrogative contour resembles the second one in the rising aspect, but it has 
a positive value of PARABOLA, which on its own means a fall-rise. However, the relative 
coefficient shows that it amounts to approximately one third of the whole contour, while 
the SLOPE has a greater share. This combination lies halfway between the shapes j) and 
k) in Figure 4 and leads to a plateau (rather than a fall) between the first two syllables fol-
lowed by a rise. The third interrogative contour diverges from the general pattern, since 
it is falling, although not prominently in absolute terms (small absolute value of SLOPE). 
This opposite tendency is compensated by a high AVERAGE that strongly contrasts with 
the negative or zero values present in the contours discussed so far. The specific values are 
arbitrary, because they result from the F0 levels chosen during the modelling of the con-
tours, but the ratios between them hold true. The interpretation of AVERAGE depends 
on the current reference, which is the F0 level of the pre-nuclear syllable here. While 
the first four contours are located at about the same pitch or below the previous syllable,  
INT-3 lies higher. This might serve a similar function as the overall rising, since both 
strategies end at a relatively high pitch.

Interestingly, the same pattern is present in the continuative contours. The first one 
has a positive SLOPE, which is also dominant relatively. On the contrary, CNT-2 and 
CNT-3 contain a high AVERAGE, although their SLOPE is zero or even negative. In 
fact, CNT-3 closely mirrors the relative coefficients of INT-3. Figure 6 shows that the 
two shapes are alike, but the two contours differ in the level of the last syllable (see 
Table 2). In other words, CNT-3 covers a wider span. This difference is normalised 
in the relative coefficients, but retained in the raw coefficients, which are halved for  
INT-3. The level and span of nuclear patterns might play an important role for the lis-
teners when distinguishing the categories. Although INT-3 and CNT-3 seem to differ 
only in the span, the present analysis is strongly limited by the four-level schematiza-
tion and a proper description would require real data.

Figure 7. The modelled contours of the INT-2 pattern as combined with two different syllabic templates. 
Each panel includes the F0 values (black points), the interpolated values (in grey) and a curve constructed 
from the first four Legendre coefficients (these are shown in the profiles on the right side of each panel). 
The horizontal dotted lines indicate the four pitch levels.
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Finally, it can be seen at first glance that WAVE is only marginally involved in 
all contours, probably due to the regular temporal distribution of the three melod-
ic targets. For comparison, Figure 7 simulates the presence of a consonant cluster 
before or after the second vowel in contour INT-2. The relative position of the peak 
is therefore shifted towards the beginning or end of the contour. It leads to four times 
higher relative values of WAVE (−0.13 and 0.12, respectively) compared to the rc3 
of the original INT-2 contour. These account for the steeper falls at the edges of the 
modified contours.

4. Conclusion

The article presented a method for the description of F0 contours using Legendre 
polynomials. The main melodic movements are converted into a few (usually four) coef-
ficients that are linguistically interpretable, while remaining quantitatively precise. They 
therefore combine the advantages of simple verbal labels and complex mathematical 
equations. The coefficients capture the elementary properties of the analysed contours 
and ignore microprosodic effects. Both dimensions of the pitch range are referred to 
in this approach, since the AVERAGE (the first Legendre coefficient, c0) relates to the 
level and the absolute values of the other coefficients reflect the span. Different contour 
shapes can be easily compared using the relative coefficients, which inherently express 
the internal temporal distribution of the pitch targets in the analysed contour. However, 
the total duration of the analysed unit is not accounted for due to the normalization that 
is required for the calculations. Relating the coefficients to speech tempo thus remains 
one of the questions for further research.

Section 3 suggested the application of Legendre coefficients in the description of Czech 
nuclear patterns. However, it only outlined the procedure that should be repeated with 
natural material in order to explore the differences between the nuclear pattern categories 
and also the specifics of their subtypes. These studies could compare their results with those 
observed here for the traditional schemes and test the usefulness of Legendre coefficients in 
intonology. The following step could turn to the listener and examine the distinctiveness of 
contour subtypes in perception experiments. A potential systematic relationship between 
the perceived perceptual differences of F0 contours and the values of their Legendre coeffi-
cients would provide further evidence for the relevance of this method.
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